
Query Processing in a Video Retrieval System*

K.L. Liul, P. Sistla\ C. Yu\ N. Rishe2

1: Department of EECS, University of Illinois at Chicago
Chicago, IL 60607

2: School of Computer Science, Florida International University,
Miami, FL 33199

Abstract
In an earlier paper, we designed a similarity based

video retrieval system. Queries are specified in a lan­
guage called Hierarchical Temporal Language (HTL).
In this paper, we present several extensions of the HTL
language. These extensions include queries that can
have the negation operator and any other logical and
temporal operators such as disjunction. Efficient algo­
rithms for processing queries in the extended language
are also presented.

1 Introduction
Multimedia information systems have received

much interest in recent years. It is expected that a
major part of image data such systems handle will be
composed of video. The issue of how to retrieve the de­
sired videos will be of practical importance. There has
been some earlier work on modeling video data and
specifying video queries (4, 5 , 6, 9, 10, 19, 3, 12] . Most
of them use exact matching for retrieval purposes . An
important characteristic of our video retrieval system
is that retrieval is similarity based , which is generally
accepted as more appropriate for retrieval from mul­
timedia databases than that based on exact match­
ing. A major part of our system consists of meth­
ods for similarity based retrieval that are built on top
of an existing picture retrieval system (described in
(1, 2, 15, 16, 17j). In (18], we presented a hierarchical
model for video databases , a Hierarchical Temporal
Language (HTL) for specifying queries and efficient
algorithms for various important subclasses of formu­
las of HTL. In this paper, we present a number of
non-trivial improvements and extended the system so
that it can process a wider class of HTL formulas.

The main contributions of this paper are as follows .

• Extensions to the Hierarchical Temporal Lan­
guage.

• A more general efficient algorithm for processing
HTL formulas involving any logical or temporal
operator but not negation .

• An efficient algorithm for processing HTL formu­
las with negations.

•This research is supported by the following organizations:
NSF grants under IRI-9309225 and IRI-9509253, NASA under
NAGW-4080 and ARO under BMDO grant DAAH04-0024.

0-8186-8289-2198 $10.00 <0 1998 IEEE
276

Our paper is organized as follows . Section 2 gives
a brief review of the Hierarchical Temporal Language
and the processing of HTL formulas. We show in sec­
tion 3 how to modify our algorithm presented in [18]
to become general enough to process all HTL formu­
las that have existential quantifiers but not negations.
For formulas involving negations , their processing is
discussed in section 4. Concluding remarks are given
in section 5.

2 Review
The meta-data for the videos is represented using a

hierarchical model. In this model , a single video is ar­
ranged into various levels. Each level consists of a tem­
porally ordered sequence of video segments which is a
decomposition of video segments at the next higher
level. At the top level we simply have a single video
segment representing the whole video . At the next
level this video may be decomposed into a sequence
of sub-plots, and each sub-plot may be further decom­
posed into a sequence of scenes at a lower level ; at a
still lower level , each ~cene may be decomposed into
a sequence of shots. At the lowest level each shot is
a sequence of frames . Meta-data is associated with
each video segment at each level in the above hier·
archy. The meta-data contains information about the
objects in the video segments, their properties and the
relationships among them.

The query language of our system is called Hierar­
chical Temporal Language (HTL) . It is an extension
of classical temporallogi<; of (11] and Future Temporal
Logic [14] . This language uses the classical temporal
operators to specify properties of video sequences (i .e.
the temporal properties) . In the following, we give
some examples of operators in our HTL query lan­
guage which we shall refer to in subsequent sections.
Twoofthese examples, FOLLOWED.BY and OR,
were not described in [18].

• f = g UNTIL h : f is satisfied at video seg­
ment u if there is a video segment u' which is
the same as u or which appears after u such
that h is satisfied at u' and g is satisfied at all
video segments between u and u' with a mini­
mum threshold value.

• J = g FOLLOW ED ...BY h : Formula f is
satisfied at a segment u if g is satisfied at u

and h is satisfied at some segment which occurs
after u.

• f = 9 0 R h : f is satisfied at a video segment
u, if either 9 is satisfied at u or h is satisfied at
u.

Let f = 3XIX2 ... Xn 9(X1, ... , Xn) be a formula
with existential quantifiers. An evaluation p for f
is a function that assigns values to the object vari­
ables x!.x2.····Xn; for example, XI= 21 , x2 =
3-5, .. . I Xn = 98 is a possible evaluation, where xi
may denote the ID of some object. The similarity val­
ues of f at various video segments with respect to
different evaluations are presented in a similarity ta­
ble. This table is formed by inductively computing a
similarity table for each subformula h of f. If subfor­
mula h has k object variables appearing free in it. The
similarity table for h will have k + 1 columns. The
first k column names will be the names of the free vari­
ables appearing in h and the (k + 1)st column will be
a simi larity list, which is a list of pairs giving the sim­
ilarity values in different intervals of video segments.
In each tuple, the values of the first /..· columns give
an evaluation p for the formula , and the value of the
last column is a similarity list denoting the similarity
\·alue of h at various video segments with respect. to
p. The following is an example of a similarity table T
for the formula 3.\1.\2 h(.\1 ,.\2).

TableT
s, .\2
1 3 (([2. 1) , (8. 10)) ([18 . 20] . (2. 10)))
:) 6 (([10 . 15] , (7. 10)))

Each entry in a similarity list in the last column of T
is a pair ([u 1. 11 2]. (a, m)) . where the interval [u 1, u2]
denotes a range of segments between u1 and u2 inclu­
sive. a is the actual similaritv and m is the maximum
similarit v. ·

The s;milarity table for a subformula h off is in­
ductively computed as follows . If h is non-temporal.
then the table for h is computed using the approach
given in [1] . \\'hen h = h' op h" , where op is a logical
operator or a temporal operator , the similarity table
T for his computed in the following manner . Suppose
the similarity tables for h' and h" are T' and T" re­
spectively and the number of free variables in h', h"
and h is k' . k" and k respectively. The values in the
first 1.: col~mns ofT are obtained by making a join of
the first k columns ofT' with the first k" columns of
T" where the join condition is the equality condition
for the common column (i .e. va riable) names . Let t'
and I" be tuples ofT' and T" respectively . Suppose
the first /..· columns of tuple t ofT are obtained by
joining I' and 1" . Then, the (k + 1)st column value of
I is obtained by combining the list.s L' and L" using
the algorithm for the op operator , where L' and L" are
the lists in the last column oft' and I" respectively.

Example 1 Let f 3X1X2X3.\4 y(.Y, . .\2)
FOLLOPr' ED_BY li(X'J , .\'3 , .\'4). Let T1 a11d T2 ,

the similarity tables for subformulas y aud h resptc­
twely, be git•en as follows .

277

, '(1 Xz
11 3 (((2 , 7], (8, 10))([18, 20] , (2,10)))
5 6 (((10, 15], (7, 10))}

3 9 23 (([3 , 8], (7, 15)))

Suppose T is the similarity table for f . In column
X 2, the value of the first tuple in T1 is the same as the
value of the tuple in T2. These two tuples are joined
to form a tuple t for T . The similarity list of t ,
formed by using the algorithm for the temporal oper­
ator FOLLOW ED_BY, is (([2, 7], (7, 10))). As the
second tuple in T1 and the tuple in T2 have different
values in column X 2 , these two tuples are not joined.
Hence, the similarity table T is

'T' bl I ,\ I .\ ~ ,\3 ,\4 I
~ a e T ~=lo-'.!_~:=-=!!_-~~=-=J.~~~~~~=========~=:~ - 2:3 (([2, 7], (i, 10))) •

3 Processing of HTL Formulas With­
out Negations

Suppose the operator in the formula of example
_1 is not FO LLOlr £ DJ3Y. but some other log­
Ical or temporal operator op. That is , f =
3X1.\'2.\'3X4 g(X1 . .\'2) op hlX2.-\'3,X-t) . Consider
any video segment u E [10 , 15] . From table T1 of ex­
ample 1, with respect to the evaluation X 1 = 5 and
x2 = 6. the sim ilarity of 9 at u is (7. 10), greater
than 0. As there is no tuple in T2 which has value
6 in column x2. the simila ri ty of " at any segment..
in particular segment u, with respect to anv evalua­
tion p in which x2 = 6 , must be 0. l'iote. that for
some operator op , such as the disjunction operator
"OR", it. is reasonable that the similarity of f at u
is greater than 0 even if h(X2 • .\3. X 4) is not satis­
fied at u. That is , with respect to any evaluation p
in which XI= 5 and x2 = 6. no matter what values
.\3 and .\4 are assigned by p, the similaritv off at
u is also great~r than 0. Let. Nx 3 and ,v;, be the
number of possible values of x3 and x4 respect iwly.
Clearly. the number of different evaluations. in which
X1 = .5 and .\2 = 6 (o r any other possibi l' values).
is the product Nx 3 x Nx. : and the total number of
different evaluations with respect to whi ch formula f
has non-zero similarity at. some segment may be vny
large. A straightforward algorithm forms for the sim­
ilarity table of f a tuple for each evaluation with re­
spect to which f is satisfied at some segment. The
number of possible evaluations such an algorithm need
to consider in this case is O(.Vx , Nx ,Nx 3 Nx,). For
a more complex HTL formula, the number of evalu­
ations we need to consider could be extremely huge:
and t.he execution of a straightforward algorithm may
take an unreasonable length of time. For formulas that
have negations, the problem is similar but only more
severe. In this section. we show how this problem can
be solved for HTL formulas without negations . For the
case when negations are involved . th<' problem and its
solution are addressed in the next S<'ction .

Note that with respect to an evaluation p , if a for­
mula (} is not satisfied at all video segments (i.e . has
similarity 0 at any segment), p is normally not repre­
sented by any tuple in the similarity table for 8. As
we indicated above, for some binary operator op (e .g.
the disjunction operator "0 R"), with respect to an
evaluation p, the similarity of gop h may be non-zero
at a video segment u even if one of its operands is not
satisfied at any segment with respect to p. For such
an operator, if the construction, described in the pre­
vious section or in [18] , of a similarity table for gop h
is to work correctly, we must include in the similarity
table for g (h) tuples to represent those evaluations
with respect to each of which g (h) is not sat isfied at
all segments. However, as we showed in the previous
paragraph , there may be a lot of such evaluations. If
we include one tuple for each of these evaluations, the
resulting table may be very large. For more complex
(sub)formulas, t~eir similarity tables may become un­
manageable. To handle this situation , we introduce a
notation * to represent the set of all possible val­
ues of an object variable. For a collection of ob­
ject variables X, Y, Z, for instance, the assignments
X = *· Y = 30 and Z = * denote the set of evalu­
ations S = {(X,Y,Z) = (vx,30,vz): vx E dom(X)
and l'z E dom(Z)}, where dom(W) is the set of all
possible values of variable W. To represent the set
of all evaluations with respect to which h is not sat­
isfied at any segment, we use a special tuple. This
tuple has value * for each object variable in h and an
empty list in the column for similarity lists . We shall
call this a *-1 up/e. In example 1, the *-tuple of T2
is (*, *· *· ()). Note that as *represents all possible
values of an object variable , this *-tuple represents the
set of all possible evaluations. However , we shall use
it with the understanding that it represents only
those evaluations not represented by any other
tuple in the similarity table.

Throughout the following discussion , we refer to all
formulas not involving any binary logical or temporal
operators as atomic formulas and all other formulas
as compound formulas. In the similarity tables for the
atomic subformulas, we shall keep the pointers to the
similarity lists rather _than the actual similarity lists.
We assume that distinct tuples of these similarity ta­
bles have distinct pointers; and we shall identify the
tuples by their pointer values. In forming a similarity
tableT for a compound subformula h of a formula f ,
the similarity lists are not computed immediately. In
each tuple ofT, we keep the pointers to the similarity
lists from which the similarity list of this tuple can be
computed. As the similarity list of a *-tuple is empty,
we shall indicate this by assigning the NULL value to
its pointer column(s) . Note also that in the following,
whenever the tuples of a similarity table are
referred to, they do not include the *-tuple un­
less otherwise stated; and the *-tuples will not be
shown explicitly unless for clarity.

Let T; be a similarity table for an atomic formula
P; and I; the column in T; for the pointers to sim­
ilarity lists. Denote by obj(P) the set of free object
variables in formula P . Let h be a compound formula
formed from n atomic formulas P; (i = 1, ... , n) . The

278

similarity table T for h has a column for each object
variable in Ui= 1obj(P;) and the columns It, ... ,In.
Each tuple t of T corresponds to a set of evaluations
which are represented by the values in the columns
corresponding to the object variables in u?= 1obj(Pi).
We denote this set of evaluations by 51 • t .I; is either
from the set of values in column I; of T; or NULL.
If t.I; equals t; .I; for some tuple t; in T;, then t.X
equals t; .X for each X E obj(Pi) ; and at each video
segment , the similarity of P; with respect to any eval­
uation in 51 is the same and is given by the similarity
list pointed to by t .I;. If t.I; is NULL, the formation
of tuple t involved the *-tuple of table T;.

Definition 1 Let t' and t" be two tuples from simi­
larity tables T' and T" respectively. If for every com­
mon object variable X, t'.X and t" .X have the same
value or one of them has the value *• the set of all
possible values, we say that 5 1• and St" are com­
patible or t' and t" are compatible; we also say that
the evaluations of 51• (S1u) are compatible with t"
(t') . •

Suppose h = h' op h", where op is a binary logi­
cal or temporal operator . Suppose fur ther that h' is
composed of the atomic subformulas Pt , . .. , Pw; h"
composed of P (w +I J• . .. , Pn and none of h' and h" has
negations. Let T' and T" be the similarity tables for
h' and h" respec tively. Tuples are joined based on
the equality of the values of the common object vari­
ables. Evidently, only compatible tuples can be joined.
Let r' E T' and r" E T" be two compatible tuples
and r a tuple resulting from joining r' and r" . For a
common object variable X, if r' .X = r". X., it is clear
that r.X = r' .X (orr" . .'(). Suppose one of r' .X and
r" .X, say r'.X. is * which represents all possible val­
ues of X, and r".X = v (;t *). As only the value
v among all the possible values of r'.X equals r" .X,
r .X takes only the value v, i.e. r.X = r".X . Thus , in
the tuple r , the value for each X E obj(h') n obj(h")
is given by :

r .• \ = ' v
, { r" .X

r .,\
if r'.X = r".X. or*
if r" .X = *

Below, we present an algorithm.
NON _N EG_JQIN() , for the construction of the sim­
ilarity table T for h = h' op h" . The first two
arguments of NON .N EG_JQJN(T' , T" , op) are
the similarity tables for h' and h" . Step 1 of
N ON.NEG_JOIN() is essentially the same as that
described in (18] . Steps 2 and 3, if necessary, form
those tuples representing evaluations with respect to
which one of the operands of op is not satisfied at any
video segment .

NON.NEG_JOIN(T', T", op)

l. A table T is formed from tuples obtained by join­
ing compatible tuples from T' and T".

2. If a 0 similarity value of h" at all segments may
generate a non-zero similarity value for h' oph"

at some segments, then for each t' E T' , t' is
joined with the •-tuple of T" and the resulting
tuple is appended to T.

3. If a 0 similarity value of h' at all segments may
generate a non-zero similarity value for h' op h"
at some segments, then for each t" E T" , t" is
joined with the •-tuple of T' and the resulting
tuple is appended to T.

4. Join the •-tuples of T' and T" to form the •­
tuple of T.

5. Return T .

Let n' and n" be the number of tuples in T'
and T" respectively. Let A be obj(h') n obj(h"),
the set of common object variables. The projection
of T" on A is fL T" . Let W = set of distinct
tuples in TIA T" . For a tuple v E W, let mv be the
number of tuples in T' each having the same value
as v.X or the * value in column X if v.X. =F * for
each X E A; and nv be the number of tuples in T"
each having the same value as v:X in column X for
each X E .4. Then, the number of tuples formed
by ~ining the tuples in T' with those tuples in T"
is ~vEW mvnv. Clearly, the total number of tuples
formed in steps 2 and 3 is O(n' +n"); and step 4 forms
just the •-tuple. Hence, the size of the similarity table
for h' oph" is Lvew mvnv + O(n' + n").

Using hash join. step 1 of NON _N EG_JOIN()
requires time 0 (L ve w mv nv) . As the total running
time of steps 2 and 3 is 0(n' +n"), the time complexity
of NON _/.V EGJOI Ill() is 0(Lvew mvnv+n' +n").

Example 2 The similarity tables for the atomic sub­
formulas P,(X,, X2) , P2(X2 , X.3) and P3(X3 , X.!) are
as follows. The values under the columns I 1 , I2 and
!3: 9, 10, 11, 21 and 15 are pointers to similarity
lists .

r, 11l1' I fo I r, I '{ 11' I fJI
TJI -~J I -~4 I h I
The similarity table T' for

P,(x,, X2) uNTIL P2(X2, xJ) 1s

From our definition of the UNTIL operator (see sec­
lion 2), it is clear that if the similarity of P1 is
:ero at all segments (not satisfied at any segment),
the Slmtlarity of P1 UNTIL P2 may be non-zero at
some segments (specifically, those segments at which
P2 is satisfied); if P2 is not satisfied at all segments,
P, UNTIL P2 cannot be satisfied at any segment.
Hence, the tuples of T2 are joined with the •-tuple of

279

T, forming the second and third tuples of T' while
the tuples of table T1 are not joined with the •-tuple
of T2 . The •-tuple ofT' is (• , *• *·NULL, NULL).

The similarity table T for
(Pt(X,, X2) uNTIL P2(X2, XJ)) OR P3(XJ, X4) IS

Since the operator 0 R gwes a :ero similarity at a
segment u only when both of its operands are not sat­
isfied at u , the tuples of T' and the tuples of T3 are
joined with the •-tuple of T3 and the •-tuple of T'
respectively. •

The •-tuple associated with a similarity table T is
a special tuple . It has the value * for each object
variable and NULL values for the pointer columns.
Although it represents the set of all possible evalua­
tions , this •-tuple, as we mentioned above , is intended
to represent only those evaluations not represented by
any other tuple ofT (because it may not be practical
to enumerate all these evaluations) .

Consider a tuple formed from a •-tuple of a ta­
ble , say the second tuple (•. 5, 3, 6, NULL, 11 , 15), t 2 ,
in T of example 2, which is formed from the •-tuple
of T1 . The set of evaluations represented by t2 is
{(vx, ,5,3,6) : ux, E dom(Xt)} , where dom(Xt) is
the set of all possible values of variable X 1. As is ev­
ident from its pointer columns, the other tuples from
which t 2 is formed are the tuple (5 . 3, 11) of T2 and
(3, 6, 15) of T3 , both of which are not •-tuples. From
the I 2 and I 3 columns ofT, it is clear that there is one
other tuple , the first tuple t 1 = (1, 5, 3 , 6. 9 , 11. 15) of
T , which is also formed from the same tuples of T2 and
T3; the tuple from T1 to form 11 , however, is the tuple
(1, 5 , 9). not the •-tuple. As an evaluation represented
by (1, 5, 9) E T1 is not intended to be represented by
the •-tuple of T1 , it follows that all the evaluations rep­
resented by 11 are not intended to be represented by l2 .
That is, the evaluation (X1 ,X2,XJ,X4) = (1,5,3 .6)
is not intended to be represented by l2 . As there
are no other tuples of T which are formed from the
same two tuples of T 2 and T3 from which t2 is
formed, the in~ended evaluations represented by t2 is
{(vx, ,5,3 ,6) . vx, E dom(Xt)}- {(1,5,3,6)} .

From the above discussion, we see that there are
two sets of evaluations represented by each tuple t :

• A set of evaluations determined by the values
in its variable columns. This set is denoted by
St . It may contain evaluations not intended
to be represented by I. In the above example,
St~ = {(vx,,5,3, 6): vx, E dom(X.t)}; it con­
tams the evaluation (1,5,3,6) wh1ch is not in­
tended to be represented by l2 .

• A set of intended evaluations represented by t,
obtained by removing from S1 all evaluations not

intended. to be represented by t. We denote this

set by S~ . This is the set of evaluations actually
represented by t. For the second tuple t2 ofT in
example 2, SL = Sr'l- {(1,5 , 3, 6)} .

It should be clear that s; is always a subset of 5 1 ,

and 51 and S: may or may not be equal. Also , if a
tuple t does not have any NULL pointer , it must be
that s; = s,.

Once the similarity table T for a formula f has
been formed , we then compute the similarity list for
each tuple ofT. Let Pt be the set of non-NULL
pointer values of tuple t . Consider the first tuple t 1
ofT in example 2. P 1, = {9, 11, 15}. The similarity
list of t 1 will be computed from the three similarity
lists pointed to by 9, 11 and 15 using the parse tree
for the formula of example 2 and the algori t hms in
(18]. Note that the non-NULL pointer set of a tu­
ple can be a su.bset of the non-NULL pointer set of
another tuple. For instance, the non-NULL pointer
set of the second tuple t2 of T, P1 = {11, 15} is a
subset of P 1, . For these tuples , we have the the fol­
lowing proposition. (To save space, the proofs of all
propositions are omitted.)

Proposition 1 Let r' and r" be two distinct tuples
from the same similarity table . If Pr• , the set of non­
N ULL pointer set of r', is a subset of Pr" • then

• Sr" C Sr• ; and

• all evaluations represented by r" are not intended
to be represented by r', i.e. Sr" n S~. is empty.

In the above example, Prl C Pr, (t1 and t2 being
the first two tuples of T of example 2). Evidently,
Sr, = {(1 , 5,3 , 6)} is a subset of S,l = {(vx, , 5, 3, 6) :
vx, E dom(X 1)}; and we have shown earlier that all
evaluations represented by t1 are not intended to be
represented by t2.

Consider two distinct tuples r 1 and rz of a simi­
larity table such that Pr, C Prl · Since r1 and r2 are
distinct, Pr, must be a proper subset of Prl · There
must be a pointer column I, such that r 1 .I = NULL
(r 1.I points to an empty list) and r2./ :/= NULL. Let
L 1 and £ 2 be the similarity lists of r 1 and r2 respec­
tively. As the similarity functions for all the logical
and temporal operators (except the negation operator ,
which we discuss in the next section) are monotoni­
cally increasing, the similarity value at any segment u
given by L1 cannot be greater than the similarity value
at u according to L2 . As we want high similarities , the
similarity list £ 1 is not of much interest to us . Thu!\,
for the similarity table T for f, we compute only
the similarity lists of those tuples whose non-NULL
pointer sets are not proper subsets of any non-NULL
pointer sets; the similarity lists of the other tuples will
not be computed unless specifically requested by the
user. In table T of example 2, only the non-NULL
pointer sets of the first and the fifth tuples are not the
subsets of the non-NULL pointer sets of any other tu­
ples. That is, only the similarity lists of these two tu­
ples are needed to find those segments having highest

280

similarity va~ues_. These t~ples also ha~e an interesting
property whtch IS stated tn the followmg proposition.

Proposition 2 Let t be a tuple in a similarity ta.
ble T and Pr the set of non-NULL pointers oft. If
for every r E T , r :/= t, P1 is not a subset of P, .
then all evaluatwns represented by t are intended to
be represented by t, i. e. S: = 51 . •

Consider the fifth tuple t 5 of T in example 2. p 1
is not a subset of any other non-NULL pointer sets:
and ts .II and ls./3 are both NULL. It is readily seen
that none of the evaluations in 5 1, = {(vx,, 7,2, vx,) .:
vx, E dom(XI) and vx, E dom(X4)} is compatible
with anr one of the tuples of T1 and T3 • That is.
s,. = s: •.

We have designed an algorithm to extract all tu­
ples whose similarity lists contain high similarity val­
ues (i .e. those tuples whose non-NULL pointer sets are
not proper subsets of any non-NULL pointer sets) . Be­
cause of space limitation, the algorithm is not shown.

4 Processing of HTL Formulas Having
Negations

The negation of a formula P is denoted by ...,p . If
the similarity of P at segment u is (a, m), where a
and m are the actual similarity and maximum simi­
larity respectively, we compute the similarity of ..,p
at u as (rn-a , m). Suppose the similarity list for Pis
L = (([1 , 5], (3, 10)) , ([10 , 30]. (8 , 10))) . Note that any
segment at which the similarity of P is 0 is not repre­
sented in L , and at such a segment the similarity of
...,p is maximum according to our computation . Thus,
if the set of all video se~ments is [1 , 30]. the similar­
ity list Lc for ...,p is ((l1 , 5], (7 , 10)), ([6, 9], (10, 10)),
([10 , 30], (2, 10))) .

Let h be an atomic formula consisting of object
variables but not the negation operator . Let T11 be
the similarity table for h, and I a column in T11 un­
der which the pointers to similarity lists are stored.
Consider the negation of h, -,h. Let T11e be the simi­
larity table for -,h and [0 the pointer column of T{
Corresponding to each tuple t E T11, we form a tuple
t 0 for T/: , which represents the same set of evaluations
(i.e. t .X = t0 .X for all X E obj(h) = obj(...,h)). The
similarity list of t0 is computed from the similarity list
of t in the same manner as we computed £C in the
previous paragraph. However , for efficiency, we do not
perform this computation until the list is needed . We
simply set the value of t 0

.[
0 to point to the same sim·

ilarity list oft . That is , te.Ic = t .I. Hence, t and t'
are equal. In other words, Tf!. and T11 have the same
tuples. We simply set T.b_ to point to table T11 without
forming Tf!. explicitly. This takes constant time. Let
S. be the set of all those evaluations not represented
by any tuples of 711 • In the previous section, we use a
special *-tuple to represent the evaluations of S • . The
similarity list of the *-tuple is empty, indicating that
h is not satisfied at any segment with respect to each
evaluation in S • . Hence, with respect to each pES.,
the similarity list of -,h has maximum similarity for
each video segment; we represent such a similarity list

by a special symbol U and call it a U -list. Normally,
if with respect to an evaluation p, the similarity of a
formula f is not 0 at some segment, a tuple will be
formed t.o represent p. However , there are too many
evaluations in S.. To represent each of them by a
tuple in a table is impractical. Furthermore, with re­
spect to each of these evaluations, the similarity at
each segment is the same. Hence, we choose to rep­
resent them using a single tuple . Since it rep resents
the same set of evaluations as the •-tuple of Th, the
variable columns of this tuple are assigned the same
values as those in the corresponding columns of the
•-tuple of Th, i.e. the * values; its pointer column is
assigned t he value U. As this tuple serves a similar
purpose as the •-tuple of Th , namely to represent all
tvaluations nol represented by any tuple of The, we call
this the •-tuple of The .

Consider the compound form ula h = h 1 op,h 2 ,

where h 1 and h2 are atomic formulas , both contain­
ing object variables. Let T1 , T.f. and T be the similar­
ity tables for h. 1,,h'! and h respectively; It and I~
the pointer columns ofT1 and T2 respectively; and t.,
and t~, the •-tuples of T 1 and T2 respectively. The •­
tuple ofT representing all evaluations not represented
by any tuple of T is formed by joining t., and t~,.
~ote that t~ • . l~ equals U, i.e . the similarity list of
1~, is an U-list that has maximum similarity value for
every video segment, and the similarity list oft., is
a NULL-l ist (i.e. empty). Depending on the binary
operator op , the resulting similarity list of the •-tuple
ofT may be a NC LL-list, an U-list or neither . If the
similarity list is not a .VU LL-list or an U-list. we shall
call it a .\I -list. To indicate what kind of similarity list
the •-tuple has, we associate with each similarity table
T a field Flag and refer to it as T.Flag. Let L. be the
similarity list of the •-tuple ofT. The possible values
of T.Flag are

• N - indicating that L. is the V [LL-Iist (an
empty list) ;

• U - indicating that L. is an U -list that has
maximum similarity value for every video
segment;

• 1\-1- indicating that L. is a \/-list (i .e. not a
XU LL-list or an U-list) .

Let L and Lc be two similarity lists for formulas
P and,p respectively. Clearly, if L is a NULL-list,
then £C is an U -list ; if L is an U -list, then £C is
a NULL-list; and if L is a M -list, then £C is also
a }f-list. Let T and Tc be two similarity tables for
formulas h and,h respectively. Thus, the relation
between the values ofT .Flag and Tc.Flag is given by
the following table:

T·bt. I IT r 17' r· I
As before, the similarity lists of a similarity table for
a compound formula are not computed immediately.

281

Thus, if h is a compound formula , the similarity table
for -..,h can be obtained from T by simply changing the
Flag field according to the above table.

Let h = h' op h" , and T' and T" the similarity
tables for h' and h" respectively. When one of the
two operands of op, say h' , consists of the negat ion
operator, the •-tuple of T' may have an U-list, M­
list or NU LL-Iist . If the similarity list of the •-tuple
is not a ULL similarity list , the •-tuple ofT' needs
to join with every tuple ofT" in the construction of
the similarity table for h. Thus, we need to modify
the algorithm N ON _N EG.JOI N(), given in the pre­
vious section, for the construction of the similarity ta­
ble for a compound formula. The modified algorithm,
GENJOIN(), is presented below. Steps 2 and 3 of
NON _N EG_JOI N() are changed so that they check
first whether the similarity lists of the •-tuples ofT'
and T" are NULL lists or not by examining the Flag
field . We also include a st.ep that determines the Flag
field of the table for h (which takes constant time).
Clearly. GEN _JOIN() has the same time complex­
ity as VON _N EG_JOIN().

GEN.JOI:V(T', T", op)

1. A tableT is formed from tuples obtained by join­
ing tuples ofT' with compatible tuples ofT" .

2. If • T" .Flag # .V, or

• T" .Flag = N and a 0 similarity value of h"
at all segments may generate a non-zero sim­
ilarity value for h' op h" at some segments,

then for each t' E T', t' is joined with the •-tup le
ofT" and the resu lting tuple is appended to T.

3. If • T'.Fiagf;N,or

• T'. Flag = .V and a 0 simi larity value of h'
at all segments may generate a non-zero sim­
ilarity value for h' op h" at some segments .

then for each t" E T". t" is joined with the •­
tuple ofT' and the resulting tuple is appended to
T .

4. Form the •-tuple of T by joining the •-tuples
of T' and T". Check the operator op to deter­
mine whether the similarity list of the •-tuple is
a NULL-list, U- list or i\1-list, and set T.Flag to
an appropriate value.

5. Return T .

Example 3 Let h(X 1 , X2 , X3, X4 , Xs) be the com­
pound formula 3 XI X'! x3 x4 Xs (....,PI(Xt ' X'!) OR
P3(X2 , X3))U NTI L(....,P2(X3, X.t) FOLLOW ED _BY
P4 (X4 , X 5)) . Tf, T3 , T2 and T4 , the similarity tables
for,p1 , ?3,,p'! and ?4 respeclively, are git•en as fol­
lows:

Table Tf I -~1 I }J I lJ I
Tf.Fiag = U; •-tuple = (•, *• U)

Table T3 I ·jj ~ -~3 111
T3.Fiag = N ; *-tuple=(* . +, NULL)

Table T2 I '~3 I ·}; 111
Ti-Flag = U; *-tuple = (*, *• U)

Table T41·v 1·y I j I
T4 .Fiag=N ; *-tuple=(* ,*,NULL)

The similarity tableT' for -,pi OR P3 is

T'.Fiag = M ; *-tuple=(* ,*· *· U, NULL)

T{.Fiag = U means that with respect to any et•al­
uation represented by the *-tuple of Tf , the similarity
of -.P1 at any segment is the maximum similarity. As
T3.Fiag = N , the similarity list of the *-tuple of T3
is empty. According to our similarity function for the
disjunction operator OR if at a segment u, the simi­
larity of h1 is maximum and the similarity of h2 is 0,
the similarity of h 1 0 R h2 at u is neither 0 nor the
maximum similarity value. Thus , the similarity list of
the *-tuple of T' , which is neither a N U LL-Iist nor
an U-list, is aM-list. Hen ce, T'.Fiag = M .

The similarity table T" of
-,p'J FOLLOW ED _BY p4 IS

T".Fiag = N; *-tuple = (* , *· *• U, NULL) .

If the second operand h2 of h1 FOLLOPl ED_BY h2
is not satisfied at any segment,
h1 FOLLOW ED_BY h2 cannot be satisfied at any
segment. Hence . the *-tuple of T4 , which has an empty
similarity list , is not joined with the tuples of T2 ; and
the similarity list of the +-tuple ofT", formed by join­
ing the *-tuples of T.f and T4 , must also be empty;
that is , T" .Flag is also N.

The similarity table T for h = (-.Pt ORP3)
UNTIL(-.P2 FOLLOWED_BY P4) is

Table T
.\I ,\2 .\3 .\4 Xs lf 13 1~ 14

y 1U {j 1 ~ lJ 1 NULL :J
y 1U * 1 ~ lJ 1 NULL u
9 lU * ~ J 1 NULL u ' * 15 {j 12 lJ u ~ :J 4
* 15 {j I!! lJ u 2 u 4
* 15 {j 2 :J u 2 u .5

* * {j n lJ u NULL .1 4
* * * 1t lJ u N ULL u 4
* * * 2 :J u NULL u J

282

T.Fiag = N ;
•-tuple = (* , *•*•*•*,U, NULL,U, NULL)

Recall that if the similarity of h2 is not satisfied at ang
segment, h 1 UNTIL h2 cannot be satisfied at any
segment. As T".Fiag = N {i.e. the similarity list of
the *-tuple ofT" is empty), the value of T.Fiag must
also be N . •

For tuples of a similarity table for a formula with
negations, we have two propositions which are al­
most identical to propositions 1 and 2 except that
the "non-NULL pointers" in these propositions should
be changed to "non-NULL and non-U pointers" . We
state only the one that corresponds to proposition l
below.

Proposition 3 Let r' and r" be two distinct tuples
from the same similarity table. Let P 1 be the set of
non- V U LL and non-U pointer set of tuple t . If Pr•
is a subset of Pr" , then

• Sr" c Sr• ; and

• all evaluations represented by r" are not intended
to be represented by r'. i. e. Sr" n 5~ . is empty.

Consider the similarity table Tc for the negation of
an atomic formula . The similarity list of the *-tuple
of T c has maximum similarity values for all video
segments , which is indicated by having the value U
in the pointer column. Thus, a tuple having more U
pointer values is likely to have higher similarity values
in its similarity list. However , this also means that
more evaluations are not intended to be represented
by that tuple and it is even possible that there is no in­
tended evaluation represented by that tuple . Consider
the fifth tuple Is ::: (*· 15 , 6, 12, 8, U, 2, U, 4) of T in
example 3. No tuple in the same table has more Ci
values than is does . The set of non- ULL and non­
U pointers of Is, P1, = {2 , 4}, which is a subset of
P 1, = {2, 3, 4} , the set of non-NULL and non-U point­
ers of 14 , the fourth tuple of T . Hence, by proposition
3, 51, is a subset of 51, , the set of evaluations repre­
sented by Is . By the same proposition , no evaluation
represented by t4 is intended to be represented by Is .
i.e. s;, can only contain evaluations from 51, - Sc, .
As 14 and Is also have identical values in the variable
columns, both t4 and t 5 represents the same set of
evaluations (i .e. 51,= 5 1,) . Hence, 51,-51, is empty,
which means that s; is also empty. Thus, there is no . .
intended evaluation represented by Is even though 1ts
similarity list potentially has high similarity values.

From the above discussion, before we generate the
similarity lists for the tuples of a similarity table T ,
we must first search for all tuples for which there
are no intended evaluations represented by them and
delete them from the table. We have designed an al­
gorithm that identifies all such tuples by computing
for each tuple t, S: , the number of intended evalu­
ations represented by t. We have also developed an
algorithm to remove any tuple t in T such that at
any video segment u, the value in the similarity list of

t i
ot.
all

5

ce:
qll
ce
hr
ti<
\\
Ql
ri t
a
so
ar
bE
fo
p;
111

01

IC

tl
n
re
C(

IS

f
II

c

....
I

J
[

t is no greater than that in the similarity list of some
other tuple in T . Because of space limitation, both
algorithms are not shown.

5 Conclusion
Although the algorithm in our earl ier work can pro­

cess efficiently several important subclasses of HTL
queries involving existential quantifiers [18/, there are
certain common queries that it is not 'we !-suited to
handle. Extensions, involving negation and disjunc­
tion, have been made to our HTL query language.
We developed efficient algorithms for processing video
queries in the extended HTL language; these algo­
rithms are modified from our earlier algorith'm. For
a formula f that involves existential quantifiers and
some common operators. such as disjunction "0 R"
and negation "-,", the number of tuples that need to
be formed for the similarity table for f by a straight­
forward algorithm may be prohibitively large. In com­
parison, the number of tuples formed for f by the
modified algorithms is modest and does not depend
on the number of possible values the variables in f
can have.

Let h = h' op h" be a subformula of f which
involves existential quantifiers. Let T' and T" be
the similarity tables of h' and h" respectively. Let
n' and n" be the number of tuples in T' and T"
respectively. Let A be obj(h') n obj(h"). the set of
common object variables. The projection of T" on A
is fL Tu Let W = set of distinct tuples in flAT".
For a tuple v E W, let mv be the number of ·tuples
in T' each having the same value as v . .\ or * in
column X if v.X :f * for each X E A (* in column
X represents all possible values of X.); and nv be
the number of tuples t in T" such that t .X = v.X
for each X E .4. The time of our algorithm to form

the similarity table of h is 0 (L m vnv + n' + n").
toE IV

The number of tuples formed for h is L mv nv +
vEIV

tO(n' + n").

References
[I] A. Aslandogan, C. Thier, C. Yu. et al , Implemen­

tation and Evaluation of SCORE (A System for
COntent based REtriet•al of Pictures). IEEE Data
Engineering Conference, March 1995.

[2] A. Aslandogan, C . Thier , C. Yu , et al , Using Se­
mantic Contents and WordNetT.\I in Image Re­
trieval, ACM SIGIR Conference, to appear in
1997.

[3] C. Breiteneder, S. Gibbs and D. Tsichritzis, Mod­
eling of audio/video data, Proc. ER conference,
1992.

[4] T. Chua and L. Ruan, A video retrieval and se­
quencing system. ACM Transactions on Informa­
tion Systems, October 1995.

283

(5J Y. Day, S. Dagtas , M. lino , A. Khokhar and A.
Ghafoor , Object-oriented conceptual modeling of
video data , IEEE Data Engineering , 1995.

[6) N. Dimitrova and F. Golshani, RX for semantic
video database retrieval, ACM Multimedia confer­
ence, 1994.

[7) A. Gupta, Visua l Information Retrieval Technolo­
gies, A Virage perspective. White paper, Virage
Incorporated, 1995.

[8) A. Hampapur, R. Jain and T . Weymouth., Pro­
duction ,\/ode/ based Digital Video Segmentation.
:\lultimedia Tools and Applications , Vol. 1, pp . 1-
38, 1995.

[9) R. Hjelsvold and R. Midtstraum, Modeling and
querying video data, VLDB 94 .

(10) E. Hwang, V .S. Subrahmanian, Querying Video
Libraries, Technical Report. Department of Com­
puter Science, University of Maryland 1995.

[11) Z. i\'lanna, A. Pnueli, The Temporal Logic of
Reactive and Concurrent Systems Specification.
Springer-Verlag 1992.

[12) E. Oomoto and K. Tanaka . OVID: Design and
implementation of a t'ideo-objecf database system,
IEEE TKDE 1993 .

[13] I.K . Sethi and R. Jain . Finding Trajtciorit.s of
feature points in a monocular image sequence,
IEEE Trans . on Pattern Analvsis and .\lachine In­
telligence, Vol 9. pp. 56-73 , 1987.

[14) A.P. Sistla, 0 . Wolfson, Temporal Triggers in Ac­
tive Database Systems, IEEE TKDE. July 1995.

(15) A.P. Sistla. C. Yu and R. Hadda, Reasoning
About Spatial RElationships in Picture Retriez•al
Systems. VLDB . 1994.

(16) A .P. Sistla, C. Yu , C. Liu and K.L. Liu. Similarity
based retrieval of pictures using indices on spatial
relationships. VLDB . 1995.

(17) A.P. Sistla and C. Yu , Retrieval of Pictures based
011 Approximate .\latching. Chapter in the book
"Multimedia Database Systems'' , edited by V.S.
Subrahmanian and S. J ajodia . Springer 1996.

[18) A.P. Sistla, C. Yu and R. Venkatasubrahma­
nian, Similarity Based Retr-ieval of Videos. Inter­
national Conference on Data Engineering, Birm­
ingham, U.K. , 1997.

[19) R. Weiss, A. Duda, D .K . Gifford , Composition
and Search with Video Algebra, IEEE Multimedia,
pp 12-25 , 1995.

