
·""

'Tb -Ep

Edited by: Hans-Peter Frei, Donna Harman, Peter Schauble, and "''"'"'...-vv u.o:u •• .,.., ..

Organized by: UBILAB, Union Bank of Switzerland, Zurich, and
Swiss Federal Institute ofTechnology (ETH), Zurich

In co-operation with: ACM, AICA-GLIR (Italy), BCS-IRSG (UK), CEPIS
EIRSG (Europe), GI (Germany), IPSJ Oapan), OCG (Austria), SI (Switzerland)

Special issue of the SIGIR Forum

• • • •
:. ..

·.

Efficient Processing of one and two dimensional Proximity Queries in
Associative Memory *

K. L. Liu1 G.J. Lipovski2 C. Yu3

Naphtali Rishe4

kliu, yu@dbis.eecs.uic.edu
1, 3: Department of EECS, University of illinois at Chicago

Chicago, IL 60607, USA
2: Department of Electrical and Computer Engineering,

University of Texas at Austin
4: School of Computer Science, Florida International University

2, 3: members of Linden Technology

Abstract

Proximity queries that involve multiple object types are very
common. In this paper, we present a parallel algorithm
for answering proximity queries of one kind over object in
stances that lie in a one-dimensional metric space. The al
gorithm exploits a specialized hardware, the Dynamic Asso
ciative Access Memory chip. In most proximity queries of
this kind , the number of object types is less than or equal to
three and the distance d, within which object instances are
required to locate to satisfy a given proximity condition, is
small (f d/801 = 1). The execution time for such queries is
linearly proportional to the number of object types and is in
dependent of the size of the database . This allows numerous
concurrent users to be serviced. The algorithm is extended
to process 2-dimensional proximity queries efficiently.

1 Introduction

There is a wide variety of proximity queries. We state below
several common proximity queries.

• Query I : {Bounded distance search) Given a real
number d and n points in a metric space , find all points
that are at a distance less than or equal to d from a
given query point .

• Query II : (Fixed radius k-nearest-neighbor query}
Given a real number d, a positive integer k and n
points in a metric space, find all groups of k points
such that each point in a group is at a distance less
than or equal to d from any other point in the same
group.

•Thia reaearch ia aupported in part by NASA under NAGW·4080
and ARO under BMDO grant DAAH04-0024.

Permission to make digitaVhard copy of all part of this work for per
sonal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage. the copy
right notice. the title of the publication and its date appear, and notice
is given that copying is by permission of ACM, Inc. To copy otherwi
se, to republish. to post on servers or to redistribute to lists, requires
prior speci fie permission and/or fee .
SIGIR'96. Zurich, Switzerland© l996 ACM 0-89791-792-
8196/08.$3.50

• Query III: (Multi-object type proximity query) Given
a real number d and n object types, instances of which
are located in a metric space , find all groups , each
containing an instance of each object type, such that
each instance in a group is at a distance less than or
equal to d from any other instance in the same group.

Below we give several examples of the above proximity
queries.

(i) Examples of Query I and Query II : Assume that we have
a database containing, among other information , the loca
tions of villages in the countryside. The manager of a circus
estimates thai he would have enough audience for a show
if there are k villages within a distance of d miles from the
location of the show. To find out whether a site is suitable
for holding a circus show , the manager would like to have
an answer for the following instance of Query I : find the
number of villages within d miles from the site. An instance
of Query II is : find all groups of k villages such that each
village in a group is situated within 2d miles from the other
villages in the same group. An answer to this query would
help .. he manager to select a location for a show . Informa
tion of this kind is also of value to the goverp.ment to provide
various kinds of services to the villagers.

(ii) A one-dimensional example of Query III: The keywords
of a text document can be considered as object types with
each occurrence of a keyword as an instance of an object
type. The location of an instance of a keyword is the po
sition of that instance in the text document, with the first
word of the document starting at position 1. Thus, the text
document can be viewed as a one-dimensional metric sub
space with each instance of a word occupying an integer
position in the subspace. Usually, in this type of applica
tions, only the keywords are retained. For a text document,
a common proximity query is : find all the locations of a
phrase which consists of a set of keywords. In many situa
tions, the keywords which make up a phrase are very close to
each other, usually within 3 words apart. We can simulate
the recognition of phrases by posing this kind of query to an
IR (information retrieval) system (Salton & McGill, 1983].
Very often, we are interested in a variant of this query :
determine for a document whether it has an occurrence of
each keyword in a given set of keywords such that each oc
currence of a keyword is within a distance of d words from

1
e
1
a
c
u
i!
fl
p
c:
11
t]

ir
p
is
51

cc

ti·
d~
cc
h(
w.
se
su
in:
dl·
4,
se•
pU
pi I
gil

the other occurrences. In other situations, the keywords we
are interested in do not have to be very close to each other.
For example, when we are interested in retreiving only those
eections in a long text that are relevant to our needs [Salton
et al., 1993], we may require the keywords to be within, say,
a puagraph.

(iii) A two-dimen.sional e:romple of Quer11 III : A tourist in
a city may wish to have lunch in a restaurant located near
the places he would like to visit. Suppose he wants to visit
an ut museum and then see a movie after lunch. He would
be interested in knowing the answer to the query : find the
locations of a restaurant, an art museum and a theatre such
that ea.ch is within d miles from the other.

Proximities queries of the forms as Query I or Query II
have been treated extensively (see for example in [Bentley
& Friedman, 1979, Davis & Roussopoulos, 1980, Dobkin &
Lipton , 1976, Faloutsos et al., 1994, Preparata & Shamos,
1985)). Some algorithms for answering queries of type Query
III were given in [Aref et al., 1995, Manber & Baeza-Yates ,
1991). In this paper, we concentrate on 1 and 2-dimensional
queries of query type III. Specifically, we present an efficient
algorithm for answering one dimensional example of Query
III using associative memory. An important feature of our
algorithm is that its running time is independent of the size
of the database, which is not possible with any non-parallel
algorithm. For small distance limit between object instances
d, the running time of our algorithm is only linearly propor
tional to the number of object types n. A typical such query
with n :5 3 and d :5 80 can be answered within 1.2 msec.
This allows about 50,000 concurrent users, assuming that
each user submits such a proximity query every minute.
The speed of answering such queries is very important in
applications involving numerous users. As the number of
concurrent users in the Internet increases rapidly, it is crit
ical that each query be answered efficiently so that there
is no delay. Information retrieval systems utilizing main
frame computers have been in service for users in the legal
profession. It is known that unacceptable delays or even
crashes occur whenever the number of users is very large.
It is for these purposes that the specialized hardware and
the algorithm given in this paper are being designed and
implemented . The algorithm for answering !-dimensional
proximity queries is extended to the 2-dimensional case. It
is found that such a typical 2-dimensional queries can be an
swered within 8.3 msec. Therefore, 7,200 concurrent users
can be supported .

The rest of this paper is organized as follows . In sec
tion 2, we give a brief description of the architecture of a
dynamic associative access memory chip. In section 3, we
consider the one-dimensional version of Query III. We show
how information is represented using the specialized hard
ware for the processing of a typical proximity query for text
searching and present an algorithm to answer instances of
such queries that have small distance limits between object
instances. We also give a modified algorithm which can han
dle query instances having large distance limits. In section
4, we analyse the running times of these two algorithms. In
section 5, the !-dimensional algorithm is modified to be ap
plicable to the 2-dimensional proximity queries . Time com
plexity analysis is also provided . Concluding remarks are
given in section 6.

2 Architecture of a DAAM chip

A Dynamic Associative Access Memory (DAAM) chip is
m~dified from a dynamic r~dom access memory (DRAM)
chip. The concepts and design of the DAAM chip [Lipovski ,
1991] is treated in [Lipovski, 1990, Lipovsk.i, 1992). Other
papers on DRAMs and associative memories include [Robin
eon, 1989a, Robinson, 1989b, Wade & Sodini, 1989) . In
this section, we give an overview of the architecture of the
DAAM chip.

A DAAM chip is a dynamic random access memory chip
which has been modified so that it can perform certain ba
sic logical and arithmetical functions. In this paper we give,
as an example, a 4-mega bit chip . It can be visualized as
an array with 1024 rows and 4096 columns, with each entry
corresponding to one bit (please refer to figure 1). Each row
can be considered to be a processor, executing in parallel
with other processors. The columns, for the sake of process
ing queries, can be considered as being partitioned into two
sets. The first set contains 80 x 6 x 8 bits and the second
set contains the remaining 256 bits. The first set with all
rows forms a region which is used to contain the data to be
processed. This is called the data area. The second region
formed from the second set with all rows is reserved to con
tain certain auxiliary data and working space to permit ef
ficient answering of queries. This is called the working area.
The bits in a row of the data set are organized as atoms.
Each atom occupies 6 bytes. That is, each row contains 80
atoms. An instance of an object type under investigation
is represented by an atom. Typical information stored in
an atom are an identifier for an object type, the location of
an instance of the object type and, possibly, its associated
weight/significance. The kind of auxiliary data. stored in the
working area. largely depends on the type of queries being
processed . For example, if objects being represented by the
atoms are words in a text document, the auxiliary data. may
include a bit indicating the end of a document and a count
of the number of words , including non-content words, which
are logically stored in that row. If more than one DAAM
chip is needed, they are connected in such a way that they
can logically be considered as a single long chip.

The basic operations with the DAAM chip include :

{i) Compari.son : For example, compare if an identifier for
an object type is equal to a set of identifiers stored in all
rows under a given set of columns.

139

(ii) Shift : The set of numbers stored in all rows under a
given set of columns are shifted to another set of columns.
Numbers from one row can be shifted up or down to the
next row, with all rows executing in parallel. The shifts can
also be applied only to those rows which satisfy a compari
son operation.

(iii) Arithmetical and logical operation& : Add , subtract ,
multiply or divide a number to or from a set of numbers
stored in all rows under a given set of columns. The arith
metic operations can also be applied on two set of numbers
which are stored under two specified set of columns. Logical
operations using "and", "or" and "not " are permitted .

It is easy to see that the design is applicable to a chip of
size 16 mega-bit, 64 mega-bit etc.

3 A parallel algorithm

In this section, we present a parallel algorithm that aims
to answer queries of the same form as the one-dimensional
version of-Query III. For simplicity of illustration, we choose
to describe our algorithm in terms of the following typical
proximity query in text searching :

Given a set of text documents and a set of n
keywords Wt, . .. , W n, find all locations in each
of the documents at which the n keywords are
within d words of each other, i.e. lloc(W;) - loc(W1)I
$ d for 1 $ i, i $ n, where loc(W;) is the
location of keyword W;.

Each of these text documents is stored within a number of
consecutive logical rows. The number of content words in
ea.ch logical row is 80, with the possible exception of the
last logical row of a document which ma.y ha.ve fewer con
tent words. Ea.ch content word is represented by a.n a.tom
of a. row in the da.ta. a.rea. of the DAAM chip. We use as
ma.ny DAAM chips as necessary to store the entire set of
documents. (Alternatively, a. few DAAM chips with da.ta.
pumped in from disks ca.n be utilized to answer the query.
We will not discuss this alternative in this paper.) An atom
has two components : {term#, location), where term# is a.n
identifier for the content word being represented a.nd loca
tion is the position of the word from the beginning of the
~ogical row {taking into account non-content words) . Thus,
1f the location of a. term is i, it is the i-th word from the
beginning of tha.t row. Note tha.t two consecutive atoms in
a. row ma.y ha.ve location values differ by more tha.n one if
there a.re non-content words lying between the two words
which a.re represented by the atoms.

As ea.ch document is divided into a. number of logical
~o~s, the k_e~word instances of a. group satisfying the prox
umty condition ma.y not be located in the sa.me row. In
order to identify such groups, our a.pproa.ch requires tha.t
the locations of certain keyword instances present in other
rows be known to ea.ch row i. These keyword instances a.re
those tha.t a.re located a.t distances of not more tha.n d from
the fi_rst word of row i in the document. We first present our
alg?nthm for the case when the distance limit d is small, by
wh1ch we mea.n tha.t all the logical rows, except possibly the
last row of a. document (which ma.y contain just a. few words),
ha.ve lengths greater tha.n or equal to d. For this case all the
keyword information ea.ch row needs only pertains t

1

o those
instances located in the previous row. Then we will give
the modifications needed to handle the other ~ase when d is
large, i.e. d ~s greater tha.n the length of some logical row
r a.nd ro~ r IS not the last row. For ease of presentation,
the algonthms presented a.re for a. single DAAM chip. They
ca.n be generalized to handle the case when multiple DAAM
chips a.re being used.

Case (a.) : distance limit dis small

Our. a.lgorith~ ca.n be thought of a.s consisting of two
phases : a.n m_forma.t10n gathering a.nd shifting phase and a.
phase fo~ _findmg groups of instances satisfying the proxim
~ty condition. In the first phase, each processor searches for
msta.nces of keywords tha.t a.re a.t distances of not more tha.n
d words a.wa.y from the beginning of the next row a.nd then
transfers the keyword information obtained to the next row.
In the s~cond ph~e, each processor scans the atoms from
left to nght looking for groups of instances satisfying the

140

row j :b~~~ . .Ji:~.~i~.~J ' ; ! ,. ···· i'ii~f~!ii.iR~f~[~~LJ9.~::::Jfl.~i:M!

row Jo24j:!~~:~~-~~if9.~J. ::::::~ .i;~;jjij_:·~~~.iR~E~r~r:::i9:~: :: :;i!~i:M!I
M : MODIFY bit

we : wordCOUNT
E : End-of-document bit

Figure 1: Layout of DAAM chip for text searching proximity
queries

pro_xim~ty condition. In the working a.rea. of ea.ch row, we
ma.mtam two a.rra.ys loc[l. . . n] , flag[l. .. n]. a. MODIFY bit
a.nd a. wordCOUNT field. Each entry of loc is one byte in
length a.nd flag is a. bit vector. flag[i] is set to 1 if a.n in
stance of keyword W, is found ; in that case its location is
placed in loc[i] . The wordCOUNT field in e~ch row r stores
the number of words, including non-content words in the
logical row r. This is done before the algorithm is e~ecuted
a.nd is not modified by the algorithm. All the bits of flag
a.nd the MODIFY bit a.re initialized to zero. The MODIFY
bit is used only in the second phase. When the MODIFY
bit in a. row is _1, some key":'o~d W, has been found {in the
sec?nd_ phase) m that row; 1t IS reset to 0 whenever a. group
sa.tlsfymg the proximity condition is reported by tha.t row.
The layout of the DAAM chip is depicted in figure 1.

The following is · our algorithm in pseudocode. The first
two arguments d a.nd n a.re respectively the distance limit
a.n_d the number of keywords specified in the query. The
thu~ argument TERM is the set of keywords in the query
a.nd IS represented as a.n a.rra.y, the k-th entry of which con
tains the identifier for keyword Wk. The fourth argument
m is the maximum of {81 - d) a.nd 1. In each row, the m-th
a.tom ~ the first ~tom in tha.t row that could represent a. key
word msta.nce lymg a.t a. distance of not more tha.n d words
from the be~inning of the next row. atom[i] a.nd row(j) de
note respectively the 1-th atom of a. row a.nd the j-th row.

PROX..SEARCHJ(d, n, TERM, m)
1*. Steps 1-~ a.re for information gathering a.nd shifting; step
4 IS for findmg a.nd reporting groups of instances satisfying
the proximity condition. • I

1. for each processor j, in parallel /* Initialization • 1
do { MODIFY= 0;

for k = 1 ton
flag[k] = 0;

2. for each processor j, in parallel
do for i = m to 80

for k = 1 ton
if {a.tom(i).term# == TERM[k])

{ flag[k] = 1;
} loc[k] = a.tom[i].location;

3

4.

T
of alg
left t<
key we
m-th
ma.xi1
is fou
set to
keyw<
row, i
has be
ica.l r<
contai
row c'
numb,
the in
of the
w, i!
the hE
the DE
fore p
ea.ch r·
tained
row lo'
condit
insta.n'
to loci
bit to
1 's, ino
given .

3. r shift potentially useful information to the next row

., . . alii
{or each processor J, m pa.r e

do { for i = 1 to n
if (flag[•1 == 1)

}

if (wordCOUNT- loc[i] ~ d)
row(j+1].loc[i] = loc[i]- wordCOUNT;

else flag(i) = 0;

for i = 1 ton
row(j+1].flag[i] = row(j] .flag[i];

4. r check for proximity condition .,

for each processor j, in pa.r allel
do for i = 1 to 80

{ for k = 1 ton
if (atom(i).term# == TERM[k])

{ flag[k] = 1;

}

loc[k] = atom[i].location;
MODIFY= 1;

if (flag== "11..1" and MODIFY== 1)
{for r = 1 ton

if (atom(i).location- loc[r] > d)
flag[r] = 0;

if (flag== "11..1")
{MODIFY= 0;

report (TERM[t], loc[t]), t = 1, .. . , n;

The gathering of keyword information begins in step 2
of algorithm PROX_SEARCHJ. Each processor scans, from
left to right, from the first atom that could contain useful
keyword information for the next row. This atom is the
moth one, where m, given by the fourth argument, is the
maximum of (81 - d) and 1. Whenever an instance of W;
ia found, its location is copied to loc[i] and the bit flag[i] is
tet to 1. Then, in step 3, for each row, we shift the needed
keyword information to the next row as follows. For each
row, if fiag[i] is 1 (1 ::5 i ~ n}, indicating an instance of W;
has been found, we subtract the number of words in the log
ical row, stored in the wordCOUNT field , from loc(i), which
contains the location of the rightmost instance of W; if the
row contains multiple instances of W;. This is a negative
Dumber and this operation changes the location reference of
the instance from the beginning of the row to the beginning
o{ the next row. If this value indicates that this instance of
W, is at a distance of not more than d words away from
the beginning of the next row, we transfer it to the loc(i) of
lhe next row. Otherwise, we reset the bit flag[s] to 0. Be
fore proceeding to the second phase, the contents of flag of
tach row are propagated to flag of the next row. Having ob
tained all the required information, each processor scans its
row looking for groups of instances that satisfy the proximity
condition (step 4) starting from the first atom. Whenever an
inst&Dce of W; is found, in addition to copying its location
to loc[i) and setting flag[i] to 1, we also set the MODIFY
bit to 1. When the MODIFY bit and all the bits of flag are
l's, indicating that a group containing an instance of each
&iven keyword has been located, a test for the satisfaction

of the proximity condition is made. The proximity condi
tion is checked by determining whether each instance in the
group is at a distance of not more than d words from the
rightmost instance, which is the one most recently found , of
the group. It is easy to see that if this is the case, all the
instances in the group are within d words from each other,
i.e. they satisfy the proximity condition. During the test,
if an instance of keyword W; in the group is found to be
located at a distance greater than d words from the right
most instance in the group, then the bit flag[i] is reset to 0.
If no bit of flag was reset to 0 during the test, we report the
locations of these n instances and set the MODIFY bit to
0. The sea.rching ends when each processor has scanned all
the atoms in its row.

Note that when an instance of, say W; , is found , we as
sign flag[i] a value 1 and reset it to 0 only after the instance
is found to be at a distance of more than d words to the
left of a keyword instance represented by the currently ex
amined atom. Suppose there is a group of instances located
between (L- d) and L satisfying the proximity condition . As
none of these instances is more than d words from any other
instances of this group, all the bits in flag and the MOD
IFY bit will be 1 's after the processor finds the rightmost
instance of this group and sets the corresponding bit in flag
and the MODIFY bit to 1. The existence of the group will
then be detected.

Case (b) : di.!tance limit d ;., large

In algorithm PROX_SEARCHJ, we assume that all
logical rows, except possibly the last row, have lengths greater
than or equal to the distance limit d, which we expect to
be the case for the majority of proximity queries. When
some logical row r has length less than d and it is not the
last row, . instances from more than two logical rows may
satisfy the proximity condition. In this case, information
concerning the instances found in a row may need to be
shifted to the next few rows and we need to modify step 3
of PROX_SEARCHJ so that enough information is propa
gated to each row. Our modification to step 3 consists of
maintaining for each row another bit vector tmpFG[l. .. n]
in the working area. tmpFG[i], i = 1, ... , n, of each row
is initialized to 0. Its value is 1 if the location inforr tation
of an instance of W; has been shifted to the next row and 0
otherwise. That is, the contents of tmpFG of each row re
flect what keyword information has been passed to the next
row. Below, we give, in pseudocode, step 3' , which is are
placement of step 3 in PROX_SEARCHJ.

3'. r "is the length of the shortest logical row of a docu
ment, not including the last row; Nr is the number of logical
rows of the longest document. • I

r 1-' is the maximum number of information transfers from
each row to the next; the algorithm can be modified slightly
to ensure that information is never shifted across documents,
but the details are not given here. • I

tt Below, the statement to be executed 1-' times is referred
to as .!tatement (+). • I

for each processor j, in parallel
do 1-' times

{ for i = 1 to n .

}

if (flag[i] == 1 and tmpFG[i] == 0)
{ row[j+1].1oc[i] = loc[i]- wordCOUNT;

tmpFG[i] = 1;
}

for i = 1 to n
row[j+l] . .flag[i] = tmpFG[i];

In each execution of the body of the loop of step 3', lo
cation information is passed from each row to the next. We
refer below to one such information passing as a transfer.
In step 3', the body of the loop, 1tatement (+), is repeated
p. times, where p. is the minimum of rd/.!1 and N,, 'being
the length of the shortest logical row of the document, not
including the last row, and N, being the number of logical
rows of the longest document. In other words, each pro
cessor performs p. transfers in step 3' . Note that although
a row needs keyword information from preceding rows, the
number of preceding rows providing potentially useful in
formation to the row is bounded by p.. During each of the
p. transfers, for each row, if .flag[i] equals 1 and tmpFG[i]
equals 0, i = 1, ... , n, we assign the difference loc[i]- word
COUNT (changing the location reference to the beginning
of next row) to loc[i] of the next row and set tmpFG[i] to
1. That is, the location information of an instance of W, .
is passed to the next row, if the row has the location infor
mation and has never passed such information to the next
row in any previous transfer. As a result of these two con
ditions for the propagation of location information, once a
row has received the location information of an instance of
a keyword W, from a preceding row, it will never receive
such information regarding keyword W, in any later trans
fer (since tmpFG[i] of the preceding row is now 1 and will
never be reset to 0 in step 3') . To see how the location
information is shifted, suppose there are multiple instances
of W; present in the rows preceding some row r and each
of these instances is within a distance of d words from the
beginning of row r. Let the instance of W;, /;, closest to row
r occur in row r', r 1< r. When 1tatement (+)in step 3' is
executed the first time, the condition COND : (.flag(i] ==
1 and tmpFG(i] == 0) is satisfied by row r 1

• As a result,
the location of I, is passed to row (r '+ 1) from row r 1 and
.flag[i] in row (r'+1) is set to 1. If (r 1+1) is r, then row r
has now received the location information of/; from row r 1

•

Otherwise, as row r ' is the closest row to row r having an
instance of W;, tmpFG[i] in row (r'+1) remains 0 after the
first execution of 1tatement (+). When 1tatement (+)is ex
ecuted the second time on row (r 1+1), the condition COND
is satisfied, resulting in the location of/;, which has been re
~eived fro,m ro~ r 1

, passed to row (r 1+2). In addition, .flag[i]
m row (r +2) IS set to 1. Subsequent execution of datement
(+)on row (r'+2), row (r'+3) etc. causes the location of/;
to pass to row (r 1+3), row (r 1+4) etc .. Thus, if row r is no
more than p. rows away from row r 1

, then row r will receive
the location of /, from row r '.

The algorithm will not permit the location of an instance
of W; from row r", r" < r' < r, to pass to row r for the follow
ing reason. When 1tatement (+) is executed on row r 1 the
first time, tmpFG[i] in row r' is set to 1. Since this variable
is not

1
~eset to zero, the condition CON D is not satisfied by

row r m the second and later executions of &tatement (+).
Thus, no location information on W; can pass from row r"
to rows beyond r 1

• Note that if row r has an occurrence of
W;, then its location will be overwritten by the location of

1 A')

the instance /; of W; in row r'. However, during step 4, the
location information from row r will be recovered when the
row is scanned.

In step 3', we do not check whether the distance of a.
keyword instance, whose location is to be shifted, is less
than or equal to d from the beginning of the row requiring
the keyword. After the execution of step 3', a row may re
ceive keyword information not useful to it . Note that in step
4, for each row r, we check a group of n instances for the
satisfaction of the proximity condition only when the MOD
IFY bit is 1, that is, this group must contain an instance
of a required keyword which is originally present in logical
row r. In other words, the redundant keyword information
which a row may receive does not lead to the row reporting
a group consisting entirely of instances present in preceding
rows. Any such information will be discovered and discarded
when the row checks for the proximity condition in step 4.

4 Analysis

We assume that the term# component of each atom has
length 4 bytes. Let C1 be the cost of an arithmetical com
parison of a one-byte field with a constant, c~ be the cost
of a logical comparison of a four-byte field with a constant ,
C3 the cost of copying the contents of one byte to another
byte of the same row, c. the cost of shifting the contents
of one byte up or down one row, C5 the cost of an arith
metical operation, Cs the cost of a bit comparison, C7 the
cost of setting or resetting a bit, Ca the cost of shifting a bit
up or down one row, and C9 the cost of reporting a group
of instances satisfying the proximity condition . When the
distance limit d is small, keyword information needs to be
shifted from each row to the next only once. This infor
mation shifting, by step 3, takes at most n(C1 + c. + C5

+ Cs + Ca) time. The initialization takes (n+ 1)C7 time.
The worst case running time of step 2 is S0n(C2 + C3 +
C7), while that of the last step is 80(n X cl + n X c2 +
n X c3 + n X cb + (2n+1)C6 + (2n+1)C7 + C9). Hence,
for a given set of n keywords, the worst case running time of
PROX.SEARCHJis estimated to be 81n X cl + 160n X c2

+ 160n X c3 + n X C4 + S1n X C~; + (161n + 80)Cs +
(241n + S1)C7 + n x Ca + 80xCg, linearly proportional to
n and independent of the size of the database. With current
technr ·logy, the refresh cycle of a. DAAM chip is about 60
nanoseconds. The costs C; , i = 1, ... , 9, 'can be determined.
If a query has 3 keywords (i.e. n = 3), the estimated time
to answer it is about 1185.52 p.sec. In other words, about
843 such queries can be processed per second. If each user
su?mits one such proximity query every minute, the DAAM
ch1p can serve about 50,000 concurrent users.

For large distance limit d, keyword information needs to
be shifted from each row to the next more than once and
PROX.SEARCHJI needs to be used. The running time of
step 3' of PROX.SEARCHJI is p.(2n x C6 + n(C• + C5 +
Cr+Ca)). Since PROX.SEARCHJ/uses an additional field
tmpFG, the initialization time is increased to (2n+ 1)C1 .
Thus, the worse case running time for PROX.SEARCHJI
is estimated to be SOn X cl + 160n X c~ + 160n X CJ
+ SOn x Cb + 80{2n+1)Ce + (242n + 81)Cr + SOxCg +
~(2n X Ce + n(C. + cb + c1 + Ca)) . Suppose such a. query
IS to find a set of 10 content words within a paragraph and
each paragraph has no more than 500 content words. Then ,
P. $ r500/'1 $ r500/801 = 7. We estimate that the execu
tion time for this query is about 4,050 p.sec.

0

y
0

a
s
(·

Although our algorithm will find all the locations where
there are groups of instances satisfying the proximity con
dition, it may not identify all the differe~t groups that fall
within the same or nearly the same locatiOns. As the atoms
are being scan"ned from left to right, when an instance of w,
il found, its location is copied to loc[i] overwriting any loca
tion information originally there. When the processor finds
th&t the proximity condition is satisfied, it reports only the
mOlt recently found instance of each keyword. Suppose that
there are two instances of a keyword W, that are very close
toone ¬her and that each of them together with the same
other (n- 1) instances forms a distinct group satisfying the
proximity condition. If both instances are not the rightmost
oae in their respective groups, when either of them is being
IC&nned, the processor has not yet found all the n instances
ud therefore cannot detect the two groups. But then after
the second instance of W, has been processed, its location
iDformation overwrites that of the first one. Thus, the pro
ceAOr will not be able to detect the group containing the first
iutance of W,. However, for situations in which the groups
o(object instances do not overlap, our algorithm will find all
the groups that satisfy the given proximity condition. For
enmple, suppose we are interested in finding the locations
ol a given phrase, say "database management". It would be
tery unusual to find two or more occurrences of "database"
or two or more occurrences of "management" satisfying a
proximity condition of no more than 3 words apart, while
bving an occurrence of "database" and an occurrence of
'management" satisfying the proximity condition. Thus,
lor most applications of the type under consideration , the
al&orithm given above is sufficient .

I Extension to two-dimensional proximity query

A vi!itor to a city may want to have lunch at an Italian
restaurant. Afterwards, he may want to visit a science mu
teum &nd then go to a concert . For convenience (or to save
time), he would like all these places (an Italian restaurant, a
lcience museum and a concert hall) not very far apart. We
hve indicated in the introduction section that the query
lor which he wishes to have a.n answer is a.n instance of
a two-dimensional version of Query III. An algorithm for
wwering this kind of two-dimensional query is somewhat
complicated. Rather than providing such an algorithm, we
pve one for answering a modified version of the query that
!!quires only that the instances be within a. rectangular re
pon. The query we shall concern ourselves with is as follows

Given two non-negative real numbers dz and d11
&nd n object types 0 1 , 1 :5 t :S n, find the loca
tions of instances such that for each object type
0,, 1 :5 t :S n, there is an instan.ce Ir satisfying :
for all I;, I,, IX;- X, I :5 dz and IYi- Y,l :5 d11
, where (X;, Y;) and (X,, Y,) are the cartesian
coordinates of I; and I, respectively.

l:et lit, 111, ••• , ap and bt , ~, .•• , b9 be respectively the dis
tiact x-coordinates andy-coordinates, in ascending order, of
tl~ coordinates of all the object instances located in the area
oltnterest. Note that the units of measurement for the x and
1 axes may not be the same. In a city where streets are laid
ott in the form of a grid, we may use, for example, a block
&a a unit of measurement. We assume that the units of mea
htement are chosen so that the differences (a;+ 1 - a;) and
(6,+1- b,) are at least 1 (i=1, ... , p-1; j=1, ... , q-1). Each

143

atom is associated with one location (a., b.) (r = 1, ... , p;
8 = 1, ... , q) . The atoms of the first fp/801 rows are associ
ated with the locations having y-coordinate bt . Associated
with the i-th atom of the (k+1)-st row of this group of rows
is (a(•HOk) obt), where i+80k :S p (i = 1, ... , 80; k = 0, . .. ,
fp/801-1). The atoms of the u-th group of fp/801 rows are
similarly associated with the p locations having y-coordinate
b,. (u = 1, . .. , q) . Note that the choice of reference axes is
arbitrary. In order to reduce the number of rows represent
ing locations having the same y-coordinate, we choose the x
and y axes so that p :5 q. As all the atoms in the same row
are associated with locations having the same y-coordinate,
for the storage of this common value, we maintain a field ,
called ORDINATE, for each row in the working area. Each
atom has two components : TYPE and X.COORD. The
X_COORD component contains the x-coordinate of the lo
cation associated with the atom. If there is an object in
stance at that location, the TYPE component of the atom
indicates the type (say, for example, an Italian restaurant)
of the instance; otherwise, the TYPE component is given a
special value which indicates the absence of an instance of
any object type of interest at that location. In addition to
the ORDINATE field, in the working area, for each row, we
maintain two arrays loc(1 . .. nJ and .flag(1 . .. nJ, a MODIFY
bit and two fields iTP and Y_COORD. loc(i] is an ordered
pair {x, y) for the storage of the coordinates of an instance of
object type 0; {i = 1, ... , n) . flag is a bit vector. Both flag
and MODIFY serve the same purposes as before. iTP and
Y_COORD are used respectively for the propagation of ob
ject type and y-coordinate information in the second stage
of our algorithm. If p, the number of distinct x-coordinates,
is greater than 80, our algorithm will have two stages. The
first stage propagates location information. For this stage,
the field iTP, which each row uses for the propagation of the
object type information in the second stage, is used for the
propagation of the x-coordinates, and the field Y_COORD
for the propagation of y-coordinates. In figure 2 where a
layout of the DAAM chip is shown, we assume that pis 161.
The first entry in the working area. in each row is the ORDI
NATE field and contains the y-coordinate of the locations
associated with the atoms of that row. In the X_COORD
component of each atom is the x-coordinate of the location
associated with the atom. Consider a real life example. In
downtown Chicago, the total number of restaurants, muse
ums and theaters is about 1,200. The number of distinct
x-coordinates is about 200 a.nd the number of distinct y
coordinates is about 250. The number of rows having the
same y-coordinate is f200/801 = 3. Thus, about .250x3 =
750 rows are needed to represent the location information
of the restaurants, museums and theaters in this area.

For simplicity of presentation, we assume that the value
of dz is small, i.e. the x-coordinates associated with the first
atoms of any two adjacent rows differ by more than dz. This
is analogous to case (a) of section 3. The case for large dz is
analogous to case (b) in section 3 and will not be presented
here. In the following discussion, if two locations (a, b) and
(e, f) are such that 0 :S(a- e) :S dz and 0 :S(b- f) :5 dy,
we say that (a, b) coven (e, !).

The object instances of a group satisfying the proximity
condition may be represented by atoms in different rows.
Among these rows, we choose the processor of the row with
the largest ORDINATE value to detect and report such a
group. Because of this choice, the information of an instance
found in a row needs to be propagated down to those rows

M : MODIFY bit Y : Y_COORD

Figure 2: Layout of DAAM chip for 2-dimensional proximity
queries

containing at least an atom whose associated location cov
er$ the location of the instance. If p > 80, two or more
rows of atoms are needed to represent those instances hav
ing the same y-coordinate. Let v be the number of such
rows (i.e. v = r p/801}. Consider a group satisfying the
proximity condition. Suppose this group is composed of in
stances having x-coordinates less than or equal to a,0 N as
well as x-coordinates greater than a10N, where N is an in
teger such that 0 < SON < p. As we assume d.., is small,
those instances having x-coordinates greater than a,0 N are
represented by atoms close to the left ends of some rows of
the DAAM chip while those having x-coordinates less than
or equal to a80 N by atoms close to the right ends of some
other rows. Because we scan the atoms of a row from left
to right, some object instances of this group will be found
first. By the time those instances (of the same group) rep
resented by atoms near the right ends are discovered, it is
possible that the location information of those object in
stances found early in the scan are overwritten and, as a
result, this group is never discovered . We have encountered
a similar problem in the one-dimensional case in section 3.
In order to identify such groups, we use the same strategy as
before . Before we start searching for groups satisfying the
proximity condition , for each row r , information concerning
those instances that are represented by atoms near the right
end of the row is found and propagated down to those rows
that will need the information. To gather the needed infor
mation , for each row r, we sca.n the atoms starting from the
m-th one, where m is the maximum of 1 and (81- ld..,J) .
Since we assume that the difference ai+l - ai is at least 1
(i=1 , .. . , p-1), this atom is the first atom of row r whose as
sociated location ma.y be covered by the location associated
with the first atom of some row $. It is evident that if row
r is not the last row in a. group of v rows having the same
ORDINATE value, one such row$ is row (r+1) . The other
rows tha.t need to obtain instance information from row r
are those rows (r+1 + vxN) , where N is a. positive integer
such that the 0 RD IN ATE value ofrow (r+ 1 + v x N) dif
fers from that of row r by not more than d11 • To see this, it
suffices to note that the corresponding atoms of row (r+ 1)
and row (r+1+ vxN) have the sa.me X_COORD value.

Our algorithm consists of two stages. The first stage is
invoked if p is greater tha.n 80. In this stage, we first scan
the atoms of each row from left t o right starting from the
m-th one (m = max(1, 81-ld..,J)) . E~h time an a.tom ha.s
been scanned, if it is found to represent a.n instance of ob
ject type ole , the bit flag[k] is set to 1, the contents of the
atom 's X.COORD component a.re copied to loc[k] .x a.nd the
ORDINATE value to loc[k] .y. T his is repeated for the j-th
a.tom, m ::::; j ::::; 80, in each row. Then, for each row r ,
the gathered information is propagated down to those rows
! ($ = r + I + v x N) satisfying the constraint on the y
coordina.te. This was discussed in the last paragraph. Note
that the location associated wit h the first a.tom of the first
row of each group of v rows having the sa.me 0 RD IN ATE
value lies on the leftmost boundary of the region of inter
est . No instances located to its left are represented in the
DAAM chip. For these rows, any information propagated
to them in the first stage is useless. We t herefore set all
the entries of flag to 0 for these rows before going to the
second stage. In the second stage, the processor of each row
r scans the atoms from left to right starting from the first
one. Immediately before each atom is being scanned, the
field iT P is assigned a. value 0. If an instance of object type
ole is found , in addition to copying its location information
to loc[k] and setting flag[k] to 1 as in the first stage, we also
set the M 0 D I FY bit to 1 and assign the value k to iT P.
Unlike the first stage which propagates the instance infor
mation after all the atoms have been scanned, each time an
atom of row r has been scanned, information represented by
the atom is propagated. Since we assume dz is small, the
rows that may need the information from row r in this sec
ond stage are those rows $beneath it , where$ = r + v x N.
As the corresponding atoms of rows r and r + v x N have
the same X _COORD value, t here is no need to propagate
this value. The information t hat needs to propagated from
each row r is the y-coordinate associated with the atom,
which is given by the 0 RD I N ATE field of row r and the
atom 's TYPE value, which can now be obtained using the
value in iF P. To avoid destroying the contents of the field
0 RD IN ATE, we use the field Y .COORD for the propaga
tion of the y-coordinate. Thus, for each row, we first copy
the ORDINATE value to Y _COORD before shifting the
contents of these two fields iT P and Y _COORD to the cor
responding fields of the next row repeatedly. Whenever the
information from each row r has shifted down a multiple
of v rows to row $ 1 we examine the iT P value propagated
from row r. If its· value is positive and equals to, say t , im
plying that the atom in row r represents an object instance
I of type Ot, then the const raint on the y-coordinate, i.e.
row[$] .0RDI NATE- row[$).Y .COORD $ d11 , is checked.
(Note that at this point, the value in Y _COORD of row
$is the same as the value in ORDINATE of row r .) If
it is satisfied, then in row $ 1 t he location of this instance I
(found in row r) is copied to loc[t] if either flag[t] is 0 or its x
coordinate is greater than loc[t).x, i.e. the instance whose in
formation is now propagated t o row $ is located to the right
of the instance to which the information in loc[t] pertains.
Note that because of the const raint on they-coordinate, the
maximum number of rows that the information from each
row needs to reach is v x l d11 J. That is, the maximum num
ber of downward shifting operation by each row is v x ld11J.
Whenever all the entries of flag and the MODIFY bit are
all 1 's indicating that a new group containing an instance
of each object type has been detected, we do the checking
and , if the proximity condition is sat isfied, report as before.
Below we give only the psuedocode for the second stage.

ro
tains

for ei
do

l

pro

rum
timt

ldll .
CasE

mir.
eye)
oft
alor
tan.

j

/' Otype[~ ... nJ .is an array o~ object types. Otype(i] con
ums the s-th object type 0;, I= 1, .. . ' n. *I
(or each processor j, in pa.ra.llel

do for i = 1 to 80
{ iTP = 0;

for k = 1 to n /* scanning the i-th a.tom • I
if (atom[i] . TYPE== Otype(k])

{MODIFY= 1;
ftag(k] = 1;

}

loc(k] .x = atom(i] .X_COORD;
loc(k] .y = ORDINATE;
iTP = k;

CHECK(i); /*checks the constraint on x-coordina.te
*I

I* propagate the instance information represented by
the i-th a. tom to those rows that may require it • I

y_COORD = ORDINATE;

for s = 1 to l d11 J
{ fort = 1 to v I* v = rp/801 • I

{ row(t+l] . Y_COORD = row(t] . Y_COORD;
row(t+l] .iTP = row(t] .iTP;

}

if (iTP > 0 and ORDINATE- Y_COORD $ d11)

if (flag(iT P] == 0 or

}

loc[iTP] .x < atom[i].X-COORD)
MODIFY= 1;
ftag[iTP] = 1;
loc[iTP].x = atom[i] .X_COORD;
loc(iTP] .y = Y_COORD;

CHECK(i) ;
}

procedure CHECK(i)
{if (flag== "11. . . 1" and MODIFY== 1)

{for r = 1 to n
if (atom(i] .X_COORD- loc[r].x > dz)

ftag[r] = 0;

if(ftag== "11. . . 1")
{MODIFY= 0;

report (Otype[j] , loc[j]) , j = 1, ... , n ;
}

The running time of our algorithm is dominated by the
running time of the second stage. The worst case running
time for the second stage is estimated to be 80 [10 + 54n +

ldvJ(SOv + 66 + 26n)j refresh cycles. For v > 1, the worst.
cue running time is estimated to be 812 + 4384n + 23n x
min(80,dz) + ld11 J(5280 + 4000v + 2137n + 50vn) refresh
cycles. Consider the visitor example given a.t the beginning
of this section. In a. city, people tend to judge the distance
&long a street in terms of the number of shops while the dis
l&nce in the direction perpendicular to the street in terms

of the number of blocks. For an application to answer the
visitor's query, we therefore use "a. shop" as a. unit of mea
surement for the x-a.xis a.nd "a. block" for the y-a.xis. We
assume that the streets a.re laid out (roughly) in the form of
a. grid . Suppose the visitor does not want to walk more than
50 shops along a. street and more than 5 blocks a.wa.y. Then,
the value for d., is 50 a.nd that for d,; is 5. Assume that the
values for n a.nd v a.re both 3. The worst case running time
for the query is estimated to be 8.3 msec. If, on the a.ver
a.ge, each user submits a. query every minute, t he number of
concurrent users tha.t ca.n be supported is about 7 ,200.

145

6 Conc:lusion

We ha.ve presented a. simple yet efficient algorithm to answer
one-dimensional queries using DAAM, a. modified dynamic
random access memory. To answer such a. query having
number of object types less than or equal to three a.nd sma.ll
distance limit, the execution time is estimated to be 1185
p.sec. This permits the servicing of around 50 ,000 concur
rent users, each submitting, on the average, one such query
every minute. The same architecture ca.n be used to find
documents which a.re similar to a. given query, using , for ex
ample, the COSINE function (Salton & McGill, 1983]. (The
algorithm to compute the similarities ca.n be shown to be
very efficient , but is beyond the scope of this paper .) The
algorithm to process 1-dimensional proximity queries is ex
tended to handle 2-dimensional proximity queries. The ex
ecution time for a typical 2-dimensional proximity query is
8.3 msec, permitting 7,200 users to be serviced concurrently.

There a.re two a.dva.nta.ges for using the DAAM chip.
First, the cost of the DAAM chip is projected to be only
slightly above the corresponding st andard dynamic random
access memory (DRAM) . As the size of DRAM increases
from 4 megabit to 16 megabit, 64 megabit et c., the power
of the DAAM chip increases proportiona.lly, as the num
ber of processors also increases proportiona.lly. The technol
ogy of modifying static memories, which a.re more expen
sive than dynamic memories, to associative memories has
recently been demonstrated to be successful [Gokhale et al ,
1995]. It is expected that the DAAM chip is more cost ef
fective. Second, the traditional wa.y to answer proximity
queries in textual databases is by the use of inverted lists.
It is known that the cost for maintaining such lists is very
high (Tomasic et al. , 1994], as the insertion of new docu
ments causes changes for many such lists. In contrast, the
cost of inputting new documents into the DAAM architec
ture is negligible, as a.ll existing documents are not affected
a.nd there is no inverted list to maintain. The Connection
Machine [Stanfill & Kahle, 1986) is a. well known pa.ra.llel
machine. One of its application areas is text searching.
However, we a.re not a.wa.re of its performance on proxim
ity searching. Therefore, we cannot give a. comparison in
this regard.

The DAAM chip can be very efficient in processing text
queries, in 3D rendering in computer graphics a.nd in MPEG
II decoding. It is our hope tha.t it will be fully utilized in
other real life applications. The chip is being designed a.nd
will be in production in approximately nine months. The
cost of a. 4-mega. bit DAAM chip is projected to be $30. For
a. database of one gigabytes, the number of 4-mega. bit chips
needed is approximately 2,000. Thus, the cost to contain one
gigabytes of data. is about $60,000. Although this is high for
conventional machines, its performance is much faster . The

cost of DAAM follows the standa.rd DRAM memory. When
the price of DRAM drops, we expect the cost of DAAM to
drop proportionally.

References

(Are£ et al., 1995) Are£, W.G., Barba.ra, D., Johnson S., &
Mehrotra, S. (1995) . Efficient Processing of Proximity
Queries for La.rge Databases. IEEE Data Engineering,
pp.147-154.

(Bentley & Friedman, 1979) Bentley, J.L., & Friedman,
J .H. (1979). Data structures for range sea.rching. A CM
Comp. Survey.s, 11(4),397-408.

[Davis & Roussopoulos, 1980) Davis, L.S., & Roussopoulos,
N. (1980). Approximate pattern matching in a pattern
database system. Info . Sys ., 5(2), pp.107-119.

[Dobkin & Lipton, 1976) Dobkin, D., & Lipton, R.J .
(1976). Multidimensional searching problems. SIAM J.
Comp., 5(2), pp.181-186.

(Faloutsos et al. , 1994) Faloutsos, C., Ranganathan , M., &
Manolopoulous, Y. (1994). Fast Subsequence matching in
Time-Series Database. ACM SIGMOD.

(Gokhale et al, 1995) Gokhale, M., Holmes, B., & Iobst, K.
(1995). Processing in Memory: The Terasys Massively
Parallel PIM Array . IEEE Computer.

(Lipovski, 1990) Lipovski, G.J . (1990). Dynamic Systolic
Associative Memory Chip. Proc. Application Specific Ar
ray ProceHor.s. Princeton, NJ ., pp.481- 492.

[Lipovski, 1991) Lipovski, G .J. (1991) . Dynamic Memory
with Logic-in-Refresh. Patent No. 4,989,180. Jan . 29,
1991.

(Lipovski, 1992) Lipovski, G.J. (1992). A Four Megabit Dy
namic Systolic Associative Memory Chip. Journal of
VLSI Signal Processing, 4. Boston: Kluwer Academic,
pp.37-51.

(Manber & Baeza-Yates, 1991) Manber, U., & Baeza-Yates,
R. (1991) . An algorithm for string matching with a se
quence of don ' t cares. Info. Proc. Ltrs., 37(3), pp.133- 136.

[Preparata & Shamos, 1985] Preparata, F., & Shamos, M.
(1985). Computational Geometry: An Introduction.
Springer-Verlag, NY.

(Robinson , 1989a] Robinson, I. (1989a). Chameleon: A Pat
tern Matching Memory System. Hewlett Packard Tech.
Report HPL-SAL089-24, April 19, 1989.

(Robinson, 1989b] Robinson, I. (1989b) . The Pattern Ad
dressable Memory: Hardware for Associative Processing.
In (J .G. Delgado-Piras and W .R. Moore, eds.) VLSI for
Artificial Intelligence. Boston: Kluwer Academic, pp.ll9-
129.

(Salton et al., 1993] Salton, G., Allan, J., & Buckley, C.
(1993). Approaches to Passage Retrieval in Full Text In
formation Systems. ACM SIGIR, pp.49-56.

(Salton & ~cGill, 1983] Salton, G., & McGill, M. (1983).
IntroductiOn to Modern Information Retrieval. New York:
McGraw-Hill.

(Stanfill & Kahle, 1986] Stanfill, C., & Kahle, B. (1986).
Parallel Free-text Search on the Connection Machine Sys
tems. CACM.

[Stanfill et al., 1989] Stanfill, C., Tha.u, R., & Waltz, D.
(1989). A Parallel Indexed Algorithm for Information Re
trieval. ACM SIGIR.

(Tomasic et al., 1994] Tomasic, A., Garcia-Molina., H., &
Sha.eus, K. (1994). Incremental Updates of Inverted Lists
for Text Document Retrieval. ACM SIGMOD.

(Wade & Sodini, 1989] Wade, J.P., & Sodini, G.S. (1989) .
A Ternary Content Addressable Search Engine. IEEE
Journal of Solid-State Circuib, vol. 24, pp.1003-1013.

At

To
dat
for1
me:
has
dat
dat
tru•
tur•
foc1
sysl
exp
oft
ofp
sup

1

Rec
dati
dat1
ph.is
beet
cone
has
beer
(IR)
feat1
ings
trad
hanc
cal f
henc
quire
featt
has

Perm
sonaJ
not n
right
is gi1
se, tc
prior
SIGJ
81961

