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A Hybrid Estimator for Selectivity Estimation
Yibei Ling, Wei Sun, Senior Member, IEEE,

Naphtali D. Rishe, Member, IEEE Computer Society, and Xianjing Xiang

Abstract-Traditional sampling-based estimators infer the actual selectivity of a query based purely on runtime information
gathering, excluding the previously collected informalion, which underutilizes the in{ormation available. Table-based and parametric

eslimators extrapolate the actual selectivity of a query based only on the previously collected information, ignoring on{ine
information, which results in inaccurale estimation in a frequently updated environment. We propose a novel hybrid estimator that
utilizes and optimally combines the on-line and previously collected information. Theoretical analysis demonstrates that the online
and previously collected information is complementary and that the comprehensive utilization of the on-line and previously collected
information is of value for further performance improvement. Our theoretical results are validated by a comprehensive experimental
study using a practical database, in the presence of insert, delete, and update operations. The hybrid approach is very promising in

the sense that it provides the adaptive mechanism that allows the optimal combination of information obtained from different sources
in order to achieve a higher estimation accuracy and reliability.

lndex Terms-Hybrid estimator, sampling estimator, parametric estimator, table-based estimator, query optimization, estimation
accuracy, estimation reliability.

1 lrurnooucnoN

/\ S a rather efficient, accurate, reliable means of determin-
ll, i"g the optimal query executjon plan among many equi-
valent query execution plans of diJferent costs, sampling-
based estimators have received extensive attention and well
studied t4l, l5), [14], [15], 1761, [17), [1e], [18], t241, t281, t2e),
[30], [2s], 1261, [3I], [10], [34], [37]. The advantages of sam-
pling-based estimators lie in their good reliability in truth-
fully reflecting runtime data distributions, and their ro-
bustness in the presence of correlated data.

The benefits of sampling-based efimators, howeve4,
come at a price. Sampling-based algorithms conduct run-
time information gathering, and extrapolate the resulting
size from the sampled data. As a result, a certain amount of
runtime sampling overhead has to be incurred whenever a

size estirnation has to be made. This overhead adds to the
response time of query processing. In additioru the sampled
information is completely volatile: The sampled in{orma-
tion obtained for the current query has to be discarded, and
can not be reused for subsequent queries. Research on sam-
pling-based methods places an emphasis on the strateg"y for
minimizing the sample size while satisfying the required
estimation acflrrary at the given confidence level [16], [15],
tr4l, tlel, IlBl, [24], [28], [2e], [30], [25], 1261, [311, t341, t371.
Howeveq, reducing the mntime sampling overhead and
increasing the estimation accuracy seem to be inherently
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contradictory: generally speaking, a higher estimation accu-
racy requires a larger sampling size, which in tum results in
a larger I/O overhead. Therefore, a balanced trade-off be-
tween estimation accuracy and runtime sampling overhead
must be made.

Parametric estimafion methods {I), t2l, t7l, l8), [12], lI3l,
[22] use certain statistical functions to describe the data so
as to provide estimation by evaluating its approximating
function when a query is given. Different parametric mod-
els including uniform distribution, normal distributiory
neural learning networks and regression [25], [36], 122| t6l
have been proposed to approximate the actual data distri-
butions. The benefit of parametric estimators lies in the effi-
cient estimation computation.

Table-based estimators t9l, t321, [20], [33], [21] use the
stored summary statistics to estimate the resulting size
of a query, and can provide accurate estimations in a

retrieval-intensive or retrieval-only environment, but at
the expense of the runtime overhead for. maintaining sum-
mary statistics.

Both parametric and table-based estimators are widely
used by commercial database system such as Oracle, Sy-
base, SQL Server, Ingres, and DB2. However, parametric
and table-based estimators may perform rather poorly in
the presence of frequent update operation, since the fre-
quent update will substantially change the underlying da-
tabase, and make the established table and/or model rap-
idly outdated. To maintain the estimation accuracy, the
stored summary statistics (table-based estirnator) or the
approximating statistical model (parametric estimator)
needs to be computed periodically by using the up-to-date
information about the underlying data distribution.

In principal parametric and table-based estimators infer
the resulting size of a query based purely on the previously
collected informatiory ignoring on-line information; while

1041-43t7/99/$10.00 0 1999 IEEE
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sampling-based estimators extrapolate the actual selectivity
based purely on the on-line information gaihering, exclud-
ing the previously collected information. Irr an effort to
overcome these deficiencies, we introduce a hybrid model
that fully utilizes the on-line information obtained by a

sampling-based estimator and the previously collected in-
formation obtained by a parametric/table-based one, par-
taking of the merits of the participating estimators. Our
approactg in its style, is similar to that proposed independ-
ently by Haas and Swami l17l for reducing the estimation
variability by using previously stored AFV statistics and
online information from sampling.

The comprehensive utilization of the online and previ-
ously collected information makes the hybrid model out-
standing in the following respects, which are substantiated
by our comprehensive experimental study as reported in
this paper:

Higher Reliability: Our analysis shows thai the mean-
squared error of the hybrid estimator is strictly
smaller than those of the two participating models
being utilized in the hybrid model. As a result, the
hybrid model is of a better coverage [27] than the two
participating estimators.
Higher Efficiency: We show that, as compared with
pure sampling-based estimators, the hybrid esfimator
can make a substantial saving in sample size when
the same estimation accuracy is required.
Higher Accuracy: The hybrid estimator provides a

more accurate estimation. As compared with pure
sampling-based estimators (no matter which sam-
pling method is used), the estimation accurary can be
significantly improved by the hybrid estimator when
the same sample size is used.

The paper is organized as follows: Section 2 outlines the
hybrid estimator, and provides theoretical results regarding
the superiority of the hybrid estimator over its two partici-
pating estimators as well as a quantitative analysis of the
additional benefit gained by the hybrid estimator in com-
parison with a pure sampling-based estimator. Section 3
presents an experimental study of the hybrid estimator
with different selectivities and sample sizes. Section 4 pres-
ents the performance study of the hybrid estimator based
on the practical movie database in the presence of update
operations. Section 5 concludes this paper.

2 HvaRro Esrunton
Let's start with the sampling-based approach. The main
idea behind the sampling techniques is to repeatedly select
a tuple randomly from a tablb against the given query
predicate, then make inJerence about the actual selectivity
by using the estimated selectivity obtained from the sam-
pied data. Its procedure can be formalized as follows.

Let /0 be the characteristic t'unction of a selection predi-
cate, and let x; be a tuple. Given a selectiory /0 can be de-
fined as follows:

lI if x, satisfies the selection predicate
ai = IG,) = iO otllr*iru

+nil=1u,,/"=lf{x,)t,,
i=1 i=l

where an index r; is a random integer between 1 and k, k is

the total number of tuples, and tx is the sample size. Based

on the sampled informatiory we can infer that fr in the

above formula is an approximation of the actual selectivity
p. Thus, the actual number of tuples satisfying the selection

can be approximated as k x fi .

We now give the details of the hybrid estimator and its
theoretical analysis as follows:

v
P,=t'p"+(7-t)'/ (1)

where fr is the estimated selectivity from a pure sampling-

based method, the subscript n denotes the sample size, / is

the estimated selectivity obtained by a parametric estimator
or by a table-based estimato4, and the parameter f is in the
range [0, 1]. It is clear that the estimated selectivity of the

hybrid estimator I is obtained by a linear combination o{

inJormation obtained from the two participating estimators,
which makes the hybrid estimator distinguished from the
traditional sampling-based, parametric and table-based

eslimators.
To assess an estimatot we use the mean-squared

error (mse) to quantifu the performance of an estimator as

follows:

.2
mse -- E(p - p)

where p, is an individual estimated selectivity by an esti-

mator, p is the actual total selectivity with respect to the
given query, and n is the sample size.

The mse of an estimator represents its estimation accu-
rary as well as reliability; the smaller the mse is, the better
the estimator is. lt is known that the mse fot a sampling
method is p . (1 - p) I n [111. The mse for an estimator using a

table-bised or a parametric method is (V - il', and / is
unchanged with respect to a given query, until the paramet-
ric or table-based estimator has been recomputed using the

up-to-date information.
Different f values represent different weights being im-

posed on the two parlicipating estimators. In the extreme
cases that f = 1 or f : 0, the hybrid model is reduced to a

pure sampling-based estimator or a parametric/ table-based

estimato4 respectively. In other words, a sampling-based or
parametric/table-based estimator is only a special case of
the hybrid estimator. The following Theorem illustrates the
existence of an optimal value for f and shows how to de-

termine the value for f that optimally combines the partici-
pating estimators, resulting in a performance improvement
over its two participating estimators.
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THEoRTM 7. The optimal ualue for t, denoted as t), is

p.(1-p) I n+(V -p1z'
And the mse for the hybrid estimator usith the optimal pa'

rameter t) is smaller than either of the two participating es-

timators when 0 < p < L, nnd p + /, namely,

^(u \' .fp'tt-p) .rlLlp--pl <mtn1-,\p-p) |\rn / L ,, 
)

whue "r. is the / witlt t = t).
rn I fl

The proof of Theorem 1 and its detailed derivation can be

found in Appendix A. In Fig. 1, the relationship'between
the mse of the hybrid estimator and the parameter f is pre-
sented. To illustrate how Theorem 1 works, let's assume
that the total selectivif is p :0.2, the sample size n is 50,
and / :0.25. The relative estimation error by using the

previous information is assumed to be lp - V I lp: 25 Per-

cent. Then, according to Theorem I, t;:0.438596.

v
E(1. * p)': 0.00140351,

which is smaller than the mse of the sample method
p . (L -p)150 : A.0032, and the mse of the estimator using

the previous information (V - il': 0.0025.

It is interesting to observe from Theorem 1 that

. Whensample sizenislarge,p-(1 -p)ln<(7 -ilt,
so the optimal t) -> 1., as r -) -. In this case, the in-
formation obtained from a pure sampling-based is
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heavily weighted in the hybrid estimatoq, the hybrid
estimator is largely contingent on the on-line infor-
mation gathering;

. When the sample size n is small and the previ-
ously collected information is accurate (lp - / l' is

small), (V - p)' < p ' (1 - illn, so the optimal t) -+ 0,

as n -+ 0. In this case, the previously collected infor-
mation predominates the online informatiory con-
stituting the principle aspect of the hybrid estimator.

The value for f; indicates that the hybrid estimator takes

100 . 1ti; percent of the online sampling informatiory and

100 ' (1 - fi) percent of the previously collected in-forma-

tiory forming an optimal mixture of the information from
the dilferent sources, leading to a higher estimator accurary
and reliability.

Determining the optimal f; in Theorem 1 requires

knowledge of the actual selectivity p, which in practice is
urknown. Therefore p needs to be estimated. ln Section 3,

we calculate ti by replac'rn1 p AV (i; + 7 ) t Z, and show that

this substitution could result in a substantial perform-
ance improvement over a pure sampling-based estima-
tor. It shouJd be emphasized that the technique we used

here for substituting the actual p n ti is similar to those in
sampling-based algorithms [16], [15], 1171, [L8], [28];, [29],
t301, 126l for replacing the actual selectivity p with the esti-

mated fr in determining the termination condition o{ sam-

pling. At the end of Section 4, we give guidelines for the
substitution that ensures the superiority of the hybrid esti-
mator over its two participatiag estimators-
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Fig. 1. The rnse of the hybrid estimator vs. parameter I
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Theorem 2 guarantees that the hybrid estimator provides
a more accurate and reliable size estimation in any mathe-
matical measurements than its fwo participating estimators.

Tneonav 2. For any

a >1,,if E,7, -rld=mino<ErEl| - pl",

Et7; -ptd<min(tV -pt",t(i) -p)").

The proof of Theorem 2 can be found in Appendix A. Theo-
rem 2 is very strong in the sense that it implies that the es-
timation error of the hybrid eslimator could be smaller than
that of the two participating estimators in any meaningful
mathematical measurements.

Theorem 3 provides a quantitative account of the benefit
of the additional information to the hybrid estimato4, in
comparison with a pure sampling-based estimator.

THEoRst\4 3. Let nt be the sample size for a pure sampling4ased
esthnator, and n tJrc sample size for the hybrid estimator.
Assume that both estimators haoe equal mse, that is

E(C -pt'=E<7; -pt'.
Then, we haoe m - n = m . d, where

p .(1- p't I na= p'(r- p) I n + (/ - r7z'
and (m * n) represents the sample size satted by the hybrid
method ooel' a pure sampling estimator.

Proof of Theorem 3 can be found in Appendix A. Note that
a is actually a ratio of the sample size saved by the hy-
brid estimator to the sample size required by a pure sam-
pling-based estimator. Theorem 3 illustrates that accurate
previous information (lF -p I is small, and uis close to 1)
could result in a substantial sampling reduction. The fol-
lowing example is given to illustrate how to quantify the
benefit of the hybrid estimator. Let's assume that a= 0.9,
based on Theorem 3, the benefit which is expressed in
terms of the sampling reductiory of the hybrid estimator
can be written as

tn-n=m.0.9, tlrcn m:70-n
that is, to achieve the same estimation accuracy, the sample
size required by a sampling-based estimator is 10 times as

much as that used for the hybrid estimator. The above ex-
ample reveals that the availability of the previous knowl-
edge, even partially outdated due to the presence of up-
dateg is valuable, and can be used to reduce the sample
sjze and increase estimation accuracy.

3 A PenronuANcESruDY
In principle, any table-based estimator or parametric
estimator can be used as one of two participating esti-
mators for the hybrid estimator to gather the previously
stored information. In this performance study, we choose a
self-organizing model [22], which can be considered as a

341

parametric estimator. The underlying reason for choosing
self-organizing model ts based on our extensive experience
with this model.

The self-organizing model is based on a neural netr,r'ork
learning model which has gained popularity in recent
years, and has had immense success in various areas

t3l, [35], [38], [23]. A neural network model basically repre-
sents an approximating function for a cumulative data dis-
tribulion defined as follows:

F@)=2f(,4

whereflx) is the data airtrlUrrtiin representing the number
of tuples having value x under the concerned attribute. By
the above definitio4 it is clear that:

1) f(x) is a nondecreasing function defined on the do-
main, that is, Yxr, x2 e dom(x), rt x1 < x2, then F(x1) <
F(x2), and

2) F(x) is bounded by the actual number of tuples,
namelyF(r) < lRl.

Properties 1-2 are invariant regardless of the data distribu-
tion under R.X. Given two domain values x1 and x.y and x1
< xy it can be directly observed that (F(r2) - F(x1)) repre-
sents the number of tuples satisfying the selection predicate
(x1 < R.X < xz). A cumulative data distribution under an
attribute can be easily constructed by a sequential scan of
the whole relation R.

The self-organizing model G(x) [22) has been proposed to
identi$r the cumulative data distribution F(x). The self-
organizing model is initiaily established by using the
back propagation learning rule and training data F(x). The
left-hand side of Fig. 2 represents the actual cumulative
distribution F(x) derived from a uniform distributiory while
the right-hand side represents the approximating function
G(r) obtained through the neural network learning process.
Fig. 2 shows that the self-organizing model, once trained,
can well approach F(r).

Instead of using the cumulative data distribution F(x),
we use the approximating function G(r) obtained through
the training process to estimate the resulting size of a query.
When the self-organizing model is established, the resulting
size of the selection query (r1 < R.X < x2) can be approxi-
mated as G(xr) - G(x1). The self-organizing model requires
neither eitra online overhead for information gathering,
nor the huge space overhead for storing the statistics about
the underlying data distribution, and can provide efficient
and accurate size estimation.

G(r) = 10000' sin(0.920305' z + 0.979493' z2 -
2.749408 ' z3 + 2.419611 -za),

where z = r/1000. Like neural network training, to obtain
G(x) inifially requires moderate non-runtime overhead in
identifying the optimal coefficients, then the self-organizing
model can adjust its weights based on the query feedback
information t6l, t221. The distinction between the self-
organizing model and neural network model is that the
self-organizing model can be automatically adaptive to the
constantly changing data distribution using a query feed-
back mechanism with negligible computation overhead. As

(2)
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Fig. 2. Cumulative data F(x) and approximating function G(x).

a result, the performance of the self-organizing model is
rathei persistent in the presence of update. In the follow-
ing experimental study, we use the self-organizing model
and random sampling estimator as the two participat-
ing estimatois of the hybrid estimator. It is worth noting
that the hybrid estimator does not distinguish which sam,
pling method and parametric/table-based method are be-
ing used.

To fairly evaluate the performance of an estimatoq, we
use the absolute relative estimation error (aree, for short)
and standard estimation deviation (sed, for short) defined
as follows:

cumulative distribution e

1000
Domain Value

approx Lma t' nE I urrc L i :n

1000
Domain Value

a
0
CL

=F

o

0
!
a2

a
0
o,
tF

o
!
Ut
az

DsFtr\'ITtot\r 1:

aree(p, p) = fl1, - pl I {n. p)

,'- '
sed(p,p) =2@, - p1' I {,. r,)

Notice that the sedof urr 
"r=ttir.rutor 

is the corresponding mse
value amplified by a factor 1. lp'.It is known that p is the
actual selectivity with respect to a given query predicate,
and is a constant in our analysis. Therefore, theoretical con-
clusions obtained are applicable with impunity.
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The aree(p, p) denotes the average relative estima-
tion error obtained by using the estimator p over the pop-
ulatior-r with the total selectivity p. For example, tt F : p ,

then the aree(/ , p) represents the average relative estima-

tion obtained using the self-organizing estimato{, I repre-

sents an individual estimated selectivity obtained by using
an estimator.

To investigate the performance of the hybrid estimator at
the different selectivities, we design the experimental pro-
cedure described as follows:

. the underlying data is generated from a uniform dis-
tribution ranging from 0 to 1,000;

. the seU-organizing model, as plotted in the right-hand
side of Fig. 2" is constructed;

. the queries which produce a fixed selectivities (0.8 per-
cent 5 percent, and 10 percent) are generated (for uni-
form data distribution, the total selectivity p can be
controlled by choosing the range of query);

. the estimated selectivity fr obtained from random

sampling with the different sample sizes are collected;
. the estimated selectivity / obtained from the self-

organizing model is collected, the weights of the self-
organizing model are adjusted based on the query
feedback resulu

o the optimal value f] is calculated based on Theorem 1

by replacing p with (fi + F ) / z;

o the estimated selectivity of the hybrid estimator ([ )

is calculated;
. the above procedure is repeated, the aree and sed of

the hybrid estimator and random sampling are col-
lected and plotted in Fig. 3 and Fig. 5, in which the
relationship between the estimation error of the esti-
mators and the sample size taken is illustrated.

Notice that every point in Fig. 3 and Fig. 5 represents the
average measurement obtained from 100 repetitions under
the different selectivity p, the left-hand and right-hand sides
represent the aree and sed of the estimators. The captions of
Fig. 3 and Fig. 5 contain the corresponding aree(/ , p) of the
self-organizing model since the the seif-organizing model
bears no relation to the sample size taken.

Comparing the performance of the hybrid estimator
with that of random sampling yields an interesting paftern:
The hybrid estimator has gained a substantial performance
improvement over random sampling when the sample size
is small; this improvement becomes gradually insignificant
when the sample size becomes large. This observation
agrees with theoretical findings revealed in Theorem 1.

Fig. 6 demonstrates the performance difference between
the hybrid estimator and its two participating estimators

over the different selectivities when a fixed sample size
(200) is used. The hybrid estimator generally gives a better
result than either the sampling-based and self-organizing
estimators over the range of grven selectivity. Observed that
the performance of the self-organizing model is relatively

insensitive to the actual selectivity. The self-organizing
model is more accurate and reliable than the hybrid esti-
mator n'hen the selectivity is small (less than 8 percent),
departing slightly from Theorem 1- The abnormal situation

implies that the substitution of p with (t" + FllZin f, in
Theorem L does not always yield the optimal results in the
practical application. We will provide the practical guid-
ance of ensuring theoretical superiority of the hybrid esti-
mator over its two participating estimators.

4 A PenroRlaANcE SruDy Usr.rc PRlcrrcll Dara
In this sectiory we will study the performance of the hybrid
estimator using the actual movie database in the presence
of update, delete, and insert operations. By courtesy of Pro-
fessor Gio Wiederhold at Stanford University, we use a

movie database that consists of 10,125 movies produced
during the years 1900 to 1995. Fig. 7 depicts the cumulative
movie data distribution as well as its approximating curve
made by the self-organizing model over the entire range
from 1900 to 7995.

We generate the random query (a random query means
that the range of the query is randomly selected) to collect
the estimation measurements of the hybrid estimator and
random sampling. Random queries will produce different
selectivities, reflecting the working performance in a practi-
cal environment.

To quantifu the working performance of an estimatoq,
uniform average relative estimation error (uaree) and uni-
form standard deviation (used), which represent the average
measurement taken over the different selectivities, are used
as follows:

Dssxrrrol 2:

("
trr_uaree(P)=lLlp;-Pi
\;=r("

rrsed(p)=[I(n-r,)'

ttp,)t ,

")t ri 
)r

ztshere pt is the actual selectiaity determined by a random

query and q is tt'te estimated selectiaity of the actual selec-

tiajly B; using an estimator.

The following experimental study has been designed to
show, based on an actual movie database and in the pres-
ence of different percentages of update (10 percent 20 per-
cent, 30 percent, and 50 percent), delete (5 percent, 10 per-
cent, 20 percent, and 40 percent), and insert (5 percent, 10

percen! 20 percent, and 50 percent) operations, the actual
uaree and used for the hybrid estimator and random sam-
pling. The acttal uaree and used of the self-orgarizing
model are also collected and showed in the caption of the
corresponding figures.

The experiment study can be described as follows: De-
lete operations are done by randomly deleting the different
percentages of tuples from the existing table, and update
and insert operations are done by replacing and inserting
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Fig. 3. Estimation accuracy vs. sample size: selectivity p = 0.8 percent (aree(p ,0.008) = 16.08 percent, sed(F, 0.008) = 0-63 percent)

data generated from a uniform distribution into the existing

movie database.
It can be observed in Fig. 3 and Fig. 20 that the hybrid

estimator performs better than a Pure samPling-based esti-

mator in the presence of different Percentages of update,

delete, and insert operations, that rs, the uaree and used val-
ues of the hybrid estimator are generally smaller than those

of random sampling, indicating that the exPerimental study
agrees well with theoretical finding.

One point to be noted is that Theorem 1 states that the

minimal mse of the hybrid estimator can be achieved by
choosing:

*,__ (V-p)'

"=,p-rY*p.{'t-vw'
that is, the mse of the hybrid estimator is strictly smaller
than that of the two participating estimators as long as

0 < p < I and p * /, representing the optimal combination

of the on-line and previously collected information used
by the hybrid estimator. However, the total. selectivity p
is in practice unknown a priori; as an alternative, we re-
place p with
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l. ^ - 1) Whenthesamplesizenislarge,sincep.$-p)lnbe-
l: P,+P

l;; , comes small, the selectivity pn obtained from on-line

l sampling should be heavily weighted in the substitu-

| 1 tn".lxeelmgntf study' observed from Fig' 3.and rig 2.0 tion of the toral selectiviry p in the fi formula.

|: ftit thrs substituti-on sometimes may compromi:"_ _th::t:ti 2) when the table-based estimator or phrametric esti-

l. :O superiority of the hybrid estimator to some.degree. For ' *uto. has been just updated, or the sample size is

f 

' 
rnstance, in.Fig. 6,.the sed ol the hybrid estimator is larger ,r.,utL af," selectiriity / ihouta be heavily weighted in

I than.that of, the self-organizing estimator *1":11",:"-pl" 
the substitution of the total selectiviry p.

I size is small. Here are guidelines that can be used in prac-

f, ti.utoobtain f,.Weobservethal To formulate this idea, the total selectivity p in t) can be
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p: (I -k(n, t))- P, + k(n, t) ./ , (3)

204

rmdom sanple +
hybrid estimator -+-.

where k(n, f) is a function of the sample size n and the
elapsed time f from the last update of the model (paramet-
ric or table-based). The function k(n, t) is bounded by 1, and
is inversely proportional to the sample size r? and the
elapsed time f from the last update. The form of the func-
t:.onk(n, f) which could ensure theoretical superiority of the
hybrid estimator over its participating estimators requires
further investigation and deserves detailed attention.

5 Cottcl-usrotr

h'r this papeD we have provided a hybrid estimator that
uses the on-line sampling information as well as the previ-
ous information furnished by a table-based/parametric meth-
od. The contribution of this paper is to show how to util-
ize information from the different sources and how to de-
termine the optimal combination of the on-line and previ-
ously collected information in order to gain the perform-
ance improvement.
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Fig. 6. Estimation accuracy vs. selectivity (percent): (sample size = 200).

Theoretical justification of the superiority of the hybrid
estimatol, as well as a quantitative analysis of the benefit of
the hybrid estimator in terms of estimation accurary and
reliability is presented. The results obtained from the com-
prehensive experimental study are consistent with theoreti-
cal findings.

The hybrid estimator is built based on sampling-based
and a parametric/table-based estimator but is inde-
pendent of the specified estimators used. We have proved
that the availability of additional information makes the
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hybrid estimator theoretically superior to its two partici-
pating estimators.

The ability to utilize both on-line and previously col-
lected information makes the hybrid estimator very attrac-
live in a practical setting. Many types of estimators, differ-
ing widely in their respective approaches, could be in exis-
tence in a database system. The hybrid approach provides
an adaptive mechanism that allows the optimal combina-
tion of information from heterogeneous source to further
increase estimation accuracy and reliability.
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Substituting (6) into (4), we have:

(v \2Elp; -p ) -
p.(L-p) .(F -iln +p.(1-p).(i -il' l" _

" l<l -P)2 +p'(t-p)l rf'
p'(I-p) [" @-pt' In l'- e.(r- e\T;;@ - pf I

That is, as long asp * / and 0 < p < 1, we have:

fv \2rlri-rl
= (r - rj). r.

L\p - p)

400 1200 t4a0 l6 00

aa0 120a 14 0! 150 0 204

Fig.20. Performance under insertion (50 percent): (uareflfi) = 20.44 percent, used(F) = 0.26 percent)

Appenorx A
PRoop or TnsoREtvr 1:

By (1), the mean-squared error (mse) ol f is writ-
ten as:

va^r(/, - pl' = r$ . (t,-p) + (1 - t).(7 -p))').
The above formula can be further simplified as:

n(V -il' : t' . n(t, -p)' + (1 - t)' . @ -p)' =

^ n-(1.- n\
!'.t \ t' +(-t)'.@-p)'.

Let: 
n

sQ):f E(t -p)2+(1-t)'.(/ -p)'=
. p.fl-p\

Taking a"rirruUlrl of g(/) with respect to f, we obtain:

o.(I-o\g'O:z.t.r \^- rt -2.(t-t)(V-p)'. (5)

800 10ca 12 00

Solving the equation g '(t) : 0, we get t : t;. It follows

that f(\ -p)2 attains the rninimum at fi, which is of
the form:

Lil 
-

\p-pr
p'(1-p) I n+(/ -pf ' (6)

(7)

(8)

\,^
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