
A Model of Multimodal Ridesharing and its Analysis
Jane Lin, Sandeep Sasidharan 

Department of Civil and Materials 
Engineering 

University of Illinois at Chicago 
Chicago, IL, USA 

janelin@uic.edu, ssasid3@uic.edu 

 

Shuo Ma 
Google, Inc. 

Mountain View, CA, USA 
shuoma86@gmail.com 

Ouri Wolfson 
Department of Computer Science 
University of Illinois at Chicago 

Chicago, IL, USA 
wolfson@uic.edu 

 
Abstract—Getting a taxi in highly congested areas (e.g. 

airports, conferences) is both time consuming and expensive. 
Chicago Tribune reports that wait at  Chicago O’Hare 
International airport for taxi cabs can be as long as 45 
minutes [1]. In this paper we propose RSVP, a ridesharing 
system that uses walking and virtual pools. RSVP is aimed 
mainly for transportation hubs, such as airports, railway 
stations, etc. In these places, a steady stream of passengers 
arrive via some public transport mode, say train, and then 
depart to different destinations. We introduce a model for 
ride-sharing that involves walking, devise ridesharing 
algorithms, and evaluate them using a database that recorded 
real taxi trips in NYC. 

Keywords-virtual pool; ride-sharing; Slugging-Multiple-
drop-off; match making; shareability 

I. INTRODUCTION 
Getting a taxi in highly congested areas (e.g. airports, 

conferences) is both time consuming and expensive. 
Chicago Tribune reports that wait at in Chicago O’Hare 
International airport for taxi cabs can be as long as 45 
minutes [1]. While the emergence of novel Transportation 
Network Companies (e.g. Uber) has helped increase the 
supply of drivers during peak times, they have done little 
to reduce congestion in hubs such as airports, major 
stations, and stadiums. Creative on-demand transit service 
is needed more than ever to capture the benefits of the 
smartphone and health-consciousness revolutions. 

In this paper we propose RSVP (Ride Sharing by 
Virtual Pools), a ridesharing system based on walking and 
virtual-pools, aimed mainly at transportation hubs. The 
RSVP scheme combines in a unique way three existing 
mechanisms: virtual queues, slugging (i.e. walking for the 
purpose of ride-sharing), and multiple-drop-off ride-
sharing. Assume a designated taxi ride-sharing pickup 
location at a hub H (e.g., airport, train station), with virtual 
ride-sharing demand pools associated with time-intervals. 
For example, a virtual pool of ride-sharing passengers will 
be picked up between 11:00am and 11:05am, followed by 
another pool to be picked up between 11:05am and 
11:10am, etc. Initially, each pool consists of a number n of 
trips, which after merging will be reduced to m merged (or 
ride-sharing) trips. m should not be allowed to grow 
beyond the number of taxi-pickups that can occur at a 
specific curb location during the time-interval associated 
with the pool (e.g. 5 minutes).  

Upon arriving at the hub H using another mode of 
transportation (e.g. a plane), a passenger expresses interest 
in taxi-ridesharing by specifying her trip and electronically 
enrolling it into a pool, e.g. the 11:00-11:05 pool. The trip 
specification indicates the destination, and the bounds on 
walking and delay times that the passenger is willing to 
tolerate in order to enable ride-sharing. It is envisioned that 
the passenger will register the trip in the earliest pool that 
allows enough time to walk from the arrival location to the 
ride-sharing pickup location. For example, if the passenger 
deplanes at 8:00am, and it takes 10 minutes to walk from 
her arrival gate to the ride-sharing pickup location, then the 
passenger will enroll her trip in the 8:10–8:15am pool. A 
pool closes, say, one minute before its start-time, or when 
it is full, whichever occurs first.  

 After a pool P closes, a MatchMaking (MM) system is 
run on the set of n trips in the pool, creating a smaller set 
of m merged trips, each of which will be served by a single 
taxi. Each merged trip may consist of multiple drop-off 
points of the ride-sharing passengers. The selection of 
drop-off points must satisfy the walking and delay time 
constraints specified by the passengers. Because the pick-
up and drop-off points in RSVP may differ from the 
passenger’s actual origin and destination respectively 
within a tolerable walking distance, RSVP incorporates 
slugging [2]. 

The proposed scheme benefits travelers, businesses, 
and municipalities. Travelers can check in remotely, thus 
are freed from standing in a physical line, and can save 
money by ride-sharing. Businesses benefit from travelers 
free to spend money instead of standing in line.  
Municipalities benefit from reduced vehicle-miles-
traveled, congestion, and emissions. 

Our proposed scheme differs from existing taxi 
ridesharing studies in two aspects. First it applies the 
virtual queue concept to create ride-sharing pools and 
efficiently manage the ride-sharing demand. Second it 
considers SLuggIng-Multiple-drop-off (SLIM), a hybrid 
form of ride-sharing that combines slugging[2] and 
multiple-drop-off ride-sharing [3],[4],[5],[6].  In this paper 
we formally prove that this increases the ride-sharing 
opportunities. 

In summary, the contributions of this paper are: 
• We formalize the SLuggIng-Multiple-dropoffs 

(SLIM) ridesharing problem and mathematically 

2016 17th IEEE International Conference on Mobile Data Management

2375-0324/16 $31.00 © 2016 IEEE

DOI 10.1109/MDM.2016.34

161

2016 17th IEEE International Conference on Mobile Data Management

2375-0324/16 $31.00 © 2016 IEEE

DOI 10.1109/MDM.2016.34

164



prove that some trips are shareable only if they 
allow slugging. 

• We propose efficient algorithms, including a 
performance-improvement technique based on 
Euclidean filtering, for producing a SLIM ride-
sharing plan on a virtual pool.  

• We evaluate the scheme with a database of real taxi 
trips in NYC, and demonstrate that it produces 
savings of 25-40% in terms of the total number of 
trips. 

• We quantify the benefits of adding walking to 
multiple-drop-off ride-sharing. 

The reminder of this paper is organized as follows. In 
Section II, we review relevant work. We introduce the 
model of multimodal ridesharing Section III, and present 
the MM system and algorithms the virtual queueing system 
in Sec. VI. We evaluate it in Section V. In Sec. VI we 
conclude and discuss future work. 

II. RELATED WORKS 
There have been several studies on wait line 

management for taxi cabs [7],[8] and attempts to enhance 
the taxi cab operations [9],[10] at various service stations. 
However, these techniques fall short at eliminating 
physical queues at the taxi cab service stations. Taxi cab 
demand prediction engines [8] and decision making 
systems [10] may help in better taxi cab operations, but do 
not guarantee service on demand without entering a 
physical queue. 

There has been extensive research on traditional 
ridesharing, where driving is the only mode of 
transportation. Detailed overviews of this research can be 
found in surveys on vehicle routing problem [11], and 
ridesharing [12]. Few works have studied multimodal 
ridesharing where other mode of transport (especially 
walking or biking) are allowed. In [2] the authors studied  
the slugging form of ridesharing, where passengers walk to 
the origin of the driver to get on, then get off at the 
destination of the driver, and finally walk back to their 
original destination. The challenge there is to assign the 
role of driver and passenger to ridesharing participants, and 
group passengers to ridesharing plans. Therefore, the 
problem of choosing pickup/drop-off points for passengers 
is not tackled in [2]. Sester et.al. studied ridesharing with 
walking in a setting where the role of drivers and 
passengers are known as input, and each driver is assigned 
with passengers with the same destination [13][14]. The 
main problems in both [13], [14] is to determine a 
rendezvous point for each passenger to be picked up by the 
assigned driver. In [13] each driver is matched with only 
one driver, whereas a driver is matched with multiple 
passengers using Integer Linear Programming (ILP) in 
[14]; and subsequently the passenger pickup order is 
determined for each driver. ILP is NP-hard and thus not 
applicable to large problem instances. Neither [13] nor [14] 

provides a formal model in which to determine whether 
trips are shareable.  

References [15],[16] also studied the benefit of meeting 
points (i.e. middle points for pickup/dropoff) for 
ridesharing systems. In [15] the match is between a single 
driver and a single rider. And the [15] model provides 
constraints in terms of time windows instead of maximum 
walking time. Reference [16] provides a solution in which 
sources, destinations, and intermediate points are in the 
Euclidean plane rather than networks. From a 
computational perspective, similar to our approach here, 
both [15], [16] devise and apply heuristics to reduce the 
search space for meeting points thus speed-up 
computation. However, note that the heuristics used in this 
paper prune the search space without compromising 
optimality of the solution. Furthermore, in [13], [14], [15], 
[16] each driver has its own destination. In contrast, in our 
model a driver does not have an individual destination. 

This work is also relevant to existing work on taxi 
ridesharing [4],[6]. Those works differ from our paper in: 
1) they do not consider walking as a second mode; 2) they 
do not build a ridesharing plan from a time windowed pool 
of requests. That is, in those papers, whenever a ride 
request arrives, all taxis are considered for matching the 
new query. Thus, they focus on quickly finding candidate 
taxis for ridesharing based on spatial indexing. In terms of 
savings, [4] reports about 25%~35% more  taxi requests 
can be served if ridesharing with at most two passengers is 
allowed (depending on taxi shortage, modeled by 
parameter �). This is similar to our results here.  

Similar to the work here, both [2],[5] consider matching 
trips in a small time window. Reference [2] does not 
consider multiple drop-offs, and as a result, it requires a 
higher similarity between trips that can be merged. Unlike 
this paper, where trips are bounded within New York City, 
all trips in [5] are bounded within Manhattan. Thus all the 
destinations are in a denser area than NYC as a whole, thus 
ridesharing is more probable. In terms of savings, [5] 
reports a 50% reduction in # of trips with ridesharing 
allowing at most one more passenger and maximum delay 
of 5 minutes, using a 3 minute pool size. In contrast, our 
study finds a 28% ~ 35% (depending on the pool size) 
reduction in the number of trips, with ridesharing allowed 
between at most two trips, and maximum 10% travel time 
delay. The difference between the savings in the two papers 
are attribute to multiple factors: 1) aforementioned denser 
destinations in [5]; 2) requests with different origin 
locations are merged as well in [5]; 3) the impact of 
walking on the total travel time delay. Furthermore, [5] 
performs an offline analysis and does not address issues of 
real-time algorithm efficiency. 

While the hybrid walking-and-driving mode in SLIM 
ridesharing provide flexibility for ridesharing 
opportunities, it also greatly complicates the ridesharing 
algorithm, especially for pairwise shareability 
determination (see Sec. III for more details), the process of 

162165



determining whether or not two trips are sharable (i.e. 
mergeable to form one ride-sharing trip). Since in SLIM 
passengers can be dropped off at intersections away from 
their respective final destinations, the search space for 
ridesharing paths is dramatically expanded. For example, 
given a walking time of five minutes, we find that a 
destination in New York can have 20~30 candidate drop-
off points on average. There have been some works on 
calculating shortest path for multimodal networks, 
especially for transit networks [17][18], however, these do 
not consider ride-sharing. In this paper we describe the 
shareability determination procedure only for trip pairs. It 
can be extended to combining more than two trips. In this 
case, after the ride-sharing plan is obtained, a variant of the 
Traveling Salesman Problem (TSP) with�3 or more stops 
needs to be solved to determine the rote of each vehicle. 
Existing TSP solvers [19][20] obtain the optimal solution 
for large instances of TSP problems, e.g. the Concorde TSP 
solver can solve optimally an instance consisting of more 
than eighty-five thousands stops.   

III. THE MODEL OF TRIPS AND THEIR SHAREABILITY 
In this section we first define the multimodal road 

network (A), then trips and their constraints, and then 
shareability of trips that satisfy those constraints (C). 

A. The Road Network and Multimodal Paths 
A road network is a directed graph; the vertices are the 

intersections of the roads, and the edges are the road 
segments connecting the intersections. Assume that there 
are n vertices in the road network, denoted vi, where i 
=1,2,…,n, and let edge eij be the edge from vertex vi to 
vertex vj.  Each edge e in the network has a length L(e). We 
assume that there is a walking speed which is the same for 
all edges (e.g. 3 mi/hr) and is denoted WS.  The walking 
time of e, denoted WT(e), is L(e)/WS. Additionally, each 
edge e has a maximum driving speed mDS(e), e.g. 60mi/hr 
on a highway edge. To compute the drive time on an edge 
e we use a congestion fraction denoted cf, where 0<cf<1. 
This is a fraction used to compute the driving-time on each 
edge e by assuming that the driving speed on e is 
mDS(e)*cf. In other words, we assume that cf is the same 
for all edges. In practice, cf is determined by the time of 
day, e.g., at rush hour all maximum speeds are cut in half. 
Of course, this fraction can be adapted to the type of road, 
but we ignore this refinement here. 

Thus the driving time on an edge e, denoted DT(e), is 
L(e)/(mDS(e)*cf). Intuitively, DT(e) is the time it takes to 
traverse the edge at a speed reflected by the congestion cf; 
if driving (in the direction of the edge) is not allowed, then 
the speed is 0 and the driving time is infinity.  

Consequently, for every path p in the road network, the 
walking time on p, denoted WT(p), is the sum of the 
walking times of edges of p, i.e., �

∈∀

=
pe

ij
ij

eWTpWT )()( ; 

the driving time on p denoted DT(p) is the sum of the 
driving times of edges of p, i.e., �

∈∀

=
pe

ij
ij

eDTpDT )()( . In 

this paper we consider paths that are unimodal, i.e. consist 
of a single mode, either walking or driving. Consequently, 
the time of a path p is either its walking time or its driving 
time. If p is the shortest (in terms of walking- or driving-
time) path between two vertices v and w, then WT(p) and 
DT(p) are also denoted WT(v,w) and DT(v,w) respectively. 
The pickup intersection is called the hub, denoted by H. 
For a vertex v, for conciseness we denote by SP(v) the time 
DT(H,v), i.e. the drive-time on the fastest-drive path from 
H to v.  

B. Trips and Their Constraints 
A trip A is a triplet: <destination-address dest(A), 

number-of-travelers-in-party, constraints>. We assume 
that dest(A) is a vertex, i.e. intersection, and a trip starts at 
time 0. Denote SP(dest(A)) by SP(A). Namely, SP(A) is the 
drive-time on the fastest-drive path from H to dest(A). The 
constraints are:  
(1) Maximum walking time, denoted W(A), from the drop-

off point, denoted d(A), to the final destination dest(A), 
and  

(2) Maximum delay (including the walking time from 
d(A) to dest(A)) denoted D(A). In other words, D(A) is 
the maximum difference between the total travel time 
to dest(A) in a ride-share (including driving and 
walking), denoted  TT(A), and SP(dest(A)); i.e., TT(A)-
SP(A) ��D(A). 

The number of travelers is used in match-making. For 
example, two trips, each of which has two travelers, cannot 
be combined in a taxi with 3 passenger seats.  

C. Shareability of Trips 
A trip pair (A,B) is shareable with A first if there exist:  

(1) a driving path dp(A,B) starting at H, and having two 
dropoff vertices, d(A) and d(B), where d(B) is the last 
vertex of dp(A,B), (see Fig.1), and  

(2) at most two walking paths wp(A) and wp(B), from d(A) 
to dest(A) and from d(B) to dest(B), respectively, 

that satisfy the following 2 conditions:  
(1) If d(A) is the same vertex as dest(A), then wp(A) is 

empty (this means that the dropoff point of A is its 
destination); otherwise there is a walking path wp(A) 
from d(A) to dest(A) that satisfies the following 
conditions: 

)())(( AWAwpWT ≤  (1) 
)()())(()( ADASPAwpWTqDT +≤+ (2) 

Equation (1) says the walking time on the path wp(A) 
is no greater than the maximum walking time limit on 
A, i.e., )( AW .  In (2), q is the prefix of the path 
dp(A,B) from H to d(A). Then (2) indicates that the 
total travel time from H to dest(A) is no greater than 
the sum of the shortest path from H to dest(A) and the 

163166



maximum tolerable delay.  This, to comply with 
constraint (2) of the trip definition because 

)())(()( ATTAwpWTqDT =+  (3) 
(2) Similarly, if d(B) is the same vertex as dest(B), then 

wp(B) is empty (this means that the dropoff point of B 
is its destination) and DT(dp(A,B)) – SP(B) � D(B); 
otherwise there is a walking path wp(B) from d(B) to 
dest(B) that satisfies the following conditions: 

)())(( BWBwpWT ≤  (4) 
)()())(()),(( BDBSPBwpWTBAdpDT +≤+

 
(5) 

Fig 1: Illustration of shareability of trip pair (A,B) 

Trip pair (A,B) is shareable if it is shareable with A first 
or with B first.  

The following proposition indicates that adding 
walking times enriches ride-sharing possibilities.  

 
Fig 2: Trips A and B that are shareable if walking is allowed, but not 

otherwise. 

Proposition 1: There exist trips A and B that are 
shareable if their maximum walking times, W(A) and W(B), 
are greater than 0, but not otherwise. This is true even if the 
walking time is slower than the driving time for each edge.  

Proof: Consider the road network of Fig. 2, giving the 
driving time and walking time on each edge. And consider 
trips A and B starting at H with maximum delays 
D(A)=D(B)=5 and destinations dest(A) and dest(B) 
respectively. If the maximum walking times are 
W(A)=W(B)=10, then the two trips are shareable with either 
A first or B first. In either case, both travelers are driven to 
vertex d(A)=d(B) and are dropped off there, from which 
they walk, each to their respective destination. The total 

shared trip time for A is the driving time, 45, plus the 
walking time, 10, i.e. 55 in total. Since the driving time 
directly from H to dest(A) along the shortest path is 50, the 
maximum walking and delay constraints are satisfied for 
A. And similarly for B.   

Now, it is easy to see that if the maximum delays are 
kept at 5, but the maximum walking times are reduced to 0 
for both trips, then A and B are not shareable with A first, 
nor with B first.  The reason is that the drive from H to 
dest(A) is 50, and from dest(A) to dest(B) is 12, exceeding 
the maximum delay for B. Thus the trips are not shareable 
with A first. Similarly for B first.  

IV. THE MATCHMAKING (MM) SYSTEM   
In this section we describe the MM system. We first 

give an overview of the approach (A), then devise the PST 
algorithm that produces the shareability graph and analyze 
its complexity (B); finally we discuss Euclidean filtering, a 
step executed before a pool of trips is fed into the PST 
algorithm to eliminate in constant time pairs of trips that 
are not shareable (C). 

A. The Approach 
After a pool P closes, a MatchMaking (MM) system is 

run on the set of n trips in the pool, creating a smaller set 
of m merged trips, each of which will be served by a taxi. 
Obviously, among the m trips there will be some that have 
not been merged. This will be the case for a trip A in which 
the constraints do not allow its merging with any other trip. 
For example, if all the trips in A’s pool allow a delay of at 
most 5 minutes, and any other destination in the same pool 
is at least 10 miles away from the shortest path to A’s 
destination, then A cannot be merged with any other trip.  

The output of the MM system is a set of merged trips. 
For each merged trip T, MM produces the route to be taken 
by the taxi servicing T and the drop-off points, such that 
the constraints of all the individual trips merged into T are 
satisfied. If some drop-off point is not a destination, then 
MM will also produce the walking path that the passenger 
has to follow to reach her destination. 

Now we discuss the approach used by the MM system. 
MM consists of two stages: (1) construction of a 
shareability graph (SG), and (2) finding the maximum 
matching of SG. The first stage finds all the possible pairs 
that can be merged in a way that satisfies the constraints of 
the two trips. In other words, it constructs a graph in which 
the nodes are the trips, and each edge indicates that the two 
connected trips can be merged.  

To see the need for the second stage, suppose a pool 
initially consists of 4 trips, and that at the end of the first 
stage we have a graph of 4 nodes A, B, C, D and 3 edges 
A-B, B-C, and C-D. If B and C are merged, then no more 
trips can be merged, and the total number of resulting trips 
in the pool is 3. If, on the other hand, A and B are merged, 
and C and D are merged, the resulting number of trips is 
two, which is superior to the first option.  

A B

H

DT = 6
WT = 10

DT = 6
WT = 10

DT = 50
WT = 2000

DT = 50
WT = 2000

dest (A) dest (B)
d (B)d (A)

DT = 45

W (A) = W (B) = 10
D (A) = D (B) = 5

164167



Thus, the second stage finds, for an arbitrary graph, the 
merging of pairs which results in the minimum number of 
merged trips in the pool. For finding the maximum 
matching we use a standard existing algorithm [21]. 

A.  Building the Shareability Graph 
A shareability graph is a graph in which the vertices are 

trips and the edges indicate that the trip pair connected by 
the edge is shareable. The shareability graph is constructed 
as follows. 

First, to speed up the graph-building process, we 
perform following precomputations: (assuming that drop-
off points and trip destinations are always intersections). 
For each intersection P, we precompute only once the 
following: 

a) }),({)( CiPWTiP ≤=I , i.e., the set of the 
neighboring intersections, from which the walking 
time to intersection P is no greater than C. 
Intuitively, these are candidate drop-off points for 
trips that have P as a destination assuming that the 
maximum walking time of any trip is C (say 10 
minutes). 

b) ��(�� 	), i.e. the driving time from the hub H to 
intersection P, using the speed limits of road 
segments. 

Second, the following pairwise shareability test (PST), 
which uses the above precomputations, is applied to check 
whether or not trip a pair (A,B) is shareable with A first. 

Discussion of the PST Algorithm: Line 1 checks 
whether the route driving from H to dest(A) (along the 
shortest path), and from there to dest(B), satisfies the 
maximum delay of B. If so, then this route satisfies the 
delay constraints of both trips, thus they are shareable.  

Otherwise, the rest of the PST algorithm checks for 
every pair of feasible drop-off points, one of A and the 
other of B, whether they satisfy the delay constraints of A 
and B.  

Line 4 checks whether the drop-off point satisfies the 
delay constraint of A, and if not the drop-off point is 
abandoned. Line 11 checks the same condition for the 
delay constraint of B, with a lower bound given by the 
Euclidean distance. Lines 4, 9, and 11 use calculations that 
involve only constants and precomputed values1 . They 
serve as defenses, to avoid the expensive shortest path 
calculations executed by Line 13. 

Line 13 calls PathSearch function, which tries to find a 
path from a drop-off point 
 of dest(A) to some drop-off 
point j of dest(B) within a given travel time budget that 
satisfies the delay constraint of B. This is expensive 
because the drive-time between i and j is not precomputed 
(the table giving the shortest drive-path between every pair 
of intersections would be too large to search efficiently). 
And executing the shortest path computation between 

 
1 the precomputed driving times are multiplied by the congestion 
fraction (cf) parameter. 

every pair of feasible drop-off points, one of A and the 
other of B, involves hundreds of shortest-path 
computations (we find out that each destination usually 
have 20~30 drop-off points for a 5 minutes walk). The Path 
Search Algorithm (PSA, Algorithm 2) improves the 
efficiency by using the following idea. First, do a single-
source shortest path computation from a drop-off point of 
A to all the feasible drop-off points of B. The resulting 
shortest-path tree T may contain multiple drop-off points 
of A; and if for any pair of drop-off points in T, one for A 
and the other for B, the budgetleft is not exceeded, then A 
and B are shareable with A first. Otherwise, the single-
source-shortest-path computation is repeated for other 
feasible drop-off points of A, with the following cutoff 
improvement. If a vertex v that was “seen” in previous 
single-source-shortest-path computations is reached, and if 
the shortest path to v is not improved, then v is “cutoff”, i.e. 
not expanded. In other words, PSA combines multiple 
single-source-shortest-path computations. Specifically, 
PSA is executed at most once for each drop-off point of A. 

Complexity of Constructing the Shareability 
Graph:  In the worst case, the PST Algorithm constructs a 
shortest-path tree for each drop-off point of A. This takes 

165168



��
�
 � 
�
���
�
���Since the number of drop-off points 
that are at most C time-units (e.g. C = 10 minutes) away 
from any destination is a constant, this is also the 
complexity of the PST algorithm. Since A and B are 
shareable if and only if they are shareable with A first or 
with B first, and since the number of trips in a pool is 
bounded by a constant (in our experiments the average 
number of trips ranges between 25 and 40 depending on 
the length of the time interval), the above is the asymptotic 
complexity of constructing the shareability graph.  

Complexity of finding the Maximum Matching of 
the Shareability Graph: The maximum matching can be 
found in O(|E||V|1/2), where |V| is the number of trips, and 
|E| is the number of edges in the shareability graph (see 
[21]). Since the number of trips is a constant, finding the 
maximum matching can be done in a negligibly small 
constant time. 

Incremental updating the Shareability Graph: After 
the shareablity graph is built, a maximal matching M is 
computed on the graph. Then all nodes and links that are 
included in M are removed from the graph, and each pair 
boards a vehicle. At this point there are 2 possibility for the 
unmatched trips. They can remain in the pool and board at 
the same time-interval as single-trips, or drop back to the 
next pool, attempting to be matched there. If the second 
option is selected, the remaining part of the graph can be 
incrementally reused for constructing the new shareability 
graph. That is, given a pool of trips consisting of c old trips 
and d new trips, to build the new sharability graph, we only 

need to run the PST algorithm d(d+c) times instead of  
(d+c)2 times.  

B. Euclidean Filtering  
In order to eliminate the infeasible pairs of trips 

quickly, rather than feeding them through the PST 
algorithm directly, the MM method uses the principles of 
Euclidian geometry. We call this Euclidean filtering. More 
specifically, in this subsection we present an inequality, 
(9), which, if not satisfied, for a pair of trips, then the trip-
pair cannot be shareable; thus the pair does not need to be 
fed to the PST algorithm. Furthermore, (9) can be 
computed using only the precomputed tables, but 
independently of the road network, i.e. in constant time.  

Fig. 3: Demonstration of the proof of Theorem 2 

Denote by Smax the maximum driving speed among all 
edges (e.g. 60 mi/hr) without congestion, i.e. when cf=1. 
We trivially assume that (Smax * cf)>WS (Otherwise, 
walking from H to the destination would be faster than 
driving). 

Given two points X and Y in the Euclidean space, 
denote by by DX,Y  the Euclidean distance between two 
points X and Y, and by ���� the time to cover  DX,Y  at speed 
(Smax * cf).  

Theorem 2: If A and B are two trips that are shareable 
with A first, then: 
���������� � ���������������� �  !"�#� $ %	�&� �
���&� (9) 

Proof: Consider the two shareable trips A and B with 
drop-off points d(A) and d(B), as represented in Fig 3. A, B 
represent the destination locations of the two trips 
respectively, and '�, '� represent the maximum distances 
that can be covered in times W(A) and W(B), respectively, 
at a walking speed of WS.   

We will prove that:  
���������� � "�#� < SP(d(A)),                                  (10) 
and,                   

���������������� � "�#� $ ���(�#�� (�&�� � ��)*�&�� 
        (11) 

Recall from sec. III.A that  SP(d(A)) is the shortest 
drive-time from H to the d(A), and DT(d(A), d(B)) is the 
shortest driving-time from the drop-off point of A to that of 
B.  

166169



Thus, combining (10) and (11), we have 
���������� � ���������������� �  !"�#� $ 
%	�(�#�� � ���(�#�� (�&�� �"��)*�&��           (12) 

where the right side of (12) is the total travel time for B 
in any ridesharing plan with A first, thus not larger than 
%	�&� � ���&�; the theorem follows.   

Now we prove (10). Denote by X the point on the 
straight line from H to dest(A) such that ���������� +
�������������. In other words, X is the point on the straight 
line whose Euclidean distance from dest(A) is the same as 
the Euclidean distance between d(A) and dest(A). 

Since a straight line is the shortest distance between two 
points in Euclidean space, then ��� � ������� �
��(�#��, where ��(�#��is the distance of the shortest-
time driving path from H to d(A). Thus we have TH,X � 
�������   ��

,-����.

/012!34
�  SP(d(A)). Also, since (Smax * cf)> 

WS,   ���������� $ "������������� � "�#�. Thus: TH,dest(A) 
= TH,X + TX,dest(A) < SP(d(A)) + W(A), giving (10). 

Now we prove (11). Denote by Y the point on the 
straight line between dest(A) and dest(B) such that 
���������� + �������������, and by Z the point on the same 
line such that  �5�������� + �������������. Since (Smax * cf)> 
WS, ���������� $ "�#�  and �5�������� $
"���������������� , then ���������������� � ���������� �
��5 � �5�������� $ ��5 �"�#� �"����������������.     

Since a straight line is the shortest distance between two 
points in Euclidean space, DYZ � fp(d(A),d(B)) where 
fp(d(A),d(B)) is the length of the path that gives the shortest 
driving-time between d(A) and d(B). Since Smax is 
maximum  speed of all road segments along the shortest 
path between d(A) and d(B), we have TYZ � DT(d(A), d(B)). 
Thus: ���������������� �"�#� $ ���(�#�� (�&�� �
"��)*�&��, which is (11). 

If between every pair of intersections driving is faster 
than walking, then the lower bound of Th. 2 can be 
improved by replacing ����������  by the higher SP(A). 
Precisely: 

Theorem 3: If A and B are two trips that are shareable 
with A first, and between every pair of intersections the 
driving time is shorter than the walking time, then: 
%	�#� � ���������������� �  !"�#� $ %	�&� � ���&�
      (13) 

Proof: In this case the proof of Th. 2 can be repeated 
verbatim, except that (10) is: SP(A) – W(A) � SP(d(A)); 
and it holds for the following reason. If SP(A) – W(A) > 
SP(d(A)), then SP(A) can be shortened as follows: drive 
from H to d(A) along the shortest path (which will take less 
than SP(A) – W(A)) and then drive from d(A) to dest(A) 
(which will take less than W(A)). 

V. EVALUATION 

A. Databases  
The first database used in the evaluation of the MM 

system is the NYC taxi trip database (see[22],[23]). This 
database records over four years of taxi operations in New 
York City (NYC) and includes nearly 700 million trips. 
The database is stored in CSV format, organized by year 
and month. In each file, each row represents a single taxi 
trip described by fields such as taxi ID, timestamped origin 
and destination, travel time and distance, and passengers 
count. The database does not provide GPS sequences for a 
trip. Reference [24] provides a detailed description of the 
NYC taxi data. 

The experiment was conducted on randomly selected 
pools formed from 1.8 million trips. These trips originated 
from LaGuardia airport with destinations in NYC, during 
261 weekdays in 2013 between 10am and 10pm.  The pools 
were created based on the departure time. So, if the pool 
size is 5 minutes, the input (before merging) trips in the 
Jan. 15th, 10:00-10:05a pool are all the trips that departed 
on that date between 10:00 and 10:05, as reflected in the 
dataset. As Fig. 8 indicates, the average number of input 
trips ranges from 20 (for a 5 minute pool) to 40 (for a 10 
minute pool), assuming that 90% of the trips can be shared. 
Observe that this method of generating the pools is 
conservative in the sense that it does not model unsatisfied 
demand. More precisely, it is possible that many 
passengers faced with a taxi line have decided to, for 
example, take the bus. A less conservative approach would 
have inflated the actual demand reflected in the database to 
model this unsatisfied demand, leading to a higher number 
of trips per pool, and thus to higher savings resulting from 
ride-sharing. 

In this paper, the results presented in section D are 
based on a hundred pools randomly chosen from the above 
trip database. We observe that a hundred random pools 
yield an acceptable confidence level of the statistics to be 
presented in Section D.  For example, consider 100 random 
5-minute pools extracted for the following experimental 
setup: percentage of willingness to ride share = 90%,  Max 
Delay = 10% of the individual shortest path trip time, 
and Maximum Walk Time = 5 min (see Fig. 4). The result 
indicates that the average number of trips saved per pool is 
6.25 with a standard deviation of 5.29.  If a normal 
distribution is assumed, then there is at least 88% 
confidence level that the average number of trips saved per 
pool is not lower than 90% of the mean value.   

The second database used in the experiments is the road 
network. For creating the street network of New York City, 
the data from openstreetmap.org was used, consisting 
486,746 road links and 261,187 intersections (i.e. vertices). 

A. Metrics 
RSVP is evaluated according to the following 

performance metrics. 

167170



• Computation time. Since ride-sharing plans must be 
computed continuously as customers arrive and depart 
the virtual queue, efficient computation is important.  

• Reduction in total number of trips in RSVP. It is 
expected that trip reduction is related to a number of 
factors including the willingness to ride share by 
passengers, the pool size, maximum walking time 
tolerated, maximum total delay tolerated, and traffic 
condition (reflected by traffic speed).  We examine the 
trip savings with respect to each of those key input 
parameters in the experiment. 

B. Setup of Experiment 
The congestion fraction: For determining the 

shareability of trips A and B, travel time was assigned to 
each road segment based on the road type, its maximum 
travel-speed (e.g. 40mi/hr on an arterial road), and a 
congestion fraction cf computed as follows. Denote by cf1 
the fraction = (travel-time from the hub to dest(A) at 
maximum speed allowed by each edge)/(actual travel time 
of trip A from the hub to dest(A)). And denote by cf2 the 
fraction = travel-time from the hub to dest(B) at maximum 
speed allowed by each edge)/(actual travel time of trip B 
from the hub to dest(B)). Then the congestion fraction 
cf=(cf1+cf2)/2. In other words, cf is the average of the 
congestions reflected by trips A and B. 

Destinations: The trip destinations were matched to the 
nearest intersections on the road map, using a kd-tree based 
KNN search. Intersections from the openstreetmap data 
were computed using QGIS. For each intersection a 
collection of neighboring intersections within 10 minutes 
walking distance (at 3mi/hr) were precomputed using 
Breadth-First-Search.  

 Taxi capacity: We assume that each taxi cab has 4 
passenger seats. Therefore trip combinations with a total 
passenger count of at most four can be merged. For 
example, a trip with 2 passengers can be merged with 
another trip with 2 passengers but not with a 3-passenger 
trip.  

C. Results 

 

Fig. 4 shows the percentage of trip reduction by 
percentage of passengers’ willingness to ride share starting 
at 10%.   It is assumed the maximum walking time is 5 
minutes, pool size is in a 5-minute interval, and the 
maximum delay tolerated is 10% of the individual shortest 
path trip time.  As expected, as more passengers are willing 
to ride share, the percent trip reduction increases.   

Fig. 5 gives the percent trip reduction as a function of 
the driving speed. This speed is given as a percentage of 
the corresponding maximum speed, depending on the road 
type. So for example, 50% indicates that on a highway the 
average speed is 30mi/hr, and on an arterial road (where 
the maximum speed without traffic is 40mi/hr) is 20mi/hr. 
It is assumed here that the percent passenger willingness to 
ride share (rf) is 90%, the maximum walking time is 5 
minutes, pool size is in a 5-minute interval, and the max 
delay tolerated is 10% of the individual shortest path trip 
time.  It is interesting to see that the % trip reduction 
remains at about 28% regardless of the network driving 
speed.  In other words, RSVP will consistently deliver a 
significant trip reduction regardless of the network traffic 
condition.  That is an encouraging finding. 

Fig. 5  % trips reduction by congestion fraction 

When the average maximum delay tolerated varies 
from 5% to 20% of the travel time, percent trip reduction 
goes up from 18% to 36% accordingly (Fig. 6).  That 
should come as no surprise - as passengers are more 

Fig. 4 % trips reduction by willingness to ride share 

Fig. 6  % trips reduction by average maximum delay  

0

5

10

15

20

25

30

0 20 40 60 80 100

%
 R

ed
uc

tio
n 

in
 n

um
be

r 
of

 tr
ip

s

% Passengers willing to rideshare

WT = 5 min
Pool length = 5min
Max delay tolerated = 10%

168171



flexible with their travel time budget more trips can be 
shared and thus the total number of trips is further reduced.   

One of the important features of RSVP is the 
incorporation of walking option from the drop-off point to 
the final destination by allowing passengers to specify the 
maximum tolerable walk time to their destinations after 
drop-off.  It was hypothesized that RSVP would increase 
ride-sharing by incorporating this feature.  Fig. 7 confirms 
the hypothesis.  Moreover, when the maximum walk time 
goes from zero to a mere 3-minute bound, it results in 15% 
additional trip reduction, which is a significant reduction.  
Notice that the % trip reduction levels off after 5 minutes, 
which suggests a 5-minute walk time tolerance would be a 
good cut-off point in practice. 

Fig. 7  % trip reduction by maximum walk time  

Another interesting feature to observe is that percent 
trip reduction seemingly has little to do with the pool size 
(Fig. 8). This is a desirable feature because it implies that 
the similar ride sharing result will be obtained regardless 
of how the trips are pooled.  Therefore, in practice the pool 
size should be 6 minutes, the point at which the savings 
levels off. The reason for this is as follows. In a pool of size 
n minutes, the average wait to board is n/2 minutes. Thus, 
to minimize this wait, the pool size should be the smallest 
such that beyond it the savings is marginal. 

Fig. 8 also gives the actual numbers of trips before and 
after MatchMaking, for each pool-size.  

Fig. 8  % trip reduction by pool size 

Computation time of the MM system is investigated as 
a function of the pool size.  The MM system was 
implemented in Java, and run on a single system equipped 
with 2.5 GHz CPU and 16 GB RAM using a single thread. 
Two cases were analyzed – with and without Euclidean 
filtering.  Fig. 9 shows the result, assuming a 90% 
willingness to ride share (rf), a 5-min maximum walking 
time, and a 10% max delay tolerated.  The Euclidean 
filtering algorithm is proved to be effective in reducing the 
computation time by a factor ranging from 33% to over 
50%.  Without the Euclidean elimination algorithm, the 
computation time escalates 2.5 times when the pool size 
increases from 5 minutes to 10 minutes.   

VI. CONCLUSION 
In this paper we proposed the RSVP scheme to facilitate 

ride-sharing at transportation hubs. The scheme combines 
in a unique way three existing mechanisms: virtual queues, 
slugging, and multiple-drop-off ridesharing. The scheme 
produces pools of trips, which are then consolidated into 
ride-sharing plans by the MatchMaking (MM) system.  
Technically, the heart and novelty of the MM system is a 
combination of two components: (1) Euclidean filtering 
that uses Euclidean geometry to reduce the complexity of 
finding an optimal ride-sharing plan, and (2) the PST 
algorithm which uses a middle ground between single-
source-shortest-path and all-pairs-shortest-path.  

Then we evaluated the RSVP scheme on 100 random 
pools formed from 1.8 Million trips that originated from 
LaGuardia Airport in NYC. The results indicate that:  

(1) The trip-savings enabled by RSVP-ride-sharing 
are significant, e.g., about 25% of the trips are 
saved if about 75% of the passengers are willing to 
ride-share. This is true for a modest delay of 10% 
of the trip time, and a maximum walk of 5 minutes. 

(2) Walking is valuable in combination with multiple-
drop-off ride-sharing. For example, if passengers 
allow a 10-minutes walk, then the trips-reduction 
by ride-sharing increases from about 10% to about 
30%. Considering that at airports passengers often 
walk for 10 minutes from the gate to the curb, this 
assumption seems reasonable. 

Fig. 9  Computation time by pool size 

169172



(3) The computation time for a 6 minutes pool of trips 
is less than 1 minute. 

(4) Euclidean filtering is effective, reducing the 
computation time by 30%-50%. 

Much remains to be done in terms of future work. First, 
the optimization criteria needs to be refined to travel-time 
per vehicle rather than number of trips. Second, the sharing 
of more than two trips needs to be investigated, although 
[5] determined that the additional savings from allowing 
the sharing of 3 trips is marginal. Third, the results need to 
be compared with other hubs. Finally, the RSVP schemes 
can be reversed to traveling to the hub, rather than from it. 
In other words, instead of having a single source, the 
passengers would have a single destination, the hub. And 
they would walk to pick-up locations, rather than from 
drop-off locations. 

ACKNOWLEDGMENT 
This work was supported in part by NSF grants IIS-

1213013, IIP-1534138 and by the NURail Center, under 
grant DTRT12-G-UTC18 of the U.S. DOT. 

REFERENCES 
[1] J. Hilkevitch, “O’Hare taxi passengers, drivers often in 

holding pattern,” Chicago tribune, 12-Jul-2015. 
[Online]. Available: 
http://www.chicagotribune.com/business/breaking/chi-
taxicabs-ohare-getting-around-met-20150316-
column.html#page=1. 

[2] S. Ma and O. Wolfson, “Analysis and evaluation of the 
slugging form of ridesharing,” Proc. 21st ACM 
SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst. - 
SIGSPATIAL’13, pp. 64–73, 2013. 

[3] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler, 
“Highly scalable trip grouping for large-scale collective 
transportation systems,” in Proc. of the 11th Int. Conf. 
on Extending database technology Advances in database 
technology, 2008, p. 678. 

[4] S. Ma, Y. Zheng, and O. Wolfson, “Real-Time City-
Scale Taxi Ridesharing,” IEEE Trans. Knowl. Data 
Eng., vol. 27, pp. 1782–1795, 2015. 

[5] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. 
Strogatz, and C. Ratti, “Quantifying the benefits of 
vehicle pooling with shareability networks,” Proc. Natl. 
Acad. Sci., vol. 111, no. 37, pp. 13290–13294, 2014. 

[6] C. Tian, Y. Huang, Z. Liu, F. Bastani, and R. Jin, “Noah: 
a dynamic ridesharing system,” Proc. 2013 ACM 
SIGMOD Int. Conf. Manag. Data. ACM, pp. 985–988, 
2013. 

[7] G. L. Curry, A. De Vany, and R. M. Feldman, “A 
queueing model of airport passenger departures by taxi: 
Competition with a public transportation mode,” Transp. 
Res., vol. 12, no. 2, pp. 115–120, 1978. 

[8] A. Anwar, M. Volkov, and D. Rus, “ChangiNOW�: A 
Mobile Application for Efficient Taxi Allocation at 
Airports,” Proc. 16th Int. IEEE Annu. Conf. Intell. 
Transp. Syst. (ITSC 2013), no. Itsc, pp. 694–701, 2013. 

[9] D. C. T. da Costa and R. de Neufville, “Designing 

efficient taxi pickup operations at airports,” Transp. Res. 
Rec. J. Transp. Res. Board, vol. 2300, pp. 91–99, 2012. 

[10] M. A. Yazici, C. Kamga, and A. Singhal, “A Big Data 
Driven Model for Taxi Drivers ’ Airport Pick-up 
Decisions in New York City,” IEEE Int. Conf. Big Data, 
pp. 37–44, 2013. 

[11] G. Laporte, “Fifty Years of Vehicle Routing,” Transp. 
Sci., vol. 43, no. 4, pp. 408–416, Nov. 2009. 

[12] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, 
“Optimization for dynamic ride-sharing: A review,” 
Eur. J. Oper. Res., vol. 223, no. 2, pp. 295–303, Dec. 
2012. 

[13] R. Rudnicki, K. Anders, and M. Sester, “Rendezvous-
Problem in Local Shared-Ride Trip Planning,” in 
International Society for Photogrammetry and Remote 
Sensing Congress, 2008. 

[14] P. Czioska, D. Mattfeld, and M. Sester, “GIS-based 
Identification and Assessment of Suitable Meeting Point 
Locations for Ride-Sharing,” 19th Euro Work. Gr. 
Transp. Meet. EWGT 2016, 2016. 

[15] K. Aissat and A. Oulamara, “Meeting Locations in Real-
Time Ridesharing Problem: A Buckets Approach,” 
Oper. Res. Enterp. Syst., vol. 577, pp. 71–92, 2015. 

[16] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar, 
“The Benefits of Meeting Points in Ride-sharing 
Systems,” Transp. Res. Part B Methodol., vol. 82, pp. 
36–53, 2015. 

[17] R. A. Abbaspour and F. Samadzadegan, “An 
Evolutionary Solution for Multimodal Shortest Path 
Problem in Metropolises,” Comput. Sci. Inf. Syst., vol. 7, 
no. 4, pp. 1820–0214, 2010. 

[18] A. Lozano and G. Storchi, “Shortest viable path 
algorithm in multimodal networks,” Transp. Res. Part A 
Policy Pract., vol. 35, no. 3, pp. 225–241, 2001. 

[19] W. C. David Applegate, Ribert Bixby, Vasek Chvatal, 
“Concorde TSP solver,” 2006. . 

[20] J. Dubois-lacoste, H. H. Hoos, and T. Stützle, “On the 
Empirical Scaling Behaviour of State-of-the-art Local 
Search Algorithms for the Euclidean TSP,” Proc. 2015 
Genet. Evol. Comput. Conf. ACM, pp. 377–384, 2015. 

[21] Z. Galil, “Efficient algorithms for finding maximum 
matching in graphs,” ACM Comput. Surv., vol. 18, no. 1, 
pp. 23–38, 1986. 

[22] N. Y. C. T. & L. C. (TLC) in partnership with the N. Y. 
C. D. of I. T. and T. (DOITT), “Big Step for Big Data: 
Yellow/Green Taxi Trip Records Now Available 
Online,” 2015. 

[23] B. Donovan and D. B. Work, “New York City Taxi Trip 
Data (2010-2013),” 2014. 

[24] A. J. T. Swoboda, “New York City Taxicab 
Transportation Demand Modeling for the Analysis of 
Ridesharing and Autonomous Taxi Systems,” B.S. 
Thesis, Dep. Oper. Res. Financ. Eng. Princet. Univ., no. 
June, 2015. 

 

170173


