
A Transputer T9000 Family Based Architecture for
Parallel Database Machines*

Qiang Li
Dept. of Comput~r Engineering

Santa Clara University
Santa Clara, CA 95053

(qli@scuacc.scu.edu)

Abstract

Parallel computing is a promising way to achieve high
performance in a database system. The disk access speed
has been a well known bottleneck for database machines,
and the data intensive nature and the random commu­
nication patterns of databases make the interconnection
network in a database machine difficult to design.

This article describes the design of a highly paral­
lel, high throughput database machine based on the new
T9000 transputer family and a large number of relatively
inexpensive disks. The database machine is designed to
achieve a throughput of more than 10,000 elementary
transactions per second and a total size in the range of
terabytes. The Semantic Binary Database Model is em­
ployed by the system. Besides its logical aspects, this
model's implementation facilitates the utilization of the
parallel processing power and improves the reliability of
the system.

Keywords: Parallel database machine, Transputers,
semantic model, interconnection network, disk array.

1 Introduction

The demand for high pe.rformance database systems
increases rapidly. It is not surprise today to see the need
for a system with a throughput of tens of thousands
transactions per second and a size of terabytes. Such
a system can be used by credit card companies, for tele­
phone system control, satellite imagery, and in a massive

"Tbia ...-arch baa been aupported in part by mM R.esurch
Award srant, U.S. DOD/BMDO, and FHTIC

N aphtali Rishe
School of Computer Science

Florida International University
Miami, FL 33199
(rishen@fiu.edu)

public information retrieval center. Much effort has been
made to build database machines (15, 7, 8, 5, 9, 14).

Our design aims at a large scale database machine
with terabytes of storage space and a throughput ex­
ceeding 10,000 simple transactions per second (a good
throughput when used at one hour before a $100 million
lotto drawing.) The intention is to build a sound hard­
ware platform for a large scale database system with a
good blend of computing power, 1/0 power and inter­
processor communication.

The speed of a single disk drive is limited by the avail­
able technology, and there is not much room for the sys­
tem designers. To solve the 1/0 speed problem, one has
to use a relatively large number of disk drives so that
unrelated data can be accessed and transferred in paral­
lel. This approach has been adopted by many researchers
(4, 16, 10). The computing power required by a database
system, especially an intelligent database system, can be
obtained by using a large number of processors. The
problem is how to connect a processor farm with a disk
farm so the resources can be efficiently utilized. One ap­
proach is to line up the processors at one end and the
disk drives on the other end, and put an interconnection
network in the middle (Figure 1).

This is based on a model where eve.ry processor has
equal access to every disk drive. The data transferred in
the network is the unfiltered raw data and every piece of
data transferred from or to the disk drives must pass the
network. The load of the network is therefore very heavy.
Since the network is always the most difficult and most
expensive component of any large scale parallel machine,
this approach seems to exacerbate the burden.

- 55-

Figure 1: Processor-disk connection: option 1

Figure 2: Processor-disk connection: option 2

The approach that we are using here is to move the
processors close to the disks by attaching a processor to
each disk drive to form a processor-disk unit. The pro­
cessor should be powerful enough to deal with the basic
operations on one disk drive. Many such processor-disk
units are connected by an interconnection network as
shown in Figure 2. Any request to data operations will
be processed by the processor which is connected to the
disk drive holding the relevant data. Only those requests
which require data from several processor-disk units will
cause data being transferred through the network, and
the data is in most cases filtered . Therefore, only a small
portion of the 1/0 data flows through the interconnec­
tion network.

Using powerful processors to deal with a disk drive
can also be justified by the existence of high degree of
medium to large grain parallelism in large scale database
systems. For example, for a system requiring a high

throughput of sm~ll transactions, the degree of paral­
lelism at transaction level can be a few hundreds to a few
thousands. Or, when an exhaustive search is needed, the

search can be done at all processor-disk units in parallel.

The network and the processor-disk units can be con­

structed in many different ways. Our design presented
here utilized the latest development in Transputer sys­
tems [3] which is described briefly below.

2 The T9000 Transputer family

The T9000 transputer is the latest development by
INMOS. Although its birth has been delayed, the prin­
ciple behind the design is sound. The T9000 processor is
based on the philosophy of balancing computing power
and interprocessor communication power. The T9000
processor supports 32 bit integer operations and 64 bit
floating point operations. The processor has a peak per­
formance of 200 Mips and 25 Mfiops, the fastest sin­
gle chip processor ever been built. The price is about
$2/Mips.

Each T9000 processor has 4 100 Mbits/second full­
duplex serial links each with its own pair of DMA chan­
nels. Two T9000 processors can be directly connected
by the links without external buffers and other support­

ing circuit. Collectively, the 4 links give a T9000 pro­
cessor an interprocessor communication power of 400
Mbits/second. Hardware multiplexers are used to map
virtual channels to physical channels to facilitate inter­
process communication across processors.

To support more complicated interconnections, IN­
MOS also provides communication chip, namely Cl04,
which is a 32 x 32 crossbar switch. A pair of com­
munication channels is fully compatible to the links of
T9000. All the connections in C104 operate indepen­
dently. The connection pattern of Cl04 is similar to its
ancestor C004, but it has a very important improvement
besides the communication speed. Cl04 supports worm­

hole routing (6, 3] .

3 The Proposed Architecture

Our database machine design has the structure shown
in Figure 2. Although different configurations are possi­

ble depending on the application, the model with 1024
processor-disk units will be used for this discussion.

-56-

D XID rsr IDSD

lapUi<leaC
pucneon

Figure 3: The three-stage Clos network

3.1 The Processor-Disk Units

Each processor-disk unit consists of a T9000 processor,
a disk drive and a large memory bank. The size and
type of the disk drive depend on the application and
the configuration of the system, such as the size of the
database, the number of processor-disk units, and the
type of data access. It can be, say, a 1 Gbyte hard drive,
or an optical disk drive.

A large portion of the memory associated with a pro­
cessor serves as the cache memory of the disk drive.
Again, depending on the configuration, it can be a few
Mbytes to a larger size, say, 20 Mbytes.

One of the T9000's communication links can be used
to connect to the disk controller. The link speed is high
enough to cope with the fastest data transfer rate of disk
drives.

T9000 supports multiprogramming very well. Pro­
cesses can be easily created and the context switch is
extremely fast. T9000 has hardware support to map
virtual channels onto physical channels. Thus, a pro­
cess can communicate with another process running on
a different processor. No software layer is used. This
makes the interprocess communication across processors
convenient and efficient. This feature facilitates the im­
plementation of multiple databases on the same hard­
ware platform, each being served by their own processes
running on many processors.

Intcrooone<:tioo Nctworic

To hOlt machines or the ring nctworic

Figure 4: The system connections

3.2 The Interconnection Network

The interconnection network is a vital part of the pro­
posed database machine. It must have high bandwidth
and low latency. Many different types of networks have
been proposed and studied, and a good collection can be
found in (17). The main issue is the trade-off between
cost and performance. The C104 chip provides a sound
building block for constructing a powerful network. In
our design, 96 C104's are connected into a three-stage
Clos network (2, 1). Figure 3 shows the structure of
such network. Each box in the figure is in general an
n x m crossbar switching component (32 x 32 in our case.)
There are three columns of switches: the input switches,
the output switches, and the intermediary switches. The
links between the switches are uni-directional. The leflr
most column is the output side of the data processors;

the rightmost column is the input side of the data pro­
cessors. For convenience,

The three-stage Clos network has been selected be­
cause it can simultaneously connect many processors
without too many layers of switching components which
could result in a longer propagation time. A total of 1024
processor-disk units can be connected by the 96 switch
chips. When a larger system is needed, the chips have
to be cascaded to form a larger network.

The connections between the processors and the input
switches are static, and so are the connections from the
output switches to the processors. Thus, when proces­
sor A needs to send a packet to processor B, the input
and output switches are predetermined, but any of the
intermediary switches can be used to set up the circuit.

-57-

Control Processors

Cl04
Crossbar Switch

Cootrol Processors

Figure 5: The control network

Since the data packets are always sent from left to
right and there is no need for packet forwarding by pro­
cessors, the network is an acyclic network, i.e. there can­
not be a deadlock in the network, even though it allows
every processor to communicate to any other processor.

3.3 The System Connections

Figure 4 shows the system configuration. In general,
each '1'9000 processor has one link connected to the net­
work and one connected to the disk controller; two links
remain free. The two free links can be used for purp08e8
discussed later.

Any number of processors can be designated as the
interface processors to the host machines utilizing one of
the two free links. Since a large number of interface pro­
cessors can be used, the system can have very convenient
connections to the outside would. The model under our
consideration has 32 interface processors. The interface
nodes normally need to communicate with each other
frequently since the they have to exchange control infor­
mation such as some form of data directory, protection
and securi ty check. Therefore, an additional network is
used to connect the interface processors. The network
is simply one C104 chip as shown in Figure 5 which can
dynamically set up a circuit between any two interface
processors. To distinguish the additional network from
the primary one, we call the former the control network

Figure 6: The layers and their connections

and latter the global network. Thus, an interface proces­
sor has the choice of communicating with another inter­
face processor through the control network or through
the global network.

All the processors other than the interface processors
are linked into a ring. This is important in three aspects.

First, in contrast to the global network where con­
nection between any two nodes are treated equally, we
now introduced local connections, i.e., dedicated links
between processors. Each processor now have neighbors.
The processes on each processor can be classified into two
layers, the data layer and the service layer. The data lay­
ers of two adjacent processors are connected through a
virtual channel supported by the '1'9000 hardware, and
so are the service layers as shown in Figure 6. Since
the the communication between the neighboring proces­
sors is not intensive, each virtual channel can have an
effective full-duplex bandwidth of near 20 Mbytefs.

The data layer is responsible for the data 1/0, trans­
fer, and basic data filtering. The service layer is respon­
sible for sophisticated computing tasks. Data retrieving
and storage requests coming from the network will be
answered by the data layer while the transactions are
handled by the service layer. The service layers of a
few nearby processors in the ring can cooperate to solve
complicated computing intensive requests utilizing the
smaller grain parallelism. When a predefined paralleliz­
able task arrives (dynamic parallelism recognition is still
an very open problem), the receiving processor will par­
tition the task and send service request and data to the
neighbors for processing. The protocol between the ser­
vice layers on the neighboring processors totally depends

-58-

on the specific task and application. Further research on
this topic is being undertaken.

Secondly, the local connection between processors can
help reducing the impact of "hot spot". When a com­
munication hot spot has developed, the data can be re­
layed by the neighbors of the "hot processor" utilizing
the dedicated .channels between them. Although a sim­
ulation has shown that the network in question is not
very sensitive to the presence of hot spot under the de­
signed load, the communication hot spot detection and
avoidance is still an ongoing research in order to achieve
higher resource utilization.

The third aspect is related to the reliability of the
system. Let 's study the Clos network closely. A path
from input to the output can use any of the intermediary

switches. Therefore, a failure of the intermediary switch
is not that critical. However, when an input switch or
an output switch fails, all the processors connected to
the switch are isolated, and the entire system will most
probably have to be stopped before the situation can
be rectified. To increase the reliability of the system,
the connection of the ring is designed carefully to ensure
that two immediate neighbors in the ring are not con­
nected to the same input switch or output switch of the
Clos network. In this way, if one of the input switches
or the output switches fails, the data can be passed to
a neighbor and be relayed to the intended destination.
The system performance will degrade somewhat, but the
system can be kept alive while the faulty part is being
fixed or until a planned shut down time. If we number
the processors connected to a switch of the Clos network
from 0 to 31, and the switches in a column from 0 to
31, and we name each node on the input side of the Clos
network by a pair of numbers: (node number, switch
number), then the ring can be connected in the follow­
ing sequence:

(0,1) (0,2) (0,3) .. (0,31) (1,1) (1,2) (1,3) .. (1,31) ..
(31,1) (31,2) .. (31,31) (0,1)
It is not difficult to verify that all immediate neighbors
are connected to different switches.

Although the addition of the ring seems to have
clouded the dean direct access from processor to proces­
sor, its existence can be made transparent by the net­
work software layer. When a message is sent, whether
or not the ring network is used is decided by the routing

software according to the availability of the channels and
load of the channels.

4 The database model and its implemen­
tation

In choosing the database model we required two prop­
erties:

1. It should be a model that reflects the state-of­
art of database.

2. Its implementation should facilitate parallel
processing.

The database model chosen for the proposed database
computer is the Semantic Binary Model (11]. The se­

mantic binary database model represents information of
an application's world as a collection of elementary facts
of two types: unary facts categorizing objects of the real
world and binary facts establishing relationships of var­
ious kinds between pairs of objects. The purpose of the
model is to provide a simple natural data-independent
flexible and non-redundant specification of information
emphasizing its semantic aspects.

In our implementation (12, 13], the basic entity of the
database is the binary relation between two data items
in the form:

Item1 <rei> Item2

Its reversed form, which in some, but not all, cases is

Item2 <rel>- 1 Item1

is also stored in the database as implicit indexing infor­
mation. The entire database, including all of the implicit
indexing information, is represented by one logical co­
herent file partitioned into segments of sufficiently small
size, so that they may be stored on small disks. The
number of processor-disk formations is sufficient to ac­
commodate the totality of segments. Since a relation
and its reversal are both stored in the database, the
implementation duplicates each data item exactly once.
The amount of duplication is not as serious as it sounds.
Since very little indexing information is needed for the
implementation, almost all the index trees existing in the
traditional implementations are eliminated. Therefore,

-59-

the relative overhead is small (13] More importantly, the
duplication of data is not simply making a mirror copy,
rather, the duplication is in a different logical format
'!hich enables us to gain some significant advantages for
a parallel system as discussed below.

4.1 Localization of information

An important property of the implementation is that for
atomic operations, the related data can be found in a
contiguous segment of the file, which localizes each sim­
ple query to one or two particular processor-disk units in

most cases. The localization of the information reduces
the interprocessor communication load, which is crucial
in a large scale multiprocessor system.

4.2 Randomizing the data references

One more interesting result of the implementation is that
it serves to randomize the data distribution to a certain
extent. Objects are assigned random identifiers. The
system sorts all the relationships globally, the logically
coherent data items is not necessarily stored in a con­
secutive disk space. For example, what would be a rela­
tional table and stored in a consecutive space may now
be scattered across a number of disks. When a logi­
cal entity in the user's view is accessed heavily creating
a logical hot spot, it does not necessarily create a hot
spot at the hardware level. This sounds contradictory
to what we claimed earlier that related data is stored in
consecutive disk locations. It can be best explained by
an example. Suppose, in the relational model we have a
table of student records, and the primary key is the social
security number. Such a table is normally stored in rela­
tional database implementations in a consecutive space,
and all of the references to the table have to access the
same storage area (same disk.) In our implementation,
the table is represented by many pairs of binary rela­
tionships, and stored in separated areas. For example,
student A's record may be stored far away from student
B's record, and references made to them respectively will
not compete for t~e same disk area (disk drives). But a
list of student names can still be found in a consecutive
disk space owing to the duplicated data.

4.3 Improving system reliability

When a large array of relatively inexpensive disk drives
are used, the reliability of the disk array becomes a seri­
ous problem. A good analysis of this problem is given by
(4]. Since the disks can be divided into two partitions,
one for the normal relations and another for the reversed
relations, the duplicated data copied can be stored on
different disks. Thus when a disk drive fails, the data
can be reconstructed from the other disks. Hence the
reliability of the database system is improved. Assum­
ing the MTTF (mean time to failure) of a single disk
is 30,000 hours which is typical for an inexpensive disk
drive, the MTTF for 1000 disk drives is 30 hours, clearly
not an acceptable rate. At such a failure frequency, no
any other recovery can work very effectively.

With our implementation, the probability of the sys­
tem failing at any given moment can be calculated as
follows.

We have two independent subsystems, one for the nor­
mal relations and another for the reversed relations. Let
8 be the MTTF of each subsystem. Let L < < 8 be the
mean time to repair. Then the probability in any mo­
ment in time (in the stable state) that the entire system
is down, i.e. both subsytems have failed within L before
the current time is:

(Lfs) 2

p= 1+2•L/s+(L/8)2

A simulation has been run to predict the MTTF of
the entire system. It is assumed that a pool of backup
disks is reserved and one of them can be switched into
the system electronically when a disk fails. With the as­
sumption that MTTF of each individual disk is 30,000
hours, and the system has 1024 disks, 512 for each sub­
system, and L = 0.5 hour, the MTTF for the entire
system is about 3420 hours. MTTF calculated by the
formula is 3434 hours, closely matching the simulation
result.

5 Performance evaluation

A simulation program was implemented to evaluate
the performance of the interconnection network. To sim­
plify the simulation, the data size is always assumed to
be a multiple of 32 bytes. Figure 7 depicts the average

-60-

~:tfcctivc Handwidth (111hytc/•)

6

5

4

3

2

0
0 200 400 600 800

'l'hr<'mghpnt (Mbytr./•)
1000 1200

Figure 7: Effective bandwidth vs. communication
throughput

effective bandwidth between any two processors under
different system communication throughput. When the
system is lightly loaded, the effective bandwidth can be
as high as 5 Mbyte/s. When the system throughput is
between 200 Mbyte/s to 1 Gbyte/s, the effective band­
width varies between 2 to 1 Mbytefs.

Assuming on the average that each simple query re­
quires 10 Kbyte data transfer between processors (since
most of the data can be processed locally), then the re­
quired c_ommunication throughput is 100 Mbyte/s with
a system throughput of 10,000 simple queries per sec­
ond. According to Figure 7, the effective bandwidth
is about 2.5 Mbyte/s. Thus, assuming all the commu­
nication is done serially which is the worst case, the
total latency caused by the interconnection network is

10000/(2.5 x 106
) = 4ms, which is small comparing to

other time factors involved in solving a query.

Figure 7 shows that the interconnection network can
have a good effective bandwidth even when the through­
put exceeds 1 Gbyte/s, i.e. there is a large communica­
tion reserve. This is desirable for reducing the impact of
bursts of large data size and presence of hot spots.

Figure 8 shows the effective bandwidth when a hot
spot exists in the system. The hot spot is simulated by
letting one processor receive 10 times as many messages
as any other processor receives. Curve A is the average
bandwidth between any two processors, and Curve B is

~:ffr.cth·c Handwidth (Mhytc/•)

6

5

4

3

2

200 400
Throughput (Mhytr.f•)

600 800

Figure 8: Effective bandwidth vs. communication
throughput with hot spot

the average bandwidth between any processor and the
"hot" processor. At the throughput range between 100

Mbyte/s and 200 Mbytejs, the system performance is
not sensitive to the presence of the hot spot.

Since the interconnection network has a large capacity
reserve, the system throughput depends mainly on the
throughput of each processor-disk unit.

Many performance aspects can not be realistically ad­
dressed until a relatively large size prototype is built,
and specific applications are considered. It is important
to note that the collectively 200,000 MIPS of peak raw
computing power possessed by the system allows it to
do a lot more than just answering queries. It has a great
potential to handle the logical reasoning, and other com­
putation intensive jobs based on the stored data.

6 Other Implementation Issues

It is obvious that data distribution and implementa­
tion of software is more complicated on the proposed
system. The design is still very sketch. A number of
nodes can be designated as the interface to the outside
world. Those nodes receive queries and initiate the pro­
cess of solving queries. There are two steps involved in
solving a query.

First, the interface nodes collectively maintain the di­
rectories of data allocation. The interface nodes analyze

-61-

an incoming query and decide which node in the sys­

tem is most qualified to process the query. The selected
node is called the leading node the query. The deci­

sion is largely based on data distribution, and also the

load of each individual node. Once selected, the inter­

face node sends the query together with the information
about data allocation to the leading node.

Based on the information it receives, the leading node

of a query acts as a master, and decompose the query
into subqueries or data requests. The subqueries and

data requests are then sent to other slave nodes. The

final result is assembled at the leading node and sent to
an interface node.

The speed of the selection process by the interface

nodes is yet to be evaluated. The throughput that can

be handled by the interface nodes and the reliability of
the interface nodes are critical issues and need to be

investigated. As mentioned earlier, the interface nodes
should be logically separated from other nodes and have

additional connections between them and additional disk

drives attached.

7 Conclusion

An architectural design aiming at a high performance

database machine has been presented. The system can
have a size of terabytes and a throughput of more than
10,000 simple transactions per second with available

technology.

There are still a number of issues to be studied. The

topics of reliability, such as data backup and system
crash recovery, need further research. The performance

related issues, such as load balancing, hot spot avoid­
ance, and system behavior when hot spot is present,

need further study. Many detailed algorithms need to
be developed.

References

[1) V.E. Benes. On rearrangeable three-stage connecting
networks. The Bell System Technical Journal, pages
1481- 1492, Aug 1962.

[2] C. Clos. A study of nonblocking switching networks.
The Bell System Technical Journal, pages 406-424, Mar
1953.

[3) INMOS Corporation. The T9000 Transputer Product
Overview Manual. INMOS Corporation, 1991.

[4) G. Gibson &t R.H. Katz D.A. Patterson. A case for re­
dundant arrays of inexpensive disks (raid). In Proceed­
ing• of SIGMOD, June 1988.

(5) D.J. DeWitt. DIRECT-a multiprocessor organization
for supporting relational database management systems.
IEEE Transactions on Computers, C-28:395-406, Jun
1979.

[6) C. Seitz et al. Wormhole chip project report. Technical
report, Winter 1985.

(7) T. Fei, C.K. Baru, and S.Y.W. Su. SM3: A dynami­
cally partitionable multicomputer system with switch­
able main memory modules. In Proc. of the Interna­
tional Conference on Computer Data Engineering, pages
42-49, Los Angeles, Apr 1984.

(8) J .R. Goodman and C.H. Sequin. Hypertree: A multi­
processor interconnection topology. IEEE Tranaactions
on Computers, C-30(12):923-933, 1981.

(9) M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Rela­
tional algebra machine GRACE. In RIMS Symposia on
Software Science and Engineering, pages 191-212, 1983.

(10) Q. Li. The Architecture and Related Control Problems of
a Transputer Based Highly Parallel Database Machine.
PhD thesis, School of Computer Science, Florida In­
ternational University, Miami, Florida 33199, December
1989.

(11) N. Rishe. Database Design Fundamental$: A Structured
Introduction to Databases and a Structured Database
Design Methodology. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1988. 436 pages, hardbound. ISBN 0-13-
196791-6.

(12) N. Rishe. Efficient organization of semantic database. In
W. Litwin and H.-J. Sebek, editors, Foundation of Data
Oryanization and Algorithms, pages 114-127. Springer­
Verlag Lecture Notes in Computer Science, 1989. vol.
367.

(13) N. Rishe. A file structure for semantic databases. In­
formation System&, 1991. accepted, to appear in Vol
16.

(14) J.A. Rudolph. A production implementation of an as­
sociative array processor STARAN. In Proc. of the Fall
Joint Computer Conference, pages 229-241, Las Vegas,
Nev., Nov 1972.

(15) S. Su. Database Computer&. McGraw-Hill Book Com­
pany, New York, N.Y., 1988.

(16) J. Wilkes. The Dat&Mesh research project. In Proceed­
ings of Transputing'91, April 1991.

[17) C.l. Wu and T.y. Feng. Tutorial: Interconnection Net­
work& for Parallel and Distributed Proceuing. IEEE
Computer Society Press, 1984.

-62-

