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Abstract 

Parallel computing is a promising way to achieve high 
performance in a database system. The disk access speed 
has been a well known bottleneck for database machines, 
and the data intensive nature and the random commu­
nication patterns of databases make the interconnection 
network in a database machine difficult to design. 

This article describes the design of a highly paral­
lel, high throughput database machine based on the new 
T9000 transputer family and a large number of relatively 
inexpensive disks. The database machine is designed to 
achieve a throughput of more than 10,000 elementary 
transactions per second and a total size in the range of 
terabytes. The Semantic Binary Database Model is em­
ployed by the system. Besides its logical aspects, this 
model's implementation facilitates the utilization of the 
parallel processing power and improves the reliability of 
the system. 

Keywords: Parallel database machine, Transputers, 
semantic model, interconnection network, disk array. 

1 Introduction 

The demand for high pe.rformance database systems 
increases rapidly. It is not surprise today to see the need 
for a system with a throughput of tens of thousands 
transactions per second and a size of terabytes. Such 
a system can be used by credit card companies, for tele­
phone system control, satellite imagery, and in a massive 
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public information retrieval center. Much effort has been 
made to build database machines (15, 7, 8, 5, 9, 14). 

Our design aims at a large scale database machine 
with terabytes of storage space and a throughput ex­
ceeding 10,000 simple transactions per second (a good 
throughput when used at one hour before a $100 million 
lotto drawing.) The intention is to build a sound hard­
ware platform for a large scale database system with a 
good blend of computing power, 1/0 power and inter­
processor communication. 

The speed of a single disk drive is limited by the avail­
able technology, and there is not much room for the sys­
tem designers. To solve the 1/0 speed problem, one has 
to use a relatively large number of disk drives so that 
unrelated data can be accessed and transferred in paral­
lel. This approach has been adopted by many researchers 
(4, 16, 10). The computing power required by a database 
system, especially an intelligent database system, can be 
obtained by using a large number of processors. The 
problem is how to connect a processor farm with a disk 
farm so the resources can be efficiently utilized. One ap­
proach is to line up the processors at one end and the 
disk drives on the other end, and put an interconnection 
network in the middle (Figure 1). 

This is based on a model where eve.ry processor has 
equal access to every disk drive. The data transferred in 
the network is the unfiltered raw data and every piece of 
data transferred from or to the disk drives must pass the 
network. The load of the network is therefore very heavy. 
Since the network is always the most difficult and most 
expensive component of any large scale parallel machine, 
this approach seems to exacerbate the burden. 

- 55-



Figure 1: Processor-disk connection: option 1 

Figure 2: Processor-disk connection: option 2 

The approach that we are using here is to move the 
processors close to the disks by attaching a processor to 
each disk drive to form a processor-disk unit. The pro­
cessor should be powerful enough to deal with the basic 
operations on one disk drive. Many such processor-disk 
units are connected by an interconnection network as 
shown in Figure 2. Any request to data operations will 
be processed by the processor which is connected to the 
disk drive holding the relevant data. Only those requests 
which require data from several processor-disk units will 
cause data being transferred through the network, and 
the data is in most cases filtered . Therefore, only a small 
portion of the 1/0 data flows through the interconnec­
tion network. 

Using powerful processors to deal with a disk drive 
can also be justified by the existence of high degree of 
medium to large grain parallelism in large scale database 
systems. For example, for a system requiring a high 

throughput of sm~ll transactions, the degree of paral­
lelism at transaction level can be a few hundreds to a few 
thousands. Or, when an exhaustive search is needed, the 

search can be done at all processor-disk units in parallel. 

The network and the processor-disk units can be con­

structed in many different ways. Our design presented 
here utilized the latest development in Transputer sys­
tems [3] which is described briefly below. 

2 The T9000 Transputer family 

The T9000 transputer is the latest development by 
INMOS. Although its birth has been delayed, the prin­
ciple behind the design is sound. The T9000 processor is 
based on the philosophy of balancing computing power 
and interprocessor communication power. The T9000 
processor supports 32 bit integer operations and 64 bit 
floating point operations. The processor has a peak per­
formance of 200 Mips and 25 Mfiops, the fastest sin­
gle chip processor ever been built. The price is about 
$2/Mips. 

Each T9000 processor has 4 100 Mbits/second full­
duplex serial links each with its own pair of DMA chan­
nels. Two T9000 processors can be directly connected 
by the links without external buffers and other support­

ing circuit. Collectively, the 4 links give a T9000 pro­
cessor an interprocessor communication power of 400 
Mbits/second. Hardware multiplexers are used to map 
virtual channels to physical channels to facilitate inter­
process communication across processors. 

To support more complicated interconnections, IN­
MOS also provides communication chip, namely Cl04, 
which is a 32 x 32 crossbar switch. A pair of com­
munication channels is fully compatible to the links of 
T9000. All the connections in C104 operate indepen­
dently. The connection pattern of Cl04 is similar to its 
ancestor C004, but it has a very important improvement 
besides the communication speed. Cl04 supports worm­

hole routing (6, 3] . 

3 The Proposed Architecture 

Our database machine design has the structure shown 
in Figure 2. Although different configurations are possi­

ble depending on the application, the model with 1024 
processor-disk units will be used for this discussion. 
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Figure 3: The three-stage Clos network 

3.1 The Processor-Disk Units 

Each processor-disk unit consists of a T9000 processor, 
a disk drive and a large memory bank. The size and 
type of the disk drive depend on the application and 
the configuration of the system, such as the size of the 
database, the number of processor-disk units, and the 
type of data access. It can be, say, a 1 Gbyte hard drive, 
or an optical disk drive. 

A large portion of the memory associated with a pro­
cessor serves as the cache memory of the disk drive. 
Again, depending on the configuration, it can be a few 
Mbytes to a larger size, say, 20 Mbytes. 

One of the T9000's communication links can be used 
to connect to the disk controller. The link speed is high 
enough to cope with the fastest data transfer rate of disk 
drives. 

T9000 supports multiprogramming very well. Pro­
cesses can be easily created and the context switch is 
extremely fast. T9000 has hardware support to map 
virtual channels onto physical channels. Thus, a pro­
cess can communicate with another process running on 
a different processor. No software layer is used. This 
makes the interprocess communication across processors 
convenient and efficient. This feature facilitates the im­
plementation of multiple databases on the same hard­
ware platform, each being served by their own processes 
running on many processors. 
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Figure 4: The system connections 

3.2 The Interconnection Network 

The interconnection network is a vital part of the pro­
posed database machine. It must have high bandwidth 
and low latency. Many different types of networks have 
been proposed and studied, and a good collection can be 
found in (17). The main issue is the trade-off between 
cost and performance. The C104 chip provides a sound 
building block for constructing a powerful network. In 
our design, 96 C104's are connected into a three-stage 
Clos network (2, 1). Figure 3 shows the structure of 
such network. Each box in the figure is in general an 
n x m crossbar switching component (32 x 32 in our case.) 
There are three columns of switches: the input switches, 
the output switches, and the intermediary switches. The 
links between the switches are uni-directional. The leflr 
most column is the output side of the data processors; 

the rightmost column is the input side of the data pro­
cessors. For convenience, 

The three-stage Clos network has been selected be­
cause it can simultaneously connect many processors 
without too many layers of switching components which 
could result in a longer propagation time. A total of 1024 
processor-disk units can be connected by the 96 switch 
chips. When a larger system is needed, the chips have 
to be cascaded to form a larger network. 

The connections between the processors and the input 
switches are static, and so are the connections from the 
output switches to the processors. Thus, when proces­
sor A needs to send a packet to processor B, the input 
and output switches are predetermined, but any of the 
intermediary switches can be used to set up the circuit. 
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Figure 5: The control network 

Since the data packets are always sent from left to 
right and there is no need for packet forwarding by pro­
cessors, the network is an acyclic network, i.e. there can­
not be a deadlock in the network, even though it allows 
every processor to communicate to any other processor. 

3.3 The System Connections 

Figure 4 shows the system configuration. In general, 
each '1'9000 processor has one link connected to the net­
work and one connected to the disk controller; two links 
remain free. The two free links can be used for purp08e8 
discussed later. 

Any number of processors can be designated as the 
interface processors to the host machines utilizing one of 
the two free links. Since a large number of interface pro­
cessors can be used, the system can have very convenient 
connections to the outside would. The model under our 
consideration has 32 interface processors. The interface 
nodes normally need to communicate with each other 
frequently since the they have to exchange control infor­
mation such as some form of data directory, protection 
and securi ty check. Therefore, an additional network is 
used to connect the interface processors. The network 
is simply one C104 chip as shown in Figure 5 which can 
dynamically set up a circuit between any two interface 
processors. To distinguish the additional network from 
the primary one, we call the former the control network 

Figure 6: The layers and their connections 

and latter the global network. Thus, an interface proces­
sor has the choice of communicating with another inter­
face processor through the control network or through 
the global network. 

All the processors other than the interface processors 
are linked into a ring. This is important in three aspects. 

First, in contrast to the global network where con­
nection between any two nodes are treated equally, we 
now introduced local connections, i.e., dedicated links 
between processors. Each processor now have neighbors. 
The processes on each processor can be classified into two 
layers, the data layer and the service layer. The data lay­
ers of two adjacent processors are connected through a 
virtual channel supported by the '1'9000 hardware, and 
so are the service layers as shown in Figure 6. Since 
the the communication between the neighboring proces­
sors is not intensive, each virtual channel can have an 
effective full-duplex bandwidth of near 20 Mbytefs. 

The data layer is responsible for the data 1/0, trans­
fer, and basic data filtering. The service layer is respon­
sible for sophisticated computing tasks. Data retrieving 
and storage requests coming from the network will be 
answered by the data layer while the transactions are 
handled by the service layer. The service layers of a 
few nearby processors in the ring can cooperate to solve 
complicated computing intensive requests utilizing the 
smaller grain parallelism. When a predefined paralleliz­
able task arrives (dynamic parallelism recognition is still 
an very open problem), the receiving processor will par­
tition the task and send service request and data to the 
neighbors for processing. The protocol between the ser­
vice layers on the neighboring processors totally depends 
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on the specific task and application. Further research on 
this topic is being undertaken. 

Secondly, the local connection between processors can 
help reducing the impact of "hot spot". When a com­
munication hot spot has developed, the data can be re­
layed by the neighbors of the "hot processor" utilizing 
the dedicated .channels between them. Although a sim­
ulation has shown that the network in question is not 
very sensitive to the presence of hot spot under the de­
signed load, the communication hot spot detection and 
avoidance is still an ongoing research in order to achieve 
higher resource utilization. 

The third aspect is related to the reliability of the 
system. Let 's study the Clos network closely. A path 
from input to the output can use any of the intermediary 

switches. Therefore, a failure of the intermediary switch 
is not that critical. However, when an input switch or 
an output switch fails, all the processors connected to 
the switch are isolated, and the entire system will most 
probably have to be stopped before the situation can 
be rectified. To increase the reliability of the system, 
the connection of the ring is designed carefully to ensure 
that two immediate neighbors in the ring are not con­
nected to the same input switch or output switch of the 
Clos network. In this way, if one of the input switches 
or the output switches fails, the data can be passed to 
a neighbor and be relayed to the intended destination. 
The system performance will degrade somewhat, but the 
system can be kept alive while the faulty part is being 
fixed or until a planned shut down time. If we number 
the processors connected to a switch of the Clos network 
from 0 to 31, and the switches in a column from 0 to 
31, and we name each node on the input side of the Clos 
network by a pair of numbers: (node number, switch 
number), then the ring can be connected in the follow­
ing sequence: 

(0,1) (0,2) (0,3) .. (0,31) (1,1) (1,2) (1,3) .. (1,31) .. 
(31,1) (31,2) .. (31,31) (0,1) 
It is not difficult to verify that all immediate neighbors 
are connected to different switches. 

Although the addition of the ring seems to have 
clouded the dean direct access from processor to proces­
sor, its existence can be made transparent by the net­
work software layer. When a message is sent, whether 
or not the ring network is used is decided by the routing 

software according to the availability of the channels and 
load of the channels. 

4 The database model and its implemen­
tation 

In choosing the database model we required two prop­
erties: 

1. It should be a model that reflects the state-of­
art of database. 

2. Its implementation should facilitate parallel 
processing. 

The database model chosen for the proposed database 
computer is the Semantic Binary Model (11]. The se­

mantic binary database model represents information of 
an application's world as a collection of elementary facts 
of two types: unary facts categorizing objects of the real 
world and binary facts establishing relationships of var­
ious kinds between pairs of objects. The purpose of the 
model is to provide a simple natural data-independent 
flexible and non-redundant specification of information 
emphasizing its semantic aspects. 

In our implementation (12, 13], the basic entity of the 
database is the binary relation between two data items 
in the form: 

Item1 <rei> Item2 

Its reversed form, which in some, but not all, cases is 

Item2 <rel>- 1 Item1 

is also stored in the database as implicit indexing infor­
mation. The entire database, including all of the implicit 
indexing information, is represented by one logical co­
herent file partitioned into segments of sufficiently small 
size, so that they may be stored on small disks. The 
number of processor-disk formations is sufficient to ac­
commodate the totality of segments. Since a relation 
and its reversal are both stored in the database, the 
implementation duplicates each data item exactly once. 
The amount of duplication is not as serious as it sounds. 
Since very little indexing information is needed for the 
implementation, almost all the index trees existing in the 
traditional implementations are eliminated. Therefore, 
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the relative overhead is small (13] More importantly, the 
duplication of data is not simply making a mirror copy, 
rather, the duplication is in a different logical format 
'!hich enables us to gain some significant advantages for 
a parallel system as discussed below. 

4.1 Localization of information 

An important property of the implementation is that for 
atomic operations, the related data can be found in a 
contiguous segment of the file, which localizes each sim­
ple query to one or two particular processor-disk units in 

most cases. The localization of the information reduces 
the interprocessor communication load, which is crucial 
in a large scale multiprocessor system. 

4.2 Randomizing the data references 

One more interesting result of the implementation is that 
it serves to randomize the data distribution to a certain 
extent. Objects are assigned random identifiers. The 
system sorts all the relationships globally, the logically 
coherent data items is not necessarily stored in a con­
secutive disk space. For example, what would be a rela­
tional table and stored in a consecutive space may now 
be scattered across a number of disks. When a logi­
cal entity in the user's view is accessed heavily creating 
a logical hot spot, it does not necessarily create a hot 
spot at the hardware level. This sounds contradictory 
to what we claimed earlier that related data is stored in 
consecutive disk locations. It can be best explained by 
an example. Suppose, in the relational model we have a 
table of student records, and the primary key is the social 
security number. Such a table is normally stored in rela­
tional database implementations in a consecutive space, 
and all of the references to the table have to access the 
same storage area (same disk.) In our implementation, 
the table is represented by many pairs of binary rela­
tionships, and stored in separated areas. For example, 
student A's record may be stored far away from student 
B's record, and references made to them respectively will 
not compete for t~e same disk area (disk drives). But a 
list of student names can still be found in a consecutive 
disk space owing to the duplicated data. 

4.3 Improving system reliability 

When a large array of relatively inexpensive disk drives 
are used, the reliability of the disk array becomes a seri­
ous problem. A good analysis of this problem is given by 
(4]. Since the disks can be divided into two partitions, 
one for the normal relations and another for the reversed 
relations, the duplicated data copied can be stored on 
different disks. Thus when a disk drive fails, the data 
can be reconstructed from the other disks. Hence the 
reliability of the database system is improved. Assum­
ing the MTTF (mean time to failure) of a single disk 
is 30,000 hours which is typical for an inexpensive disk 
drive, the MTTF for 1000 disk drives is 30 hours, clearly 
not an acceptable rate. At such a failure frequency, no 
any other recovery can work very effectively. 

With our implementation, the probability of the sys­
tem failing at any given moment can be calculated as 
follows. 

We have two independent subsystems, one for the nor­
mal relations and another for the reversed relations. Let 
8 be the MTTF of each subsystem. Let L < < 8 be the 
mean time to repair. Then the probability in any mo­
ment in time (in the stable state) that the entire system 
is down, i.e. both subsytems have failed within L before 
the current time is: 

(Lfs) 2 

p= 1+2•L/s+(L/8)2 

A simulation has been run to predict the MTTF of 
the entire system. It is assumed that a pool of backup 
disks is reserved and one of them can be switched into 
the system electronically when a disk fails. With the as­
sumption that MTTF of each individual disk is 30,000 
hours, and the system has 1024 disks, 512 for each sub­
system, and L = 0.5 hour, the MTTF for the entire 
system is about 3420 hours. MTTF calculated by the 
formula is 3434 hours, closely matching the simulation 
result. 

5 Performance evaluation 

A simulation program was implemented to evaluate 
the performance of the interconnection network. To sim­
plify the simulation, the data size is always assumed to 
be a multiple of 32 bytes. Figure 7 depicts the average 
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Figure 7: Effective bandwidth vs. communication 
throughput 

effective bandwidth between any two processors under 
different system communication throughput. When the 
system is lightly loaded, the effective bandwidth can be 
as high as 5 Mbyte/s. When the system throughput is 
between 200 Mbyte/s to 1 Gbyte/s, the effective band­
width varies between 2 to 1 Mbytefs. 

Assuming on the average that each simple query re­
quires 10 Kbyte data transfer between processors (since 
most of the data can be processed locally), then the re­
quired c_ommunication throughput is 100 Mbyte/s with 
a system throughput of 10,000 simple queries per sec­
ond. According to Figure 7, the effective bandwidth 
is about 2.5 Mbyte/s. Thus, assuming all the commu­
nication is done serially which is the worst case, the 
total latency caused by the interconnection network is 

10000/(2.5 x 106
) = 4ms, which is small comparing to 

other time factors involved in solving a query. 

Figure 7 shows that the interconnection network can 
have a good effective bandwidth even when the through­
put exceeds 1 Gbyte/s, i.e. there is a large communica­
tion reserve. This is desirable for reducing the impact of 
bursts of large data size and presence of hot spots. 

Figure 8 shows the effective bandwidth when a hot 
spot exists in the system. The hot spot is simulated by 
letting one processor receive 10 times as many messages 
as any other processor receives. Curve A is the average 
bandwidth between any two processors, and Curve B is 
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Figure 8: Effective bandwidth vs. communication 
throughput with hot spot 

the average bandwidth between any processor and the 
"hot" processor. At the throughput range between 100 

Mbyte/s and 200 Mbytejs, the system performance is 
not sensitive to the presence of the hot spot. 

Since the interconnection network has a large capacity 
reserve, the system throughput depends mainly on the 
throughput of each processor-disk unit. 

Many performance aspects can not be realistically ad­
dressed until a relatively large size prototype is built, 
and specific applications are considered. It is important 
to note that the collectively 200,000 MIPS of peak raw 
computing power possessed by the system allows it to 
do a lot more than just answering queries. It has a great 
potential to handle the logical reasoning, and other com­
putation intensive jobs based on the stored data. 

6 Other Implementation Issues 

It is obvious that data distribution and implementa­
tion of software is more complicated on the proposed 
system. The design is still very sketch. A number of 
nodes can be designated as the interface to the outside 
world. Those nodes receive queries and initiate the pro­
cess of solving queries. There are two steps involved in 
solving a query. 

First, the interface nodes collectively maintain the di­
rectories of data allocation. The interface nodes analyze 
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an incoming query and decide which node in the sys­

tem is most qualified to process the query. The selected 
node is called the leading node the query. The deci­

sion is largely based on data distribution, and also the 

load of each individual node. Once selected, the inter­

face node sends the query together with the information 
about data allocation to the leading node. 

Based on the information it receives, the leading node 

of a query acts as a master, and decompose the query 
into subqueries or data requests. The subqueries and 

data requests are then sent to other slave nodes. The 

final result is assembled at the leading node and sent to 
an interface node. 

The speed of the selection process by the interface 

nodes is yet to be evaluated. The throughput that can 

be handled by the interface nodes and the reliability of 
the interface nodes are critical issues and need to be 

investigated. As mentioned earlier, the interface nodes 
should be logically separated from other nodes and have 

additional connections between them and additional disk 

drives attached. 

7 Conclusion 

An architectural design aiming at a high performance 

database machine has been presented. The system can 
have a size of terabytes and a throughput of more than 
10,000 simple transactions per second with available 

technology. 

There are still a number of issues to be studied. The 

topics of reliability, such as data backup and system 
crash recovery, need further research. The performance 

related issues, such as load balancing, hot spot avoid­
ance, and system behavior when hot spot is present, 

need further study. Many detailed algorithms need to 
be developed. 
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