

ero -H e-

PREFACE
'John L. Gustafson, Program Chairman

The Fourth Conference on Hypercubes, Concurrent Computers, and Applications {HCCA4) was held March 6- 8, 1989, in
Monterey, California. Over 600 people attended, and about 250 papers were presented. in this fast-growing a~ ea. The number of
institutions actively pursuing distributed-memory computing· has grown from . a~o~t 1.0 in 1983 to over 100 presently.

The corresponding growth in the size of this conference led to the need to refefee submitted papers by abstract. Previous HCCA
conferences have had a 100% acceptance rate, but only 70% of the submitted papers were accepted. for presentation at HCCA4.
Originality and relevance to distributed-memory computing were the main filtering criteria. ·

ORGANIZATION OF THE PROCEEDINGS

These Proceedings are organized along the same lines as the Conference: the Introduction by Geoffrey Fox, followed by three
major divisions by topic : Hardware, Software , and Applications. Within each major division are more specific topics such as Fluid
Dynamics or Neural Networks. Within each specific topic, papers are ordered alphabetically by first author, except for Mini
Symposia. To preserve the organization of the Mini-Symposia, papers are ordered ln the sequence in which they were given .

The distinction between both major and specific topics is frequently difficult. Should Matrix Algebra be placed in Software or in
Applications? If a paper deals with the performance of a graphical POE solver on a novel architecture, should it be classified
under Performance Evaluation, POE Solvers, Input/Output, or New Hardware? The reader is cautioned that the investigation of
any subject within this Proceedings, such as Fast Fourier Transforms, might require: perusal of several scattered sections.

HARDWARE

The Hardware section includes Decomposition Methods, Fault Tolerance, Input/Output, New Hardware, Performance Evalua
tion , Routing and Topologies, and Shared Memory. Many authors who certainly do not consider themselves electrical engineers
or computer designers might be surprised to find their papers classified under "Hardware." The guiding rule for putting a paper
in this section was that it depended on a knowledge of a specific underlying. computer architecture , whether that architecture
was the subject of the paper or not. Papers on Decomposition Methods or Routing and Topologies, for example, usually deal with
optimizing the mapping of application topologies to hardware interconnection topologies. Fault'Tolerance can be done with
either hardware or software, but in all cases the faults being tolerated are in the hardware, not the software.

Perhaps the majority of the papers at HCCA discuss performance in some respect, but as a means to understanding the value of
some approach. The Performance Evaluation section includes those papers which centered on the problem of evaluating
computer performance.

The Shared Memory category deserves some explanation. While its existence might seem contradictory in a conference dedi
cated to distributed memory, several researchers have endeavored to provide a shared memory software environment on
hypercubes and similar computers. The HCCA focus does not include computers with hardware for shared memory, since many
other forums exist for exploring that approach to parallelism.

SOFTWARE

The Software section includes Algorithms, Databases, Languages, Libraries and Tools , Load Balancing, Matrix Algebra, MCC
Minisymposium, NP-Hard Problems, and Parallel Environments. Although some of these topics seem more like Applications
{Databases especially} , papers in Software tend to focus on the underlying [ssues {~ernel operations, operating systems, user
interfaces, techniques for efficiency) rather than complete solutions for a particular:application .

The Parallel Environments was the single largest category of papers; having shown th.at hypercubes and similar computers work
and for some things work very well , many people are now turning their energ'ies to making them easier to program and use . The
conflict between performance via novelty and ease-of-use via compatibility is probably more intense now than at any time in the
history of computing.

APPLICATIONS

Dozens of applications were presented at HCCA4, adding strength to the view that " special purpose" might not be an accurate
adjective for distributed-memory computers any more . Among the clearest successes have been Fluid Dynamics, Image Proc
essing, Neural Networks & Vision, POE Solvers, and Structural Analysis . The Databases papers in Software imply that hyper
cubes might soon be ready to expand from scientific applications to mainstream business applications such as transaction
processing.

Where three or more papers on a particular application were accepted, a separate session was organized on that application at
HCCA4. Other papers on applications were simply categorized as "Other Appl ications," and that same subdivision exists in the
Proceedings.

To echo the sentiments of Geoffrey Fox in his Introduction, this is the first year that hypercubes have really made a difference.
They are being used to make scientific discoveries that could not be made by other means; they are being used for production
computing at Fortune 500 companies; third-party vendors are committing to distributed-memory versions of major software
packages. In general, distributed-memory computers are starting to achieve their long-promised higher performance and supe
rior price/performance compared to conventional computers. After several false starts , parallel computing is finally blooming.

-John Gustafson

Ill

The Program Committee wishes to extend their appreciation to
the following sponsors for their financial support of the Conference:

U.S. Department of Energy, Applied
Mathematical Sciences Program
Strategic Defense Initiative
Organization, Office of Innovative
Science and Technology

Joint Tactical Fusion Program Office
U.S. Air Force, Electronic Systems
Division
Air Force Office of Scientific Research
NASA Ames Research Center

And to all the members of the Organizing Committee who devoted
their precious time in the planning and implementation of the technical
program:

Don Austin
Department of Energy

Tony Chan

Michael Heath
Oak Ridge National Laboratory

Paul Messina
University of California
at Los Angeles

California Institute of Technology

Gary Montry
Terry Cole Sandia National Laboratories
Jet Propulsion Laboratory Ed Oliver
Erik DeBenedictis
ATT/Bell Labs

Geoffrey Fox

Air Force Weapons Lab

Quentin Stout
University of Michigan

California Institute of Technology

And to Sandia National Laboratories, the Host Institution for this
Conference, whose support and guidance were most valued .

The Program Committee:

Gil Weigand
General Chairman
Sandia National Laboratories
John Gustafson
Program Chairman
Sandia National Laboratories
Bill Hickey
Conference Administration

ii ' • f

A Hypercube Control Network for a Cir~uit~Switching
.Interprocessor Network

Qiang Li and Naphtali Rishe

School of Computer Science
Florida International University-

The State University of Florida at Miami.
Miami, Florida 33199 ·

Abstract

This paper presents a hypercube network of control pro
cessors employed to control a passive circuit-switching net
work, namely the three-stage Clos network[2] which is
used to interconnect a large number of process.ors in a
highly parallel distributed-memory system. The hyper
cube network relaxes the bottleneck caused by using a
single control processor in both the speed of processing the
circuit setup requests and the communication capacity be
tween the control processors and others processors . . The
combination of the hypercube network and the circuit
switching network is a component of the implementation
of a massively parallel database machine described in [4].

Keywor ds: Parallel architectures, Distributed mem
ory, Inter-processor network, Circuit-switching, Parallel
control of circuit-switching .

1. Introduction

We are developing a massively parallel database ma
chine, LSDM[4] . LSDM is a distributed memory and sec
ondary storage system and is to consist of thousands of
processing units. Each processing unit consists of a pro
cessor, a memory module and a secondary storage device .
A hybrid of the packet-switching network and the circuit
switching network is developed to connect the processors.
The main characteristic of the network is that it shows a
fast response to the short messages and a high bandwidti,
to the long messages . In the authors' opinion, this is a
promising network architecture for large scale distributed
memory systems .

A part of the inter-processor network is a circuit
switching network, namely a three stage CLos network [2].
In this network, a dedicated path can be set up simul
taneously for each pair of processors . Since the circuit
switching network is a passive network, a controller is
needed to setup the circuits upon request . The speed of
the controller imposes a limit on the performance of the
network. This paper presents a control processor network
consisting of 32 processors, instead of one controller, con
nected into a 5-dimensional hypercube. The circuit setup

This research has b een supported in part by a grant fro m the
f lorida High Technology and Industry Council.

151

requests will. arrive ·at one of the 32 processors depend
ing on where the requests are originated. A processor re
ceiving a request will handle the request with cooperation
of the other processors. In this way, the requests arrive
through 32 independent channels and are processed in par
allel by 32 processors . Thus the controller bottleneck is
significantly relaxed. To clarify the discussion, we call the
processors in the hypercube network the "control proces
sors" and the other processors the "data processors" .

2. The Circuit:-Switching Network

Figure 1 ·shows the structure of the three-stage Clos
network . Each box in the figure is a crossbar switching
component . If a switching component has n input lines
and m output lines, we say that it is an n x m switch.
There are three columns of switches, the input switches,
the output switches and the intermediary switches. The
links between the switches are one-directional. The left-

Output side of
data processors

pi
p2

input
c-links

nxm

Input
switches

input
s-links

rxr

Intermediacy
switches

output
s-links

Input side of
data processors

mxn

output
switches

output
c-link

pi
p2

Figure 1: The three-stage Clos network

most column is the output side of the data processors and
the rightmost column is the input side of the data proces
sors. For convenience, we call the links between the data
processors and the input switches the "input c-links"; the
links between the data processors and the output switches

the "output c-links"; the links between the input switches
and the intermediary switches the "input s-links" and the
links between the intermediary switches the "output s
links" .

The input switches are n x m switches; the output
switches are m X n switches; the interltlcdiary switches
are r x r switches. Such a network is denoted N(m, n, r) .
There are two important properties of an N(m, n, r) net
work proven in [1,2]:

1. If m ~ n then for every partitioning of the set
of all processors into pairs there exist connection
configurations where all the pairs talk simultane
ously, i.e., there is no bottleneck in the switches.

2. When m ~ 2n - 1, the network is non-blocking ,
meaning that there is always a path available be
tween any idle input c-link and any idle output c
link, independently of the connection sequence,
i.e., there is no need to prearrange a special con
nection configuration of ProtJerty (1) above in
order to avoid bottleneck .

At the hardware level we are con cerned with, the switch
ing components are normally passive, i.e ., the connections
have to be made by an outside controller .

We assume that the circuits between data processors
are always bidirectional. Thus, whenever a path from a
data processor i to a data processor j ·is set up , a path
from j to i is also set .

When a data processor orig needs to communicate with
another data processor dest, the former will send a circuit
set up request to a controller. The controller will make the
necessary connections and then inform orig. Then orig
will send its data through the dedicated circuit to desf .
Once the circuit is setup, the bandwidth of 'the circuit
can be fully utilized ~nd very large data ~ets can be sent
efficiently.

Assume that x data processorsnre connected to the net
work and m ~ n where m, n and r are. the parameters of
N(m, n, r) . Then, x/2 pairs of processors can communi
cate simultaneously. If one circuit has bandwidth of b bits
per second, the total bandwidth of the network is b x (x/2)
hits per second.

3. The Hypercube Control Network

The circuit controller of the circuit-switchi~g network
is responsible for selecting an available route for setting
up the circuit, keeping track of.the current status of the
network, maintaining a queue of the cpnnecti~n requests
unable to be satisfied for the tirpe being, etc. The circuit
controller is also responsible for sending hardware signals
to adually set up the ci rcuit.

The speed of the circuit controller imposes a limit on
circuit setup time and circuit setup ra'te, i.e. 1 the number
of circuits that can be setup per time unit . The problem
comes in two aspects. First, the large amount of requests
coming from the data processors have to be converged
to the controller, which presents a communication bot
tleneck. Second , the processing speed of the controllers

152

Circuits'
Control
Processors
(hnodes)

Input
c-links

r-----------------------------,
1 Hypercube Network 1

I

Figure 2: The connections between the hnodes and other
parts of the network

must be high enough to handle the flow of the requests.
To alleviate t.he problem, a group of control processors are
employed for the task. The circuit setup requests will ar
rive at one of the control processors depending on where
the requests have originated. A control processor receiv
ing a request will process the request with cooperation
of the other control processors. In this way, the requests
arrive through many independent channels and are pro
cessed in parallel by many processors. Thus the controller
bottlen eck can be significantly relaxed .

As mentioned above, the control processors are linked
into a hypercube network . Each node of the hypercube is
called an hnode. Figure 2 shows the relationship between
the hnodes and the other components of the network .

Each triangle in the figure represents a group of data
processors and they are so connected that the circuit setup
requests are converged to the top of the triangle. We call
each triangle a tree . The switches in the figure are logi
cal switches, i .e. , each switch can be composed of a group
of switching components. For simplici ty, we treat each
switch in the figure as one component . Each switch is
connected to a set of data processors . We say that. a
switch is connected to a tree if the switch is connected
to th e data processors in the tree . Each hnode controls
the switch connected to its tree and one or more interme
diary switches . For convenience, an intermediary switch
was drawn together with each pair of input and output
switches. In practice , the number of input and output
S\\'ilch pairs and the number of intermediary switches are
often not the same. Further, only a few inp.ut s-links and
output s-links were drawn .

Each hnode keeps the following information about every
switch under its control :

• Input Connection Status:
A vector, called "input vector", indicating which in-

Circuit
setup
Request
(I)

D

D D

Connection
order (3b)

Output
c-link

Figure 3: A process of setting-up a circuit

put s-links connected to the input switch are avail
able.

A list of the current connections between the input
c-links and the input s-links connected to the input
switch.

• Output Connection Status:
A vector, called the "output vector", indicating which
output s-links connected to the output switch are
available.

A list of the current connections between the output
c-links and the output s-links connected to the output
switch.

• Intermediary Connection Status :
A matrix, called the "relay m~trix" , indicating th t?
current connections between the input s-links and the
output s-links on the intermediary switches.

We now describe the process of setting-up a ci rcuit . To
simplify our discussion, let us assume the circuit-switching
network is a non-blocking network , i.e. , as long as two
processors to be connected are not previously connected
to someone else , there is a path available between them.

Suppose the circuit-setup request is originated by a data
processor, orig, and the destination data processor is dest .
Let h0 be the root of the tree that orig is in , and hd be
the root of the tree that dest is in . Note that orig , h0 ,

hd and dest are all defined in terms of a particular circui t
setup request. Figure 3 shows a flow diagram of the pro
cess of setting-up a circuit . The messages flow between
the hnodes for the purpose of setting-up circuit have the
general form :

153

M~ssage-type _______ ----- --- ---- -

Message Destination (hnode number)
- MeSs';georiginai~i("h~~cie_ "iJ..uffib~rT -

. . . . other information

The content of the message after the third field depends
on the type of messages and will be described individually.
The algorithm is described by the following steps.

1. Starting from orig , a circuit-setup request mes
sage will- be sent up the tree until it reaches h 0 .

2. Upon receiving a circuit-setup request, ho will
first determine the position of hd in the hyper
cube; then' send a "connection request" to ht~.
The connection request has the following format:

Message- type (CR)
Message Destination (ho)
Message Originator (hd)
Destination data processor number (dest) !;put ve'c't~i -;{ iio___________ --

3. Upon receiving the connection request, the des
tination hnode hd will first determine if the c
link to the destination data processor is already
occupied, i.e ., the destination data processor is
talking to ,someone else.

(a) If the c-link is busy, a busy message is
sent to h0 , and a waiting record hold
ing the number of h0 will be inserted
into the waiting list of the desired c-link .
Upon receiving a busy message, ho will
put the circuit setup request into a wait
ing list until hd calls back.

(b) If the c-link is free, hd will check the in
put vector of ho against its own output
vector to find an intermediary switch
which has free links to connect h0 to
hd . Since we assume that the network
is a non-blocking network, a intermedi
ary switch will be found. Let ms in-

. ~cate the intermediary switch selected
and hm indicate the hnode which con
trols ms. A "connection order" is sent
to hm . The connection order has the
following format :

Message-type (CO)
Message Destination (hm)
Message Originator (hd)
Switch-Number (ms)

- ~-eq~~-_?-~~~~~r ho __ _
Tn t he meantime, hardware signals a rc sent to
the output switch to connect the output c-link
and the output s-link connected to ms.

4. Upon recei'ving the connection order, hm will
send hardware signals toms to connect the input
s-link and the out put s-link, and send an "ack
message" to h0 indicating that the requested cir
cuit is setup . T he ack message has the format:

• I

-M~ssage-type (A.cR)
_1!essage Destinat~on ho

Message Originator hm

Switch Number (ms)
Request Desti~ation (hd) l

5. Having received the ack message, h0 will send a
signal to the input switch to connect the input
c-link to the input s-link which links to the in
termediary switch indicated by ms. A "ready
message" is then sent to the originating data
processor orig.

6. Upon receiving the acknowledgement from the
control processor network, the data processor
will send its data through the circuit, which ef
fectively initiates the communications. There
after, the two connected data processors can
communicate in the way they choose.

When the data processor orig finishes using the circuit,
a release circuit control message is sent to h0 , and h0 will
in turn send a release message to hd and hm. After all
the involved hnodes updated their connection status, the
circuit use cycle is completed.

When a circuit is being released, the hnode which is in
charge of the output c-link of the circuit will check the
waiting list on the c-link. If there are requests waiting,
the first request will be removed and a "call back" will
be sent to the hnode which originated the request. The
hnode will start the above process from step 2 as the h0 •

In some situations, a problem can occur in the above
algorithm. When an hnode sends a connection request to
hd before a previous connection request is acknowledged,
its input vector sent with the connection request could
be outdated since the previous counection request could
have already selected an intermediary switch but has not
informed the originating hnode yet. This can result in a
situation where an hnode receives a connection order to
connect an input s-link to an output s-link and finds that
the input s-link has already been connected to someone
else. VVe call this a "race condition" .

Although there are several approaches to avoid the race
conditions, we think the following is the best in terms of
maximizing parallelism, preserving first-comes-first-served
order, etc. In this approach , a connection request will be
sent to the hd' of the last outstanding connection reques•.
(connection request which has· not yet been acknowledged)
unless there is no outstanding connection request, in which
case, the connection request will be sent directly to the
correct hd. Figure 4 shows an example of the :process .
Connection request 1 is sent when there is no outstanding
connection request from h0 • Connection request 2 is sent.
before connection request 1 is acknowleqged. The input
vector of h0 held in connection request 2 is modified by hdt
to indicate that a intermediary switch has been selected . If
connection request 3 is sent before connection request 2 is
acknowledged, the same modification will be made to the
request as that made to connection request 2. In this way,
the connection requests will always have an up-to-date in-

--

I h d31 -M-odifi-. -te_d_ I h d21 --M-odifi-.-~-ed-- [9
Connection Connection
Request 3 Request 2

Figure 4: Illustration of the "race condition" elimination
algorithm

put vector of h0 . In addition, the connection requests sent
by each hnode needs a sequence number in order to avoid
confusion when connection request 3 arrives at hd2 before
the modified connection request 2 arrives. Although the
traffic in the network is slightly increased since some con
nection requests do not travel in their shortest path, the
overhead is under control and is statistically small.

If the circuit-switching network is not a non-blocking
network, the situation will be more complicated. In step
3(b) of the algorithm, there is a possibility that there is
no available path found. If that is the case, a "blocking
message" will be sent to h0 and a record indicating that
h 0 is blocked will be inserted into the block-list of hd.
Whenever a circuit is released, hd will send a message
containing its output vector, and the message will travel
according to the sequence of the hnodes in the block-list
so that the hnodes will send their request again.

The experimental system that we are currently building
consists of a number of INMOS transputers[3]. The con
figuration under investigation has 1024 processors. The
circuit-switching network is a three-stage Clos network,
N(32, 32, 32), consisting of 96 !NMOS C004 dynamic re
configurahle switches (32 x 32).

Acknowledgement

154

The authors gratefully acknowledge the advice of David
Barton, Nagarajan Prabhakaran and Doron Tal.

References

[1] V .E . Benes . On rearrangeable three-stage connecting net·
works . The Bell SyJtem Technical Journal, 1481 - 1492, Aug
1962.

[2] C. C'los . A study of nonblocking switching networks . The
Bell SyJtem Technical Journal, 406- 424, Mar 1953.

[3] I Nl\ l I >S Corpora t.ion . TranJputer Architecture R('ference
A!an.ual. !NMOS Corporation, Bristol, U.K., 1986.

[4] N. Rishe, D. Tal, and Q. Li. Architecture for a massively
parallel database machine . MicroproceHing and Micropro·
gramming. The Euromicro Journal, 1988. In press .

