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Abstract: Disaster mitigation and management is one of the most chal-

lenging examples of decision making under uncertain, missing, and 

sketchy, information. Even in the extreme cases where the nature of the 

disaster is known, preparedness plans are in place, and analysis, evalua-

tion, and simulations of the disaster management procedures have been 

performed, the amount and magnitude of “surprises” that accompany the 

real disaster pose an enormous demand. In the more severe cases, where 

the entire disaster is an unpredicted event, the disaster management and 

response system might fast run into a chaotic state. Hence, the key for 

improving disaster preparedness and mitigation capabilities is employing 

sound techniques for data collection, information processing, and deci-

sion making under uncertainty. Fuzzy logic based techniques are some of 

the most promising approaches for disaster mitigation. The advantage of 

the fuzzy-based approach is that it enables keeping account on events 

with perceived low possibility of occurrence via low fuzzy member-

ship/truth-values and updating these values as information is accumulat-

ed or changed. Several fuzzy logic based algorithms can be deployed in 

the data collection, accumulation, and retention stage, in the information 

processing phase, and in the decision making process. In this chapter a 

comprehensive assessment of fuzzy techniques for disaster mitigation is 

presented. The use of fuzzy logic as a possible tool for disaster manage-

ment is investigated and the strengths and weaknesses of several fuzzy 

techniques are evaluated. In addition to classical fuzzy techniques, the 

use of incremental fuzzy clustering in the context of complex and high or-

der fuzzy logic system is evaluated. 
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1. Introduction 

Disaster mitigation and management (DMM) is one of the most challeng-

ing examples of decision making under uncertain, missing, and sketchy, 

information. Even in the extreme cases where the nature of the disaster is 

known, preparedness plans are in place, and analysis, evaluation, and 

simulations of the disaster management procedures have been per-

formed, the amount and magnitude of “surprises” that accompany the 

real disaster pose an enormous demand. In the more severe cases, where 

the entire disaster is an unpredicted event, the disaster management and 

response system might fast run into a chaotic state. Hence, the key for 

improving disaster preparedness and mitigation capabilities is employing 

sound techniques for data collection, information processing, and deci-

sion making under uncertainty.  

Consequently, we must develop a formal set of tools to deal with the in-

creasing number of potential disasters around the world on one hand and 

information dominance on the other hand. Moreover, we need a formal 

understanding of the relations between uncertainty, which is immersed in 

DMM programs, and fuzzy logic. Just as the formal notions of computer 

science have immensely benefited software and hardware design, a for-

mal treatment of DMM programs should also lend to significant advances 
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in the way that these programs and systems are developed and designed 

in the future. 

Recently, the academic community and other agencies have presented 

spurring growth in the field of data mining in big-data systems. These ad-

vances are beginning to find their way into DMM programs and are rede-

fining the way we address potential disaster and mitigate the effects of 

disasters. Nevertheless, academia, industry, and governments need to 

engage as a unified entity to advance new technologies as well as applied 

established technologies in preparation and response to the specific 

emerging problems of disasters. Since research and development is sel-

dom conducted in national isolation it must include international collabo-

ration and global activities. This will bring many countries and scientists 

together in order to enjoy broad access to all leading edge technologies 

and tools to be used for prevention and remedies of disasters.  

Analysis of disasters shows three types of challenges, the first is the ability 

to predict the occurrence of disasters, the second is the need to produce 

a preparedness plan, and the third is the actual real time response activi-

ties related to providing remedies for a currently occurring disaster. In-

spired by the metaphor of black swan coined by Taleb [1,2] we show that 

every disaster falls into the category of a gray level swan (with black swan 

being a special case of gray level swan). Furthermore, we show that each 

of the three challenges involves dealing with uncertainty and can be ad-

dressed via fuzzy logic based tools and techniques. 

Experience shows that swans come in different shades of gray, spawning 

the range from black-to-white. There is no need to expand on white 

swans. Those are adorable animals and under the Taleb metaphor, they 

represent pleasant events, highly predictable pleasant events, or pleasant 

surprises. Our collective knowledge, however, tells us that white swans 

are rare. Moreover, sometimes white swans change abruptly without ad-

vanced notice into black or gray swans. The black swans are the other ex-

treme. They represent completely unpredictable highly adverse events 

(disasters). Again, common experience shows that black swans are rare. 
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This is due to two reasons: 1) there is almost always some information 

about the upcoming black swan. This is evident from the term “connect-

ing the dots,” which refers to the fact that information about disasters 

might be available; but, our ability to process this information is limited. 

The second is related to the authors’ personal observation that often 

there is some amount of “good news” that accompanies any type of “bad 

news.” Following these observation we classify all the swans as gray level 

swans; where the level of gray is related to the amount of surprise and 

the severity of the disastrous event represented by the swan. We further 

elaborate on gray swans in section 2. In section 3, we review methods for 

improving our ability to identify and “bleach” gray swans using fuzzy logic-

based tools.  

Predicting the encounter with gray swans is an important component of 

DMM. It can enable early setting of a mitigation plan. Nevertheless, the 

fact that a disaster (gray swan) is somewhat predictable does not com-

pletely reduce the amount of surprise that accompany the actual occur-

rence of the disaster. Hence, any mitigation plan; that is, a set of proce-

dures compiled in order to address the adverse effects of disasters, 

should be flexible enough to handle additional surprises. We refer to 

these surprises as second generation swans. Finally, the real time ramifi-

cation program is the actual set of procedures enacted and executed as 

the disaster occurs. There are two preconditions for successful remedy of 

disaster affect. First, the leadership of the authorities who have to at-

tempt following the original mitigation plan as close as possible while in-

stilling a sense of trust and calmness in the people that experience the 

disaster and the mitigation provider teams. Second, and as a part of their 

leadership traits, the authorities must possess the ability to adapt their 

remedy procedures to the dynamics of the disaster; potentially providing 

effective improvisations. Again, this relates to the notion of second gen-

eration gray swans which are secondary disastrous events that evolve 

from the main disaster. A simple example for such swans is events of loot-

ing and violence that might accompany a major disaster. For this end, fast 

automatic assessment of the dynamics is paramount. Again, numerous 
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tools including fuzzy logic based tools can assist the leaders in getting a 

good grasp on the disaster dynamics. A related notion is the notion of un-

known unknowns (dark black swans) and known unknowns (gray swans).  

Fuzzy logic based techniques are some of the most promising approaches 

for disaster mitigation. The advantage of the fuzzy-based approach is that 

it enables keeping account on events with perceived low possibility of oc-

currence via low fuzzy membership/truth-values and updating these val-

ues as information is accumulated or changed. Several fuzzy logic based 

algorithms can be deployed in the data collection, accumulation, and re-

tention stage, in the information processing phase, and in the decision 

making process. In this chapter a comprehensive assessment of fuzzy 

techniques for disaster mitigation is presented. The use of fuzzy logic as a 

possible tool for disaster management is investigated and the strengths 

and weaknesses of several fuzzy techniques are evaluated. In addition to 

classical fuzzy techniques, the use of incremental fuzzy clustering in the 

context of complex and high order fuzzy logic system is evaluated. 

The rest of the chapter elaborates on the unknown unknowns (that is, 

black swans) and known unknowns (i.e., gray swans) their relation to 

DMM and uncertainty which can be addressed via fuzzy logic based tools. 

This is elaborated in section 2. Section 3, provides an overview of several 

fuzzy logic based tools for dealing with the uncertainty of the two sorts of 

unknowns and section 4 provides brief conclusions as well as proposals 

for future enhancements of this research. 

2. Uncertainty in Disaster Mitigation and Management 

Disasters occur with different degrees of unpredictability and severity 

which is manifested in two main facets. First, the actual occurrence of the 

disaster might be difficult (potentially impossible) to predict. Second, re-

gardless of the level predictability of the disaster, it is very likely that the 

disaster will be accompanied by secondary effects. Hence, disasters are a 

major source of “surprise” and uncertainty and their mitigation and man-
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agement requires sound automatic and intelligent handling of uncertain-

ty. Often, the stakeholders of DMM programs are classifying the unpre-

dictability of disasters as two types of unknowns: unknown unknowns and 

known unknowns.  

2.1 Unknown Unknowns and Known Unknowns 

In his excellent books [1,2], Nassim Nicholas Taleb describes the following 

features of black swan events: 

1. The black swan is an outlier; lying outside of the space of our regular 

expectations.  

2. It has very low predictability and it carries an extremely adverse im-

pact  

3. The unknown component of the event is far more relevant than the 

known component. 

4. Finally, we can explain, de facto, the event and through those expla-

nations make it predictable in retrospect.  

In this sense, the black swan represents a class of problems that can be 

referred to as the “unknown unknowns.” However, a thorough investiga-

tion of many of the events that are widely considered as black swans, e.g., 

the September 11, 2001 attack in NYC, shows that there was available in-

formation concerning the attack; yet, this information did not affect the 

decision making and response prior to the attack. 

This suggests that the term black swan is a bit too extreme and one 

should consider using the term gray swan. A gray swan represents an un-

likely event that can be anticipated and carries an extremely adverse im-

pact. In this respect the gray swans represent a two dimensional spec-

trum of information. The first dimension represents the predictability of 

the event where black swans are highly unpredictable and white swans 

are the norm. The second dimension represents the amount of adverse 

outcome embedded in the event; with black swans representing the most 
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adverse outcomes. Consequently, the black swan is a special case of a 

gray swan. The following is a partial list of well-known gray swans each of 

which has a different degree of surprise as well as different degree of se-

verity. 

1. Bangladeshi factory collapse; Iceland volcano eruption  

2. Arab Spring - a seemingly white swan that spawns a gray swan that 

spawns a gray swan that spawns a gray swan 

3. Civil war in Syria 

4. Fukushima - tsunami followed by nuclear radiation and risk of melt-

down of nuclear facilities in the area.  

5. 9/11 NYC attack followed by the collapse of the Twins 

6. Y2K (was this a wolf-wolf-wolf ignited by grid?)  

7. Financial Markets (1987, 2008), Madoff 

8. 1998 Long-Term Capital Management 

9. Yom Kippur War 

10.December 7, 1941 - Pearl Harbor 

11.Lincoln, Kennedy, Sadat, and Rabin assassinations 

One type of gray swans relates to a set of events that can be consid-

ered as known unknowns. For example, a hurricane occurring in Florida 

during the hurricane season should not be considered as a part of the set 

of unknown unknowns. It should not surprise the responsible authorities. 

Moreover, often, there is a span of a few days between the identification 

of the hurricane and the actual landfall. Regardless, even a predictable 

hurricane land-fall carries numerous secondary disastrous events that are 

hard to predict.  

We refer to these secondary events as second generation gray swans. 

Second generation swans are generated and/or detected while the disas-

ter is in effect. A gray swan might (and according to the Murphy lows is 

likely to) spawn additional gray swans. Generally, second generation 

swans evolve late and fast. Hence, they introduce a more challenging de-

tection problem and require specialized identification tools such as dy-

namic clustering.  
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2.2 Preparedness and Real Time Ramification 

Following the discussion above, disaster mitigation and management has 

two key components. The first is referred to as preparedness. In prepar-

edness, authorities consider as many known unknowns as possible, and 

compile procedures for early prediction, detection, and alert of disasters 

as well as sound remedy procedures for these disasters. The second com-

ponent of DMM is referred to as real time remedies. 

Considering real time remedies, there is no recipe (algorithm) for success. 

One can note that leadership is paramount and trying to adhere to a set 

of “best practices” which have been set ahead of time and used in train-

ing and ramification exercises can help reducing cost and risk. Neverthe-

less, a great amount of ability to improvise, rapidly change plans as dic-

tated by changing circumstances, and significant amount of flexibility is 

required.  

Even in the extreme cases where the nature of the disaster is known, 

preparedness plans are in place, and analysis, evaluation, and simulations 

of the disaster management procedures have been performed, the 

amount and magnitude of “surprises” that accompany the real disaster 

pose an enormous demand. Detecting relatively slow evolving [first gen-

eration] gray swans before the disaster occurs and relatively fast evolving 

second generation gray swans requires an adequate set of uncertainty 

management tools. In addition, existing swans might (are likely to) spawn 

unanticipated second generation swans. The collapse of the Twins in 9/11 

is an example of a second generation gray swan.  

 Fuzzy logic is one of the suggested tools that can help creating a better 

understanding of DMM tools including, but no limited to intelligent robot-

ics, learning and reasoning, language analysis and understanding, and da-

ta mining. While NATO continues to lead a strong technical agenda in 



9 

DMM technologies, academia and industry must assume a preeminent 

position in driving a variety of leading-edge technologies and tools in or-

der to address and mitigate disasters. We believe that the role of our re-

search in fuzzy logic and uncertainty management in achieving these 

goals is critical for producing a successful DMM programs. 

This emerging field must therefore drive a novel set of research directions 

for the USA and NATO assisting the scientific community and the private 

sector to develop a science and tools for anti-terror management. 

3. Tools for Predictions and Evaluations of Fuzzy Events 

Fuzzy logic based techniques are some of the most promising approaches 

for disaster mitigation. The advantage of the fuzzy-based approach is that 

it enables keeping account on events with perceived low possibility of oc-

currence via low fuzzy membership/truth-values and updating these val-

ues as information is accumulated or changed. Several fuzzy logic based 

algorithms can be deployed in the data collection, accumulation, and re-

tention stage, in the information processing phase, and in the decision 

making process. Therefore, in this section we describe several possible 

fuzzy tools to try and predict disasters and cope with evolving disasters 

via sound DMM programs. We consider the following fuzzy logic based 

tools: 

1 Fuzzy Switching Mechanisms 

2 Fuzzy Expected Value 

3 Fuzzy Relational Data Bases, Fuzzy Data-Mining and Fuzzy so-

cial Network Architectures (FSNA) 

4 Complex and Multidimensional Fuzzy Sets, Logic, and Systems 

5 Neuro-Fuzzy-Based Logic, and Systems  

6 Dynamic and Incremental Fuzzy Clustering 
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3.1. Making Decisions with no Data 

As an example for this idea we will use the fuzzy treatment of the transi-

ent behavior of a switching system and its static hazards [3]. Perhaps the 

major reason for the ineffectiveness of classical techniques in dealing 

with static hazard and obtaining a logical explanation of the existence of 

static hazard lies in their failure to come to grips with the issue of fuzzi-

ness. This is due to the fact that the hazardous variable implies impreci-

sion in the binary system, which does not stem from randomness; but, 

from a lack of sharp transition between members in the class of input 

states. Intuitively, fuzziness is a type of imprecision which stems from a 

grouping of elements into classes that do not have sharply defined 

boundaries - that is, in which there is no sharp transition from member-

ship to non-membership. Thus, the transition of a state has a fuzzy behav-

ior during the transition time, since this is a member in an ordered set of 

operations, some of which are fuzzy in nature. 

Any fuzzy-valued switching function can be expressed in disjunctive and 

conjunctive normal forms, in a similar way to two-valued switching func-

tions. As before, fuzzy-valued switching functions over   variables can be 

represented by the mapping               . We define a V-fuzzy func-

tion as a fuzzy function      such that      is a binary function for every 

binary n-dimensional vector  . It is clear that a V-fuzzy function   induces 

a binary function   such that                determined by 

          for every binary n-dimensional vector  . 

 

If the B-fuzzy function   describes the complete behavior of a binary 

combinational system, its steady-state behavior is represented by  , the 

binary function induced by  . Let      be an n-dimensional V-fuzzy func-

tion, and let   and   be adjacent binary n-dimensional vectors. The vector 

   

 
 is a static hazard of   iff                

 
 . 
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If            ,    

 
 is a 1-hazard. If            ,    

 
 is a 0-

hazard. If   is B-fuzzy and    

 
 is a static hazard, then      

 
  has a perfect 

fuzzy value, that is,      

 
         . Consider the static hazard as a mal-

function represented by an actual or potential deviation from the intend-

ed behavior of the system. We can detect all static hazards of the V-fuzzy 

function      by considering the following extension of Shannon normal 

form. Let    ̅ ,  ̅=(  ,   , ...,   ), be a fuzzy function and denote the vec-

tor 

(  ,   ,          ,...,   ) by   . 

By successive applications of the rules of fuzzy algebra, the function      

may be expanded about, say,    as follows: 

           
        ̅    

         ̅    
          

  , 

where   ,   ,   , and    are fuzzy functions. It is clear that the same ex-

pansion holds when the fuzzy functions are replaced by B-fuzzy functions 

of the same dimension. Let   and   be two adjacent n-dimensional binary 

vectors that differ only in their  th component. Treating    as a perfect 

fuzzy variable during transition time implies that    

 
is a 1-hazard of   iff 

            and      

 
        . We show that the above condi-

tions for the vector    

 
 to be 1-hazard yield the following result. 

Theorem 1 ([3]): The vector    

 
 is a 1-hazard of the B-fuzzy function      

given above iff the binary vector    is a solution of the following set of 

Boolean equations: 

  (                   (                      (  )  . 

 

Proof: 

State 1:      and   ̅    imply   (   )    (      . 
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State 2:      and   ̅    imply   (  )    (     .  

Transition state:           [which implies   ̅       ], and thus: 

       {   [  ,   (  )],    [  ̅,   (  )],    [  ,  ̅,   (  )],   (       . 

It is clear from the transition state that   (    cannot be equal to one, and 

thus:   (     ,           (       (      . 

Several items must be pointed out. The system is not a fuzzy system. It is 

a Boolean system. The modeling of the system as a fuzzy system, due to 

the lack of knowledge regarding the behavior of    during the transition 

provided us with a tool to make decisions (regarding the Boolean values 

of    ,    and   ) with no data whatsoever regarding   . Thus, we were 

able to make non-fuzzy decisions in a deterministic environment with no 

data. The interesting question is whether or not we can apply this idea to 

DMM programs. 

3.2. Fuzzy Expectations 

Ordinarily, imprecision and indeterminacy are considered to be statistical, 

random characteristics and are taken into account by the methods of 

probability theory. In real situations, a frequent source of imprecision is 

not only the presence of random variables, but the impossibility, in prin-

ciple, of operating with exact data as a result of the complexity of the sys-

tem, or the imprecision of the constraints and objectives. At the same 

time, classes of objects that do not have clear boundaries appear in the 

problems; the imprecision of such classes is expressed in the possibility 

that an element not only belongs or does not belong to a certain class, 

but that intermediate grades of membership are also possible. The mem-

bership grade is subjective; although it is natural to assign a lower mem-

bership grade to an event that have a lower probability of occurrence. 

The fact that the assignment of a membership function of a fuzzy set is 

“non-statistical” does not mean that we cannot use probability distribu-
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tion functions in assigning membership functions. As a matter of fact, a 

careful examination of the variables of fuzzy sets reveals that they may be 

classified into two types: statistical and non-statistical. 

Definition 1 ([3]): Let   be a Borel field ( -algebra) of subsets of the real 

line  . A set function      defined on   is called a fuzzy measure if it has 

the following properties: 

1. µ(Φ)=0  (  is the empty set); 

2.       ; 

3. If         with    , then          ; 

4. If            is a monotone sequence, then 

   
   

[          
   

   
     . 

Clearly,      ; also, if      and            is a monotonic se-

quence, then 
   

   
      . In the above definition, (1) and (2) mean 

that the fuzzy measure is bounded and nonnegative, (3) means mono-

tonicity (in a similar way to finite additive measures used in probability), 

and (4) means continuity. It should be noted that if   is a finite set, then 

the continuity requirement can be deleted.         is called a fuzzy 

measure space;      is the fuzzy measure of      . The fuzzy measure   

is defined on subsets of the real line. Clearly,          is a non-

increasing, real-valued function of T when   is the membership function 

of set  . Throughout our discussion, we use    to represent           

   and       to represent          , assuming that the set   is well 

specified. Let               and              . The function    

is called a B-measurable function if              . Definition 2 de-

fines the fuzzy expected value (   ) of    when         . Extension of 

this definition when                 is presented later. 
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Definition 2 ([3]): Let    be a  -measurable function such that 

        . The fuzzy expected value (   ) of    over a set  , with re-

spect to the measure     , is defined as 
   

                    }, where 

              . Now,                    is a function of the 

threshold T. The actual calculation of         then consists of finding 

the intersection of the curves        . The intersection of the two 

curves will be at a value    , so that                . It should 

be noted that when dealing with the        where        , we should 

not use a fuzzy measure in the evaluation but rather a function of the 

fuzzy measure,   , which transforms   under the same transformation 

that   and   undergo to   and   , respectively. In general the     has 

the promise and the potential to be used as a very powerful tool in devel-

oping DMM technologies. 

3.3. Fuzzy Relational Data-Bases and Fuzzy Social Network 

Architecture 

The Fuzzy Relational Data-Base (FRDB) model which is based on research 

in the fields of relational data-bases and theories of fuzzy sets and possi-

bility is designed to allow representation and manipulation of imprecise 

information. Furthermore, the system provides means for “individualiza-

tion” of data to reflect the user’s perception of the data [4]. As such, the 

FRDB model is suitable for use in fuzzy expert system and other fields of 

imprecise information-processing that model human approximate reason-

ing such as FSNA [5,6]. 

The objective of the FRDB model is to provide the capability to handle 

imprecise information. The FRDB should be able to retrieve information 

corresponding to natural language statements as well as relations in 

FSNA. Although most of these situations cannot be solved within the 

framework of classical date-base management systems, they are illustra-

tive of the types of problem that human beings are capable of solving 

through the use of approximate reasoning. The FRDB model and the FSNA 
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model retrieve the desired information by applying the rules of fuzzy lin-

guistics to the fuzzy terms in the query. 

The FRDB as well as the FSNA development [4-6] were influenced by the 

need for easy-to-use systems with sound theoretical foundations as pro-

vided by the relational data-base model and theories of fuzzy sets and 

possibility. They address the following issues: 

1. representation of imprecise information, 

2. derivation of possibility / certainty measures of acceptance, 

3. linguistic approximations of fuzzy terms in query languages, 

4. development of fuzzy relational operators (IS, AS...AS, GREATER, ...), 

5. processing of queries with fuzzy connectors and truth quantifiers, 

6. null-value handling using the concept of the possibilities expected 

value, 

7. modification of the fuzzy term definitions to suit the individual user. 

The fuzzy relational data base and the FSNA are collections of fuzzy time-

varying relations which may be characterized by tables, graphs, or func-

tions, and manipulated by recognition (retrieval) algorithms or translation 

rules. 

As an example let us take a look at one of these relations, the similarity 

relation. Let    be a scalar domain,     . Then              is a similar-

ity relation with the following properties: Reflexivity:         ; Sym-

metry:              ;  -transitivity: where   is most commonly speci-

fied as max-min transitivity. If        , then                  

                  . Another example is the proximity relation defined 

below. Let    be a numerical domain and         . Here              

is a proximity relation that is reflexive, and symmetric with transitivity of 

the form 

                                  

The generally used form of the proximity relations is                , 

where      . This form assigns equal degrees of proximity to equally 
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distant points. For this reason, it is referred to as absolute proximity in 

the FRDB and FSNA models. Similarity and proximity are used in evalua-

tion of queries of the general form: “Find   such that      ” Where 

    is an attribute of       is a value of attribute   defined on the 

domain  , and   is a fuzzy relational operator. Clearly both FRDS and 

FSNA may have numerous applications in black swan as well as gray swan 

prediction.  

In many DMM programs and disaster models the amount of information 

is determined by the amount of the uncertainty - or, more exactly, it is 

determined by the amount by which the uncertainty has been reduced; 

that is, we can measure information as the decrease of uncertainty. The 

concept of information itself has been implicit in many DMM models. This 

is both as a substantive concept important in its own right and as a con-

sonant concept that is ancillary to the entire structure of DMM 

3.4 Complex Fuzzy Membership Grade  

Several aspects of the DMM program can utilize the concept of complex 

fuzzy logic [3,7-14]. Complex fuzzy logic can be used to represent the two 

dimensional information embedded in the description of a disaster; 

namely, the severity and uncertainty. In addition, inference based on 

complex fuzzy logic can be used to exploit the fact that variables related 

to the uncertainty that it a part of disasters is multi-dimensional and can-

not be readily defined via single dimensional clauses connected by single 

dimensional connectives. Finally, the multi-dimensional fuzzy space de-

fined as a generalization of complex fuzzy logic can serve as a media for 

clustering of disaster in a linguistic variable-based feature space. 

Tamir et al. introduced a new interpretation of complex fuzzy member-

ship grade and derived the concept of pure complex fuzzy classes[13]. 

This section introduces the concept of a pure complex fuzzy grade of 

membership, the interpretation of this concept as the denotation of a 

fuzzy class, and the basic operations on fuzzy classes.  
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To distinguish between classes, sets, and elements of a set we use the fol-

lowing notation: a class is denoted by an upper case Greek letter, a set is 

denoted by an upper case Latin letter, and a member of a set is denoted 

by a lower case Latin letter. 

The Cartesian representation of the pure complex grade of membership is 

given in the following way: 

                       

Where       and      , the real and imaginary components of the pure 

complex fuzzy grade of membership, are real value fuzzy grades of mem-

bership. That is,       and       can get any value in the interval      . 

The polar representation of the pure complex grade of membership is 

given by: 

                      

Where      and     , the amplitude and phase components of the pure 

complex fuzzy grade of membership, are real value fuzzy grades of mem-

bership. That is, they can get any value in the interval      . The scaling 

factor,   is in the interval       . It is used to control the behavior of the 

phase within the unit circle according to the specific application. Typical 

values of   are    
 

 
      . Without loss of generality, for the rest of the 

discussion in this section we assume that     .  

The difference between pure complex fuzzy grades of membership and 

the complex fuzzy grade of membership proposed by Ramot et al. [11,12], 

is that both components of the membership grade are fuzzy functions 

that convey information about a fuzzy set. This entails different interpre-

tation of the concept as well as a different set of operations and a differ-

ent set of results obtained when these operations are applied to pure 

complex grades of membership. This is detailed in the following sections. 

 3.4.1 Complex Fuzzy Class  



18  

A fuzzy class is a finite or infinite collection of objects and fuzzy sets that 

can be defined in an unambiguous way and complies with the axioms of 

fuzzy sets given by Tamir et al. and the axioms of fuzzy classes given by 

Běhounek [9,15-20]. While a general fuzzy class can contain individual ob-

jects as well as fuzzy sets, a pure fuzzy class of order one can contain only 

fuzzy sets. In other words, individual objects cannot be members of a 

pure fuzzy class of order one. A pure fuzzy class of order   is a collection 

of pure fuzzy classes of order    . We define a Complex Fuzzy Class   

to be a pure fuzzy class of order one i.e., a fuzzy set of fuzzy sets. That 

is,          
    or          

   where    is a fuzzy set and   is a finite in-

teger. Note that despite the fact that we use the notation          
   we 

do not imply that the set of sets      is enumerable. The set of sets      

can be finite, countably infinite, or uncountably infinite. The use of the 

notation        
   is just for convenience. 

The class   is defined over a universe of discourse  . It is characterized by 

a pure complex membership function         that assigns a complex-

valued grade of membership in   to any element     (where   is the 

universe of discourse). The values that         may receive lie within the 

unit square or the unit circle in the complex plane, and are in one of the 

following forms: 

                        

                        

 Where       and      , are real functions with a range of [0,1]. Alterna-

tively: 

                       

                       

Where      and     , are real functions with a range of [0, 1] 

and         .  
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In order to provide a concrete example we define the following pure fuzzy 

class. Let the universe of discourse be the set of all the hurricanes that hit 

the East Coast of the USA (in any time in the past) along with a set of at-

tributes related to hurricanes such as wind speed, rain, movement of the 

hurricane eye, and related surges. Let    denote the set of hurricanes 

that hit the East Coast of the USA in the last   years. Furthermore consider 

a function      that associates a number between 0 and 1 with each set of 

hurricanes. For example, this function might reflect the severity in terms 

of average wind gust of all the hurricanes in the set. In addition, consider 

a second function      that associates a number between 0 and 1 with 

each specific hurricane. For example, this function might be a normalized 

value of level of destructiveness of the hurricane. The functions         

can be used to define a pure fuzzy class of order one. A compound of the 

two functions in the form of a complex number can represent the degree 

of membership in the pure fuzzy class of “destructive (e.g., catastrophic) 

hurricanes in the set of hurricanes that occurred in the last 10 years. 

Formally, let   be a universe of discourse and let    be the power set 

of  . Let    be a function from    to [0, 1] and let    be a function that 

maps elements of   to the interval [0, 1]. For      and     define 

         to be: 

                                    

Then,          defines a pure fuzzy class of order one, where for 

ry     , and for every    ,  

        ; is the degree of membership of   in   and the degree of mem-

bership of   in  . Hence, a complex fuzzy class   can be represented as 

the set of ordered triples: 

                         

Depending on the form of        (Cartesian or polar),      ,      ,     , 

and      denote the degree of membership of   in   and / or the degree 

of membership of   in    Without loss of generality, however, we assume 
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that       and      denote the degree of membership of   in   for the 

Cartesian and the polar representations respectively. In addition, we as-

sume that       and      denote the degree of membership of   in   for 

the Cartesian and the polar representations respectively. Throughout this 

chapter, the term complex fuzzy class refers to a pure fuzzy class with 

pure complex-valued membership function, while the term fuzzy class re-

fers to a traditional fuzzy class such as the one defined by Běhounek [15]. 

Degree of Membership of Order   

The traditional fuzzy grade of membership is a scalar that defines a fuzzy 

set. It can be considered as degree of membership of order 1. The pure 

complex degree of membership defined in this chapter is a complex num-

ber that defines a pure fuzzy class. That is, a fuzzy set of fuzzy sets. This 

degree of membership can be considered as degree of membership of or-

der 2 and the class defined can be considered as a pure fuzzy class of or-

der 1. Additionally, one can consider the definition of a fuzzy set (a class 

of order 0) as a mapping into a one dimensional space and the definition 

of a pure fuzzy class (a class of order 1) as a mapping into a two dimen-

sional space. Hence, it is possible to consider a degree of membership of 

order   as well as a mapping into an  -dimensional space. The following 

is a recursive definition of a fuzzy class of order  . Note that part 2 of the 

definition is not really necessary it is given in order to connect the terms 

pure complex fuzzy grade of membership and the term grade of member-

ship of order 2.  

 

Definition 3 ([13]):  

1) A fuzzy class of order 0 is a fuzzy set; it is characterized by a degree of 

membership of order 1 and a mapping into a one dimensional space. 

2) A fuzzy class of order 1 is a fuzzy class; that is, set of fuzzy sets. It is 

characterized by a pure complex degree of membership. Alternative-
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ly, it can be characterized by a degree of membership of order two 

and a mapping into a two dimensional space. 

3) A fuzzy class of order   is a fuzzy set of fuzzy classes of order  -1; it is 

characterized by a degree of membership of order     and a map-

ping into an      -dimensional space. 

Generalized Complex Fuzzy Logic 

A general form of a complex fuzzy proposition is: “       ” where   

and   are values assigned to linguistic variables and ‘ ’ denotes natural 

language constants. A complex fuzzy proposition   can get any pair of 

truth values from the Cartesian interval             or the unit circle. 

Formally a fuzzy interpretation of a complex fuzzy proposition   is an as-

signment of fuzzy truth value of the form       , or of the 

form           , to  . In this case, assuming a proposition of the form 

“       ,” then    (   )) is assigned to the term   and    (   )) is 

assigned to the term  . 

For example, under one interpretation, the complex fuzzy truth value as-

sociated with the complex proposition: 

                                                can be         . Al-

ternatively, in another context, the same proposition can be interpreted 

as having the complex truth value         . As in the case of traditional 

propositional fuzzy logic we use the tight relation between complex fuzzy 

classes / complex fuzzy membership to determine the interpretation of 

connectives. For example, let   denote the complex fuzzy set of “destruc-

tive hurricanes with high surge," and let          , be a specific fuzzy 

membership function of  , then    can be used as the basis for interoper-

ations of  . Next we define several connectives along with their interpre-

tation. 

Table 1 includes a specific definition of connectives along with their inter-

pretation. In this table  ,    and   denote complex fuzzy propositions and 

     denotes the complex fuzzy interpretation of  . We use the fuzzy 

Łukasiewicz logical system as the basis for the definitions [16,19]. Hence, 
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the max t-norm is used for conjunction and the min t-conorm is used for 

disjunction. Nevertheless, other logical systems such as Gödel fuzzy sys-

tems can be used [19,21] .  

Table 1 Basic Propositional Fuzzy Logic Connectives 

Operation Interpretation 

Negation                 

Implication                       +           

       

Conjunction                    +               

Disjunction                    +               

 

The same axioms used for fuzzy logic are used for complex fuzzy logic, 

and Modus ponens is the rule of inference. 

Complex Fuzzy Propositions and Connectives Examples 

Consider the following propositions   and   respectively): 

1.                                                    

2.                                                         

Let   be the term                          Hence,   is of the form: 

“               and   is of the form                In this case, the terms 

                                           and                    ”, 

are values assigned to the linguistic variables {      . Furthermore, the 

term                            can get fuzzy truth values (between 0 

and 1) or fuzzy linguistic values such as 

              ,                 and              , Assume that the 

complex fuzzy interpretation (i.e., degree of confidence or complex fuzzy 

truth value) of   is       , while the complex fuzzy interpretation of   
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is        (      . Thus, the truth value of 

                                  is   , the truth value of 

                          is   , the truth value of 

                                  is   , and the truth value of 

                               is   , Suppose that the term            

stands for                        which  stands for                      

the term         stands for              , and the term          stands 

for               In this context, NOT is interpreted as the fuzzy negation 

operation. Note that this is not the only way to define these linguistic 

terms and it is used to exemplify the expressive power and the inference 

power of the logic. Then, the complex fuzzy interpretation of the follow-

ing composite propositions is: 

1)                      

That is,    denotes the proposition 

                                                       The confi-

dence level in    is               ; where the fuzzy truth value of 

the term                                       is        and the 

fuzzy truth value of the term                is        

2)                     +                

Thus,        denotes the proposition 

                                                          

                                                               

The truth values of individual terms, as well as the truth value of       

are calculated according to table 1. 

3)                       +                . 

That is,        denotes a proposition such as 

                                                  OR 
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                                                              The 

truth values of individual terms, as well as the truth value of      are 

calculated according to table 1. 

4)                       +                . 

That is,       denotes the proposition 

                                                  AND 

                                                        The truth 

values of individual terms, as well as the truth value of      are cal-

culated according to table 1. 

 

 

 

Complex Fuzzy Inference Example 

Assume that the degree of confidence in the proposition      defined 

above is         let      and assume that the degree of confidence in 

the fuzzy implication       is       . Then, using Modus ponens 

  

     

S 

one can infer S with a degree of confidence            

               

In other words if one is using:  

                                                       

IF                                                        THEN 
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Hence, using Modus ponens one can infer: 

                      hu     ne    h   o   o  n   en e  ” with a de-

gree of confidence of                           

3.5 Neuro-Fuzzy Systems  

The term neuro-fuzzy systems refers to combinations of artificial neural 

networks and Fuzzy logic. Neuro-fuzzy systems enable modeling human 

reasoning via fuzzy inference systems along with the modeling of human 

learning via the learning and connectionist structure of neural networks. 

Neuro-fuzzy systems can serve as highly efficient mechanisms for infer-

ence and learning under uncertainty. Furthermore incremental learning 

techniques can enable observing outliers and the Fuzzy inference can al-

low these outliers to coexist (with low degrees of membership) with 

“main-stream” data. As more information about the outliers becomes 

available, the information, and the derivatives of the rate of information 

flow can be used to identify potential black swans that are hidden in the 

outliers The classical model of Neuro-Fuzzy systems can be extended to 

include multidimensional Fuzzy logic and inference systems in numerical 

domains and in domains characterized by linguistic variables. We plan to 

address this in future research. 

3.6 Incremental Fuzzy Clustering   

Clustering is a widely used mechanism for pattern recognition and classi-

fication. Fuzzy clustering (e.g., the Fuzzy C-means) enables patterns to be 

members of more than one cluster. Additionally, it enables maintaining 

clusters that represent outliers through low degree of membership. These 

clusters would be discarded in clustering of hard (vs. fuzzy) data. The in-

cremental and dynamic clustering (e.g., the incremental Fuzzy ISODATA) 
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enable the clusters’ structures to change as information is accumulated. 

Again, this is a strong mechanism for enabling identification of unlikely 

events (i.e., black swans) without premature discarding of these events. 

The clustering can be performed in a traditional feature space composed 

of numerical measurements of feature values. Alternatively, the cluster-

ing can be performed in a multidimensional fuzzy logic space where the 

features represent values of linguistic variables The combination of pow-

erful classification capability, adaptive and dynamic mechanisms, as well 

as the capability to consider uncertain data, maintain data with low likeli-

hood of occurrence, and use a combination of numerical and linguistic 

values makes this tools one of the most promising tools for detecting 

black swans. We are currently engaged in research on dynamic and in-

cremental fuzzy clustering and it is evident that the methodology can 

serve as a highly efficient tool for identifying outliers. We plan to report 

on this research in the near future.  

4. Conclusions 

In this chapter, we have outlined the some of the features of disasters us-

ing the metaphor of gray swans. We have shown that an important part 

of the challenges related to disaster ore identifying slow evolving uncer-

tain data that points to the potential of occurrence of disaster before it 

occurs and fast evolving data concerning the secondary effect of disasters 

after the occurrence of a major disaster. We have outlined as set of fuzzy 

logic based tools that can be used to address these and other challenges 

related to DMM. 

 While the USA and NATO continue to lead the technical agenda in DMM 

technologies, recent disasters are showing that there is still a lack of 

technology-based tools in specific decision support tools for addressing 

disaster, mitigating their adverse impact and managing disaster response 

programs. Thus, the USA and NATO must develop additional DMM capa-

bilities. Additional activities that will assist in DMM programs include [22]: 
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1. Accelerated delivery of technical capabilities for DMM 

2. Development of world class science, technology, engineering and 

mathematics (STEM) capabilities for the DOD and the Nation. 

On the top of those important tasks, one should never forget that in the 

development of DMM programs we do not have the luxury of neglecting 

human intelligence [23]. In any fuzzy event related to a gray swan an in-

vestigation after the fact reveals enough clear data points which have 

been read correctly but were not treated properly.  

In the future, we intend to investigate the DMM utility of several other 

fuzzy logic based tools including: 

1. Value-at-Risk (VaR) under Fuzzy uncertainty 

2. Non-cooperative Fuzzy games  

3. Fuzzy logic driven web crawlers and web-bots 

4. Fuzzy Expert Systems and Fuzzy Dynamic Forecasting (FDEs) 

Finally, we plan to expand our research on complex fuzzy logic based neu-

ro-fuzzy systems as well as the research on incremental and dynamic 

fuzzy clustering. Both of these research threads are expected to provide 

significant advancement to our capability to identify and neutralized (as 

much as possible) first generation and second generation gray swans. 

References 

[1] Taleb, N.N., Fooled by Randomness, Random House, NY, 2004.  
[2] Taleb, N.N., The Black Swan, Random House, NY, 2007. 
[3] Kandel, A., Fuzzy Mathematical Techniques with Applications, Addison-Wesley, Reading 

MA, 1986  
[4] Zemankova-Leech, M., and Kandel, A., Fuzzy Relational Data Bases - A key to Expert Sys-

tems, Verlag TUV Rheinland, Koln, Germany, 1984 
[5] Last, M., Kandel, A., and Bunke,  H., (Eds.), Data Mining in Time Series Databases, Series 

in Machine Perception and Artificial Intelligence, Vol. 57, World Scientific, Singapore, 
2004 

[6] Mikhail, R.F., Berndt, D., and Kandel, A., Automated Database Application Testing, Series 
in Machine Perception and Artificial Intelligence, Vol. 76, World Scientific, Singapore, 
2010 



28  

[7] Zadeh, L.A., The concept of a linguistic variable and its application to approximate rea-
soning - Part I. Information Sciences, 1975. 7: p. 199-249. 

[8] Klir, G.J., Tina, A., Fuzzy sets, uncertainty, and information. 1988, Upper Saddle River, NJ: 
Prentice Hall. 

[9] Tamir, D.E. and A. Kandel, An axiomatic approach to fuzzy set theory. Information Scienc-
es, 1990. 52: p. 75-83. 

[10] Tamir, D.E., Kandel , A., Fuzzy semantic analysis and formal specification of conceptual 
knowledge. Information Sciences, Intelligent systems, 1995. 82(3-4): p. 181-196. 

[11] Ramot, D., Milo, R., Friedman, M., Kandel, A., Complex fuzzy sets. IEEE Transactions on 
Fuzzy Systems 2002. 10(2): p. 171-186. 

[12] Ramot, D., Friedman, M., Langholz, G., Kandel, A., Complex fuzzy logic. IEEE Transactions 
on Fuzzy Systems, 2003. 11(4): p. 450-461. 

[13] Tamir, D.E., J. Lin, and A. Kandel, A New Interpretation of Complex Membership Grade, In-
ternational Journal of Intelligent Systems, 26(4), 2011. 

[14] Dick, S., Towards complex fuzzy logic. IEEE Transaction on Fuzzy Systems, 2005. 13: p. 
405-414. 

[15] Běhounek, L., Cintula, P., Fuzzy class theory. Fuzzy Sets and Systems, 2005. 154(1): p. 34-
55. 

[16] Fraenkel, A.A., Bar-Hillel, Y., Levy, A., Foundations of set theory, 2nd ed. 1973, Amster-
dam, The Netherlands: Elsevier. 

[17] Mundici, D., Cignoli, R., D'Ottaviano, I. M. L., Algebraic foundations of many-valued rea-
soning. 1999: Kluwer Academic Press. 

[18] Hájek, P., Fuzzy logic and arithmetical hierarchy. Fuzzy Sets and Systems, 1995. 3(8): p. 
359–363. 

[19] Casasnovas, J., Rosselló, F., Scalar and fuzzy cardinalities of crisp and fuzzy multisets. In-
ternational Journal of Intelligent Systems, 2009. 24(6): p. 587-623. 

[20] Cintula, P., Ad  n e   n LΠ  nd LΠ1/2  o      Archives of Mathematical Logic, 2003. 42: p. 
449-468. 

[21] Montagna, F., On the predicate logics of continuous t-norm BL-algebras. Archives of 
Mathematical Logic, 2005. 44: p. 97-114. 

[22] Z. J. Lemnios and A. Shaffer, The Critical Role of Science and Technology for National De-
fense, Computing Research News, a publication of the CRA, Vol. 21, No. 5, November 
2009 

[23] M. Last and A. Kandel (Eds.), Fighting Terror in Cyberspace, Series in Machine Perception 
and Artificial Intelligence, Vol. 65, World Scientific, Singapore, 2005 


