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Abstract 

Thu paper .thow3 the possibility to create effectiue computer technologv for performonce of typicol mau algebraic procedu.J 
on the bo3u of special polinomial con11er•ions and mued number •yslems. 

1. Introduction 

In this paper a non-traditional computer technol­
ogy for data representation and processing is presented. 
It is developed on the basis of classic number theory 
and some results of fundamental research of Russian aca­
demicians Chebyshev and Vinogradov [1}. 

A peculiarity of the algebraic constructions dis­
cussed is determined by using special polynomial con­
versions and mixed number systems. Some moments 
concerning this specific had been described in [2,3]. 

Special methods of representing the polynomials 
allow to obtain the product of two complex numbers in 
parallel mode using only two real multiplications instead 
of four as well as to obtain the product of two polyne>­
mials of a degree 'n' using n multiplications instead of 
n2 , 

This technology is based on applying both a poly­
nomial ring mapping (PRM) and an extended Galois 
Fields techniques which allows large dinamic range com­
putations to be performed using massively parallel small 
finite ring computations. 

Such computations can offer distinct advantages 
over computations using usual binary number system. 

This technique allows direct mapping of bits of 
multiplexed binary-coded polinomial coefficients or num­
bers of theoretically any length to a set of independent 
rings, defined by the small relatively prime moduli with 
length not more than 5 bits in the case of using a special 
hardware. 

In general the PRM is defined by a mapping which 
maps the problem of multiplication of two polynomials or 
complex numbers onto completely parallel scheme where 
the mapped polynomial coefficients are multiplied pair-
wise. 

It is well-known from number theory if the polyne>­
mial x" + 1- 1 can be factorized in n distinct degree-one 
factors (FDOF) in a modular ring Z(m) there exists an 
isomorphic mapping a polynomials of a degree (n-1) onto 
z;:. = Z.,. • Z.,. • ... • Zm . 

Suppose P(m) is a finite structure 
the (n-1)st-order polynomials with coefficients in 
Then by factorizing the polynomials (x" + / - 1} in 
distinct factors as in 

xn + 1- 1 = (x- ro) • (x- rl) • .. . • (%- rn_t), 

(r; E Z(m), i=O,l, ... ,n-1} 
the product of two (n-l}st-order polynomials 
/ - 1) in Z(m) can be computed with only multlplyiu, 
of n pairs of the PRM mapJ)ed coefficients of these 
nomials and no additions at all. 

Such Factorizing (xn + 1) in n distinct ue~~eE~Vl 
Factors (FDOF) is possible if and only if nl(p(i)- 1 
i=l,2, ... ,1, where alb reads "a divides b"; n and m 
positive integers with prime decomposition of m 
in terms of powers e(i) of its prime factors p(i) , as 

m = p(l)•(J) • p(2)"(21 • .. . • p(t)•ll) 

with n < p(i) . 
Similarly, for (x" -1), the necessary and 

condition for its factorization becomes nj(p(i) - 1 
The special case is the polynomial of kind 

l)modm = 0, where x=j, such that j E Z 
p(i)=4k+l; p(i) ·is prime. In this case mun•Jl'""" 
of two complex numbers is reduced to two real 
cations instead of four (without summations!) . 

Another effective approach to the 
a polynomial multiplication is possible on the 
using Galois Fields, GF(p•), and, in particular, 
PRM-based extended GF represented below. 

The extended GF(p") are defined over 
polynomials, R(x), of order 'e', and elements in 
are computed as polynomial products (PPs), 
over GF(p). Note that R(x) = x•- k, where k E 
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the GF(p') multiplication is performed mod 
Q(x) is fully factorizable and of a suitably 
the above mentioned PR.M decomposition 

used­
A final reduction, mod R(x), realizes the GF(p') 

Let us consider more detaily the GF(p') mul-

) =-< U(:c) • V(x) > modR(x) = 

=< W(x) > modR(:r), (3) 

R(x) is irreducible over GF(p), a degree 'd' of R(x) 
is equal 'e', and d(U(x), V(x)) <e. 
a degree 'd' of W(x) ( d(W(x)) ) less than (2e 

can be embedded in a polynomial ring, mod 
d(Q(x)) 2: (2 • e- 1) without requiring any 

of W(x), mod Q(x) . Thus 

)) = E ~ (2 • e - 1). 
is chosen to factorize over GF(p) as follows : 

where d(W(z)) < E and d(W'(x)) < e. 
The complexity of this reduction depends on the 

form ofR(x). The reduction, mod R(x), requires only E­
e fixed multiplications and additions, mod p. To achieve 
this simplified reduction, an R(:z:) = x• - t, t € GF(p), 
must be found, where R(x) is irreducible over GF(p). 

The FDOF PR.i\1 technique can be generalized to 
the following case: 

(8) 

e; ~ (p- 1)/2 (9) 

for 1 ~ i ~ L, that enables multiplication over 
GP(p') for 

1 ~ e ~ [(p-1)/2)£. (10) 

As a simple case let us consider multiplication over 
GF(58 ) . The minimum value of L which (10) is satisfied 
for is three. Thus, FDOF PRM can be used to imple­
ment a GF(58) mulptiplier,where L 2: 3. For instance, 

(S) (8) and (9) are satisfied by choosing e1 = e, = e3 = 2. At 
the same time R(x) = :z:1 - 3 is irreducible over GF(S) . 
Because of that the R(x) reduction is simplified. Finally, 
(9) specifies a lower limit on p for which the method of 
this paper is feasible. When p=2 or 3 the e; cannot be 
~ 1. Thus rendering the reduction is impossible. 

q;(x) factors are mutually prime, mod p 
1). Denoting < .-l(:z:) > modB(x) as the op­

A(x) modB(x) for polynomials and using PRM 
we get 

W(:z:) = ( < W(x) > modqo(x) , 

< W(x) > modq1 (x), .. . 

There is another possibility of decomposition . 
The Agarwal-Gooley algorithm decomposes PP, mod 
x 0 - t, into L-dlmensional PP, mod (.:z:D' - t), mod 
(:z:D. - t), ... etc. (FDOF modulus must be of the form 

... , < W(x) > modqn-t(x)) (6) xD- t, t E GF(p), D 2 e, for this method to work). For 
the 2-dimensional case PPs, < U(x)•V(x) > modq,(x), are computed 

ltlldlent'lv. Q(x) is FDOF over GF(p) if n = E, with 
= 1 for all 'i' . As 'p' is prime, there are {p-1) 
prime degree - one polynomials over GF(p) . 
FDOF for an Q(x) exists only if 1 ~ E = 

~ p-1. For systems which satisfy this condition; 
of FDOF Q(x) is evident, Also, E ~ 2 • e- 1 is 

reduction of U(x)*V(x) , mod Q(x). Thus , 
vume.~m~n the PR~1 implementation of GF(p') 

is only possible when e ~ (p - 1)/2. For 
a choice of Q(:t) is evident, where 2•e -1 ~ 

1. The q1(:z:) are of the form (:z: - g,) , where 
2, ... ,p- 1) and g, 1< 9i for i 1< j . In particulare 
:z:E + / - 1 and, more generally, Q(x) = ;r;E - t 

a practically useful form for Q(x).where t E 

second stage of the multiplication reduces 
R(x) to obtain th• ~ GF(p') product, W'(x) . 

z1 = .:z:'';:z:, = x••, (11) 

where e1 •e2 2: e, and gcd(e1,e2)"' 1. 
The PP is decomposed, mod x••••• -t, into nested 

PP's, mod xi' - t and x~• - t, respectively. However, ii 
e > (p- 1)/2, then e1 • e, does not divide (p-1) . This 
suggests a hybrid solution based on (8)-(10) . So prime­
factor techniques may be preferable for further decom­
position. 

3. Binary-Modular Algebra 

W'(:z:) =< W(x) > modR(z) , 

In general, application of modular operations re­
quires specialized hardware. This can create a number 
of problems. As alternative to the given approach the 
Binary-Modular Algebra (BMA) could be realized one 
on the basis of modified binary number system. This 
system would provide the data processing rate compara-
ble with other approaches demanding specialized com­

(7) puters. Let 'e' be a positive integer and 'm' - the odd 
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modulus. The multi plicative inverse 'b ' of 2• in the ring 
of integers Z(m) and the multiplicative inverse 'a' of 'm' 
in the ring Z(2•) always exist. Therefore,the following 
two equations 

< b • 2• > modm = 1; <a • m > mod2• = 1 (12) 

have a solution which can be found by Euclid's algo­
rithm. 

Now some positive integers < m can be projected 
into an extended ring Z(m •2•) using the general expres­
sion: 

s' = s + k • m , (13) 

where 's' is the projected integer in Z(m • 2') and k<2' 
is a positive integer . 

Since the extended ring contains more elements 
than the original one, the isomorphism is established by 
constraining the projected integer to be multiplied by 
2": 

s' = s(e)<P> • 2' (14) 

The relation between the original integer r in Z(m) 
and its "pseudo-image" s(e)<"> , that also belongs to 
Z(m), can be easily found by multiplying both sides of 
(13) Cor b module made substituting (12) and {14) : 

s(e)<Pl =< s • b > modm (15) 

The pseudo-images (Pis) share the same proper­
ties of original s for modular addition and substraction. 
In fact, if :r(e)CJ>l and !l(e)CP) are Pis of x and y with 
respect to the pair (m,e), the following equality holds: 

< x(e)CPl + y(e)(Pl > modm = 

=< :r • b + y • b > modm = 

= < < x + y > modm • b > modm = 

= [(< :r + y > modm)modmj(e)<Pl (16) 

The modular product between two Pis :r(e)h>) and 
J,l(e)<Pl with respect to the pair (m,e) is equal to the PI 
of the product of original x and y with respect to the 
pair {m,2e): 

< x(e)<Pl • y(e)<Pl > modm = 
=< b < b < x • y > modm > modm > modm = 

=I(< x • y > modm)){2e)ll'>. (17) 

4. Implementation and Valuations 

In the following , only }-dimensional PRM is as­
sessed. PRM is defined over a FDOF Q(x), mod p , where 

conversion to the PRM requires: two E-point number 
transforms, ~od p, (for two numbers U(x) and V(x)), 
and one E-pomt Inverse number transform, mod p, for 
conversion from the PRM to a. result W(x) . Also, 
remainder products, mod p, and (E-e) fixed mults 
adds, mod p, are required for the final reduction 
R(x) . Each number transform requires E 2 fixed 
and adds, mod p. For efficient number transforms, 
figure approaches the equivalent. of E general mults, 
p. Using this figure, the total count operation is: 
general mults, mod p; (E-e) fixed mults, mod p; 
(E-e) adds, mod p. 

For instance, an "optimal" dual-basis mu.itlJlliel 
defined over an irreducible trinomial requires: e2 

mults, mod p; 2*e fixed mults, mod p; and e2 adds, 
p. 

Comparing general mults only, the PRM 
becomes competitive when 4 • E :S: e2 adds, mod p. 
suming, for example, E= Z*e- l ,this requires e ~ S. 

A complete description of realizing the 
sented algebraic consructions should include dis~m!Sio 
of the following functional units: the PRM(n) unit 
comprises an F(n) mapper, a. parallel muiltilolie!I'-addi 
and an F(n) inverse mapper. The PRM(n) 
forms algebraic procedures in some modular ring 
for which F(n) exists. Here the function F(n) 
a mod m representing of polynomial coefficients to 
PRM representing and the function F(n) <>v•"'"''""'!' 
inverse trasformation. 

If the BMA (Binary-Modular Algebra) is 
simpler implementation can be achieved with m = 
I - 1, where e is an integer. 

The PRM mapper can be implemented 
mod(m) negator and a two-operand mod(m) 
mapping can be realized using a stage of scalers 
by log,n stages of mod(m) adders (for instance, 
z• + I - 1). A mod{m) negator can be 
using e inverters, n-3 AND gates and n-1 
OR gates configred to achieve a propagation 
where tis the propagation delay of a NAND 
technology used. At the same time for the 
two-operand mod m adder a PLA Masking 
be used to achieve a propagation delay of 12t 
the designed scaler has a propagation delay of 
the mapper requires (17 + 12 • lo,92n)t in 
parallel mapper structure. 

The PRM multiplier unit performs the 
pairwise multiplication of polynomial 
Universal Multiplier Network (UMN) is used 
plication mod m = ZC + I - 1 it will require a 
TPR.M = (7e + 12)t [4) . 

lfm = z• + 1-1 and n is a power of two 
inverse mapping can be implemented in a similar 
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forward-mapping equations using negators and 
mod m, and regularity is observed again. The 

delay is (1 7 + 12 •log1 n)t per coefficient . 
A traditional multiplier mod M = ~ bci.sed on the 
will have a propagation delay of about TrM = 7dt 

d is number of binary digits of a computer 

Thus, ifthe PRlvl multipliers are operating in mul­
intensive environments , where the multiplica­

outnlun'""' any other operations (including forward 
mappings), then the expression 

~Pt:Pn'IIirte the speed advantages of the PRM multi­
in comparison with traditional binary multipliers. 
A computer number range m is a product of pow­
simple numbers p, (n!(p. - 1)/2) , then we can 

e in Eq. (18) for a value E which is equal to 
of bits representing a maximum p, . For practi­

number ranges the value E is not more than 
on the basis of (18) we obtain 

g = 7d/(7E + 12) = 7df4.9 . (19) 

For example, if d= IH(bits) then g=9.14. 
Taking in account that traditional multiplying of 

;aenee-n polynomials includes n 2 mults and about 
and the PRM-based extended GF multiplying 
only n mults, we obtain on the basis of (18),(19) 

G(n) 2: 7dn/49,' (20) 

G(n) determines thE> performing time ratio of tra­
and extended GF polynomial multiplications. 

speeding up polynomial procedures is possi­
if density of these procedures relat ively a general 
of computations is large enough. 

The possibility of creating an effective computer 
using the PRM-based extended GF and MBA 
was considered. 

techniques are defined by the transform­
maps the problem of multiplication or addi­
polynomials onto completely parallel scheme, 

mapped polynomial coefficients are multiplied 
pairwise. Thus, it allows to obtain a product 

degree 'n' polynomials using 'n ' multiplications 
of n 2 (without summations'). Since pair-wise 

:"I'UCcltJcms of polynomial coefficients is executed in 
and independently each to other there also is 

to use distr ibuted data processing. 

The special case is the polynomial of kind (x2 + 
1)modm = O,where m meets (2) and p(i)=4k+1. In this 
case multiplication of two complex numbers is reduced 
to two real multiplications instead of four (without sum­
mations) . 

The extended GF(p•), are defined over irreducible 
polynomials, R(x) , of order e, and elements in GF(:r•) 
are computed as PP's,mod R(x) over GF(p). If, instead, 
the GF(r•) multiplication is performed mod Q(x). where 
Q(x) is factorizable and of a suitably high degree, the 
PRM decomposition can be used . A final reduction, 
mod R(x), realizes the GF(p') product. By appropri­
ate choice of PRM and R(x), all operations occure over 
GF(p), and reduction by an irregular polynomial modu­
lus is eliminated. Solutions for large m and small p are 
possible if multidimensional PRM technique is used. 

The conventional methods to perform GF(p•) 
multiplication use standard basis, normal basis, or dual 
basis scheme of multiplication, but all of them require 
more than e2 general multiplications,mod p. In contrary, 
polynomial products (PP's) can be decomposed by the 
PRM into a small number of autonomous products, mod 
p, performed in parallel. 

Of course, an effect of using the represented tech­
nique will be high if density of the described proce­
dures relatively a general volume of computations is large 
enough. 

It is well-known that G F(p•) multipliers are re­
quired in number of some important applications: cyclic 
convolutions as well as erro-correction, cryptographic, 
and multivalued logic systems. A further development 
of the represented methods can essentially extend a field 
of such applications. 

The PRM-based extended GF(p•) system could 
be realized on the basis of the introduced modified binary 
number system BMA. The BMA could provide the rate 
of number processing comparable with other approaches 
requesting special computers. 
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Abstract 

This paper shows the possibility to create effective computer technology for performance of typical mass algebraic procedures 
on the basis of special polinomial conversions and mixed number systems. 

1. Introduction 

In this paper a non-traditional computer 
technology for data representation and process­
ing is presented. It is developed on the basis of 
classic number theory and some r esults of funda­
mental research of Russian academicians Cheby­
shev and Vinogradov [1]. 

A peculiarity of the algebraic constructions 
discussed is determined by using special poly­
nomial conversions and mixed number systems. 
Some moments concerning this specific had been 
described in [2,3]. 

Special methods of representing the poly­
nomials allow to obtain the product of t wo com­
plex numbers in parallel mode using only two real 
multiplications instead of four as well as to ob­
tain the product of two polynomials of a degree 
'n ' using n multiplications instead of n 2 • 

This technology is based on applying both 
a poly nomial ring mapping (PRM) and an ex­
tended Galois Fields t echniques which allows 
large dinamic range computations to be per­
formed using massively parallel small finite ring 
computations. 

Such computations can offer distinct advan­
tages over computations using usu al binary num­
ber system. 

This technique allows direct mapping of 
bits of multiplexed binary-coded polinomial co­
efficients or numbers of theoretically any length 
to a set of independent rings , defined by the small 
relatively prime moduli with length not more 
than 5 bits in the case of using a special hard­
ware. 

In gen eral the PRM is defined by a map­
ping which maps the problem of multiplication of 
two polynomials or complex numbers onto com­
pletely parallel scheme where the mapped poly­
nomial coefficients are multiplied pairwise. 

It is well-known fr om number theory if the 
polynomial xn + I - 1 can be factorized in n 
distinct degree-one fact ors (FDOF) in a modu­
lar ring Z(m) there exists an isomorphic map­
ping a polynomials of a degree ( n-1) onto z;;. = 
Zm * Zm * ... * Zm. 

Suppose P(m) is a finite structure con­
taining the (n-1)st-order polynomials with coef­
ficients in Z(m). Then b y factorizing the polyno­
mials (xn +I- 1) in n d istinct factors as in 

xn +I- 1 = (x- ro) * (x- r1) * .. . * (x - rn-1), (1) 

(ri E Z (m), i=0,1 , . . . ,n-1) 
the product of two (n-1)st-order polynomials 
mod(xn +I- 1) in Z(m) can be computed with 
only multiplying of n p a irs of the PRM mapped 
coefficients of these poly nomials and no additions 
at all. 

Such Factorizing (xn+ 1) inn distinct Degree­
One Factors (FDOF) is possible if and only if 
nl(p(i) - 1)12, i= 1,2, ... ,l , where al b reads "a divides 
b " ; n and m are positive integers with prime de­
composition of m given in terms of powers e(i) of 
its prime factors p(i) , as 

m = p(1)e(l} * p(2)e(2} * ... * p(l )e(l) (2) 

with n < p(i). 
Similarly, for (xn - 1), the necessary and 

sufficient condition for its factorization becomes 
nl(p(i)- 1). 

The special case is the polynomial of kind 
(x2 + 1)modm = 0, where x=j , such that j E Z(m) 
and p(i) = 4k+ 1; p(i) is prime. In this case mul­
tiplication of two complex numbers is reduced to 
two real multiplications instead of four (without 



summations!). 

2. Using the PRM-based Extended GF 

Another effective approach to the proce­
dure of a polynomial multiplication is possible 
on the basis of using Galois Fields, GF(pe), and, 
in particular, on the PRM-based extended GF 
represented below. 

The extended GF(pe) are defined over irre­
ducible polynomials, R(x), of order 'e ' , and el­
ements in GF(pe) are computed as polynomial 
products (PPs) , mod R(x) over GF(p). Note 
that R (x) = xe - k, where k E GF(p) . If, instead, 
the GF(pe) multiplication is performed mod Q(x) , 
where Q(x) is fully factorizable and of a suitably 
high degree, the above mentioned PRM decom­
position can be used. 

polynomials over GF(p). Therefore FDOF for 
an Q(x) exists only if 1 :S E = d(Q (x)) :S p- 1. 
For systems which satisfy this condition, a choice 
of FDOF Q(x) is evident, Also, E ~ 2 * e - 1 is 
used to avoid reduction of U(x)*V(x), mod Q(x). 
Thus, if 'p' is prime,then the PRM implemen­
tation of GF(pe) multiplication is only possible 
when e :S (p - 1)/2. For such systems a choice of 
Q(x) is evident, where 2*e- 1 :S E :S p-1. The Qi(x) 
are of the form (x- gi), where 9i E (1, 2, .. . ,p-1) and 
9i "I 9j for if; j . In part iculare Q(x) = xE + /- 1 
and, more generally, Q(x) = xE - t could be a 
practically useful form for Q(x) ,where t E GF(p) . 

The second stage of the multiplication re­
duces W(x) by R(x) to obtain the GF(pe) prod­
uct , W ' (x) . Then 

W ' (x) =< W(x) > modR (x), (7) 

where d(W(x)) < E and d(W' (x)) <e. A final reduction, mod R(x) , realizes the 
GF(pe) product. Let us consider more detaily the 
GF (pe) multiplication 

The complexity of this reduction depends 
on the form of R(x). The reduction, mod R(x) , 
requires only E - e fixed multiplications and ad­

(3) ditions, mod p. To achieve this simplified reduc­
tion, an R (x) = xe - t, t E GF (p), must be found, 
where R(x) is irreducible over GF(p). 

W ' (x) =< U(x) * V(x) > modR (x) = 

=< W(x) > modR (x), 

where R(x) is irreducible over GF(p), a degree 'd' 
ofR(x) (d(R (x))) is equal 'e', and d(U(x), V(x)) <e. 

As a degree 'd' of W(x) ( d(W(x)) ) less 
than (2e- 1) , W(x) can be embedded in a poly­
nomial ring, mod Q(x), where d(Q(x)) ~ (2 * e - 1) 
without requiring any reduction of W(x), mod 
Q(x). Thus 

The FDOF PRM technique can be gener­
alized to the following case: 

(8) 

ei :S (p- 1)/2 (9) 

W(x) = U(x) * V(x) =< U(x) * V(x) > m odQ(x), (4) for 1 :S i :S L , tha t enables multiplication 
over G P (pe) for 

where d(Q(x)) = E ~ (2 * e- 1). 
Q(x) is chosen to factorize over GF(p) as 

follows: 

1 :S e :S [(p- 1)/2] £. (10) 

As a simple case let us consider multipli-

Q(x) = Qo(x) * Ql(x) * ... * Qn-l(x), 
cation over GF(58 ) . The minimum value of L 

(S) which (10) is satisfied for is three. Thus, FDOF 
PRM can be used to im plement a GF (58 ) mulp­
tiplier,where L ~ 3. For instance, (8) and (9) are 
satisfied by choosing e1 = e2 = e3 = 2. At the 
same time R (x) = x8 - 3 is irreducible over GF(5). 

where the qi(x) factors are mutually prime, mod 
p (i=0,1 , ... ,n-1). Denoting < A(x) > modB (x) as 
the operation A(x) modB(x) for polynomials and 
using PRM techniques , we get 

W(x) = ( < W(x) > modqo(x), 

< W(x) > modq1 (x), .. . 

Because of that the R(x ) reduction is simplified. 
Finally, (9) specifies a lower limit on p for which 
the method of this paper is feasible . When p=2 
or 3 the ei cannot be ~ 1. Thus rendering the 

.. . , < W(x) > modqn-dx)) (6) reduction is impossible . 
There is another possibility of decomposi­

tion . The Agarwal-Cooley algorithm decom­
poses PP, mod x 0 - t, into L-dimensional PP, 
mod (x01 - t), mod (x0 2 - t), ... etc. (FDOF mod­
ulus must be of the form x0 - t, t E GF (p), D ~ e, 

where the PPs, < U(x) * V(x) > modqi(x) , are com­
puted independently. Q(x) is FDOF over GF(p) 
if n = E, with d(qi(x)) = 1 for all ' i'. As 'p ' is 
prime, there are (p-1) mutually prime degree-one 



for this method to work). For the 2-dimensional 
case 

(11) 

where e1 * e2 ~ e, and gcd( e1, e2) = 1. 
The PP is decomposed, mod xe 1 *e2 - t, into 

nested PP's, mod x~ 1 
- t and x~2 

- t, respectively. 
However, if e > (p- 1)/2, then e1 * e2 does not di­
vide (p-1). This suggests a hybrid solution based 
on (8)-(10). So prime-factor techniques may be 
preferable for further decomposition. 

3. Binary-Modular Algebra 

In general, application of modular opera­
tions requires specialized hardware. This can 
create a number of problems. As alternative to 
the given approach the Binary-Modular Algebra 
(BMA) could be realized one on the basis of mod­
ified binary number system. This system would 
provide the data processing rate comparable with 
other approaches demanding specialized comput­
ers. Let 'e' be a positive integer and 'm'- the odd 
modulus. The multi plicative inverse 'b' of 2e in 
the ring of integers Z(m) and the multiplicative 
inverse 'a' of 'm' in the ring Z(2e) always exist. 
Therefore,the following two equations 

< b * 2e > modm = 1; < a* m > mod2e = 1 (12) 

have a solution which can be found by Euclid's 
algorithm. 

Now some positive integer s < m can be 
projected into an extended ring Z(m * 2e) using 
the general expression: 

s' = s + k *m, (13) 

where 's' is the projected integer in Z(m * 2e) and 
k<2e is a positive integer. 

Since the extended ring contains more ele­
ments than the original one, the isomorphism is 
established by constraining the projected integer 
to be multiplied by 2e : 

s' = s(e)(P) * 2e (14) 

The relation between the original integer r 
in Z(m) and its "pseudo-image" s(e)CP) , that also 
belongs to Z(m), can be easily found by multi­
plying both sides of {13) forb module made sub­
stituting {12) and {14): 

s(e)(P) =< s * b > modm (15) 

The pseudo-images (Pis) share the same 
properties of original s for modular addition and 
substraction. In fact, if x(e)CP) and y(e)CP) are Pis 
of x and y with respect to the pair (m,e), the 
following equality holds: 

< x(e)CP) + y(e)CP) > modm = 

=< x * b + y * b > modm = 

= < < x + y > modm * b > modm = 
= [( < x + y > modm)modm](e)CP) (16) 

The modular product between two Pis 
x(e)(P) and y(e)CP) with respect to the pair (m,e) is 
equal to the PI of the product of original x and 
y with respect to the pair (m,2e): 

< x(e)CP) * y(e)CP) > modm = 
=< b < b < x * y > modm > modm > modm = 

= [( < x * y > modm)](2e)(P). (17) 

4. Implementation and Valuations 

In the following, only !-dimensional PRM 
is assessed. PRM is defined over a FDOF Q(x), 
mod p, where conversion to the PRM requires: 
two E-point number transforms, mod p, (for two 
numbers U(x) and V(x)), and one E-point In­
verse number transform, mod p, for conversion 
from the PRM to a result W(x) . Also, E re­
mainder products, mod p, and (E-e) fixed mults 
and adds, mod p, are required for the final reduc­
tion by R(x). Each number transform requires E 2 

fixed mults and adds, mod p. For efficient num­
ber transforms, this figure approaches the equiva­
lent of E general mults, mod p. Using this figure, 
the total count operation is: 4*E general mults, 
mod p; (E-e) fixed mults, mod p; and (E-e) adds, 
modp. 

For instance, an "optimal" dual-basis mul­
tiplier defined over an irreducible trinomial re­
quires: e2 general mults, mod p; 2*e fixed mults, 
mod p; and e2 adds, mod p. 

Comparing general mults only, the PRM 
design becomes competitive when 4 * E :::; e2 adds, 
mod p. Assuming, for example, E= 2*e- l,this 
requires e ~ 8. 

A complete description of realizing the rep­
resented algebraic consructions should include 
discussion of the following functional units: the 
PRM(n) unit which comprises an F(n) mapper, 
a parallel multiplier-adder, and an F(n) inverse 
mapper. The PRM(n) unit performs algebraic 



procedures in some modular ring Z(m) for which 
F(n) exists. Here the function F(n) transforms 
a mod m representing of polynomial coefficients 
to their PRM representing and the function F(n) 
executes an inverse trasformation. 

If the BMA (Binary-Modular Algebra) is 
used a simpler implementation can be achieved 
with m = 2e +I- 1, where e is an integer. 

The PRM mapper can be implemented 
using a mod(m) negator and a two-operand 
mod(m) adder.PRM mapping can be realized us­
ing a stage of scalers followed by log2n stages of 
mod{m) adders (for instance, form= 2e+l-1). A 
mod(m) negator can be implemented using e in­
verters, n-3 AND gates and n-1 EXCLUSIVE OR 
gates configred to achieve a propagation delay of 
5t, where t is the propagation delay of a NAND 
gate of the technology used. At the same time 
for the design of a two-operand mod m adder a 
PLA Masking method can be used to achieve a 
propagation delay of 12t [4). Then the designed 
scaler has a propagation delay of 17t while the 
mapper requires (17 + 12 * log2n)t in the case of 
parallel mapper structure. 

The PRM multiplier unit performs the par­
allel pairwise multiplication of polynomial coeffi­
cients. If a Universal Multiplier Network (UMN) 
is used for multiplication mod m = 2e +I- 1 it will 
require a delay of TPRM = (7e + 12)t [4). 

If m = 2e + I - 1 and n is a power of two 
then the inverse mapping can be implemented in 
a similar manner as the forward-mapping equa­
tions using negators and adders mod m, and reg­
ularity is observed again. The propagation delay 
is (17 + 12 * log2n)t per coefficient. 

A traditional multiplier mod M = 2d based 
on the UMN will have a propagation delay of 
about TrM = 7dt [4], where dis number of binary 
digits of a computer word. 

Thus, if the PRM multipliers are operating 
in multiplicative intensive environments , where 
the multiplications outnumber any other opera­
tions (including forward and inverse mappings), 
then the expression 

g = TrM ITPRM = 7dtl(7e + 12)t = 7dl(7e + 12) (18) 

will determine the speed advantages of the PRM 
multipliers in comparison with traditional binary 
multipliers. 

A computer number range m is a product 
of powers of simple numbers Pi (ni(Pi -1)12), then 
we can substitute e in Eq. (18) for a value E 

which is equal to number of bits representing a 
maximum Pi· For practically used number ranges 
the value E is not more than 5. Thus on the basis 
of (18) we obtain 

g = 7di(7E + 12) = 7dl49. (19) 

For example, if d=64(bits) then g=9.14. 
Taking in account that traditional multiply­

ing of two degree-n polynomials includes n 2 mults 
and about n 2 adds and the PRM-based extended 
GF multiplying requires only n mults, we obtain 
on the basis of (18),(19) 

G(n) ;::: 7dnl49 , (20) 

where G(n) determines the performing time ra­
tio of traditional and extended G F polynomial 
multiplications. Of course, speeding up polyno­
mial procedures is possible only if density of these 
procedures relatively a general volume of compu­
tations is large enough. 

5. Conclusion 

The possibility of creating an effective com­
puter technology using the PRM-based extended 
G F and MBA techniques was considered. 

These techniques are defined by the trans­
forming which maps the problem of multiplica­
tion or addition of two polynomials onto com­
pletely parallel scheme, where the mapped poly­
nomial coefficients are multiplied or added pair­
wise. Thus, it allows to obtain a product of two 
degree 'n' polynomials using 'n' multiplications 
instead of n 2 (without summations!). Since pair­
wise multiplications of polynomial coefficients is 
executed in parallel and independently each to 
other there also is possibility to use distributed 
data processing. 

The special case is the polynomial of kind 
(x2 +1)modm = O,where m meets (2) and p(i)=4k+l. 
In this case multiplication of two complex num­
bers is reduced to two real multiplications instead 
of four (without summations). 

The extended GF(pe), are defined over ir­
reducible polynomials, R(x), of order e, and ele­
ments in GF(xe) are computed as PP's,mod R(x) 
over GF(p). If, instead, the GF(xe) multiplica­
tion is performed mod Q(x), where Q(x) is fac­
torizable and of a suitably high degree, the PRM 
decomposition can be used. A final reduction, 
mod R(x), realizes the GF(pe) product. By ap­
propriate choice ofPRM and R(x), all operations 
occure over GF(p), and reduction by an irregular 



polynomial modulus is eliminated. Solutions for 
large m and small p are possible if multidimen­
sional PRM technique is used. 

The conventional methods to perform GF(pe) 
multiplication use standard basis, normal basis, 
or dual basis scheme of multiplication, but all 
of them require more than e2 general multiplica­
tions,mod p. In contrary, polynomial products 
(PP's) can be decomposed by the PRM into a 
small number of autonomous products, mod p, 
performed in parallel. 

Of course, an effect of using the represented 
technique will be high if density of the described 
procedures relatively a general volume of compu­
tations is large enough. 

It is well-known that GF(pe) multipliers 
are required in number of some important ap­
plications: cyclic convolutions as well as erro­
correction, cryptographic, and multivalued logic 
systems. A further development of the repre­
sented methods can essentially extend a field of 
such applications. 

The PRM-based extended GF(pe) system 
could be realized on the basis of the introduced 
modified binary number system BMA. The BMA 
could provide the rate of number processing com­
parable with other approaches requesting special 
computers. 
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