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ABSTRACT
We investigate a novel variant of the well-known MaxRS (Maxi-
mizing Range Sum) problem – namely, the MAxRS3 (Maximizing
Area-Range Sum for Spatial Shapes). The MaxRS problem amounts
to detecting a location where a fixed-size rectangle R should be
placed, so that it covers a maximum number of points – or sum
of weights, if the points are weighted – from a given input set of
2D points. While variants have tackled the settings in which the
input set to MaxRS problem consists of polygons instead of points
– the solution is still based on (weighted) count. We postulate that
in many practical applications it is of interest to determine where
to place the input rectangle so that the total area-coverage in its
interior is maximized. In this paper, we formalize the MAxRS3 prob-
lem and propose (to our knowledge) the first solution to this new
problem.
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1 INTRODUCTION
The Maximizing Range Sum query (MaxRS) takes a collection of
weighted spatial point-objectsO and a rectangle R with fixed dimen-
sions as inputs, and generates a location(s) for placing the centroid
of R that maximizes the sum of the (weights of the objects) in R′s
interior. Initially, the MaxRS problem was identified and solved by
the researchers in computational geometry (CG) community [6].
Some years later, motivated by its importance in location-aware
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Figure 1: MAxRS3 – Louisiana votes and Texas floods.

queries, such as: what is the best location for a new franchise store
with a limited delivery range, or what is the hotel location so that a
tourist with spatially constrained mobility can see most attractions
– researchers have tackled various new aspects. Efficient solution
for MaxRS in large (secondary storage) spatial databases has been
presented in [3]; more recently, a continuous variant of MaxRS for
mobile objects and query-rectangle has been addressed in [4], and
dynamic settings where objects may be inserted/deleted along with
changing their weights have also been considered (cf. [1, 5]).

We note that [6] considered a variation of the MaxRS problem
where the input collection consists of polygons instead of points.
For brevity, we call that variant a P-MaxRS (Polygons MaxRS), and
a solution was presented so that the (weighted) sum of the polygons
inside R is maximized.

Figure 2: MaxRS vs. P-MaxRS vs. MAxRS3.

What motivates our work is the observation that in many prac-
tical settings, in addition to the datasets consisting of polygons –
it is more important to find a placement for the centroid of query-
rectangle R in a manner that will ensure maximal area coverage. As
specific examples, consider the following scenarios:
S1: A campaign manager with a limited reachability for his staff
would like to know where to place the mobile headquarters to
improve the votes in a given region.
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S2: Emergency crews are interested in location for placing the
sump-pumps with limited reachability of multiple hose, so that the
drainage impact is maximized.

Both scenarios are illustrated in Fig. 1 (left portion is illustrat-
ing S1 and the right portion illustrates S2). In each case, we show
two positions of R: (1) covering maximal number of regions (i.e.,
P-MaxRS); and (2) covering maximal area. Clearly, the placement(s)
based on the solution to P-MaxRS are not the desired output for
S1 and S2. To address such problems, in this paper we propose
the MAxRS3 (Maximal Area-Range Sum for Spatial Shapes) prob-
lem. More formally, the fundamental differences between MaxRS,
Polygon Containment (a.k.a. P-MaxRS) and MAxRS3 problem are
illustrated in Figure 2. Assuming that 8 point objects are given
(o1,o2, . . . ,o8 in Figure 2) and the weights of all the objects are uni-
form, the placement of the rectangle R indicated in dotted blue line
is the MaxRS solution (i.e., count=3). When objects have a spatial
extent represented by a polygon, e.g., triangle, rectangle, pentagon,
etc. (cf. s1, s2, . . . , s8 centered at the point objects o1,o2, . . . ,o8 in
Figure 2), the solution to the P-MaxRS problem [6] is given by the
dotted green line, where the placement of R completely encapsu-
lates polygons s1, s2, and s3 (i.e., count=3). The MAxRS3 problem –
addressing the more practical goal of maximizing the area of the
coverage of R, will return the placement represented by the dotted
orange line, overlapping s6 and s7.

2 PROBLEM FORMULATION
We now review the basics of sweep-line technique and the standard
approach for solving MaxRS and P-MaxRS problem, and subse-
quently, formally introduce the MAxRS3 problem.
Fundamentally, both are based on a sweep-line technique [2, 7] –
a paradigm of conceptually “sweeping” a horizontal (or vertical)
line across the plane, stopping at certain discrete points (called
events) to perform different tests/computations. The events are
marked by corresponding Y-coordinates (for horizontal sweep-line)
or X-coordinates (for a vertical sweep-line) at which “something
interesting” happens.
At each event ei ∈ E, some geometric computations need to per-
formed with the objects that either intersect or are in the immediate
vicinity of the sweep line, and the final solution is available once
the line has passed over all objects.

In general, sweep-line algorithms maintain a data structure to
store the events, generally sorted by X or Y coordinates, and at a
given instance, the data structure stores only the active events. The
overall processing time for a sweep-line algorithm is O ( |E | × Pei ),
where |E | = total number of events, and Pei = the processing time
of each event. Thus, when designing a sweep-line technique, the
goal is to minimize |E | and Pei .
MaxRS for Point Objects: Let C (p,R) denote the region covered
by an isothetic rectangle R, placed at a particular point p. Given
a rectangular spatial field F, an axis-parallel rectangle R (of size
d1×d2), and a setO of n spatial pointsO = {o1,o2, . . . ,on } (bounded
by F), where each oi is associated with a weightwi , the answer to
MaxRS query (AMaxRS (O,R)) retrieves a position p for placing the
center of R, such that ∑{oi ∈( O ∩C (p,R )) }wi is maximal. If ∀oi ∈
O : wi = 1, we have the count variant (cf. Figure 2). An in-memory
solution to MaxRS (cf. [6]) transforms it into a “dual” rectangle

intersection problem by replacing each object in oi ∈ O by a d1 × d2
rectangle ri , centered at oi . R covers oi if and only if its center is
placedwithin ri . Thus, the rectangle covering themaximumnumber
of objects can be centered anywhere within the area containing a
maximal number of intersecting dual rectangles .

Using this transformation, [6] proposed a sweep-line algorithm
to solve the MaxRS problem. Viewing the top and the bottom edges
of each rectangle as horizontal intervals, an interval tree – i.e., a
binary tree on the intervals – is constructed, and then a horizontal
line is swept vertically. The line stops at the top and bottom edges
of each rectangle (a.k.a. events). During each event (|E |=2n), the
interval tree is updated accordingly, and the count (i.e., the number
of overlapping rectangles) for each interval currently residing in
the tree is computed (Pe=O (logn)). An interval with the maximum
count during the entire process is returned as the final solution and,
the algorithm takes O (n logn) (i.e., O ( |E | × Pei )) time.
MaxRS for Polygons: [6] proposed an extension that considers
polygons instead of point objects. The problem addressed in [6]
((P-MaxRS)) is: Given a rectangular spatial field F, an axis-parallel
rectangle R (of size d1×d2), and a set S of n non-overlapping spatial
regions (convex polygons) S = {s1, s2, . . . , sn } (bounded by F), the
answer to P-MaxRS query (AP-MaxRS (S,R)) retrieves a position p
for placing the center of R, such that:∑

{∀si ∈S }




1, if (si ∩ C (p,R)) = si

0, otherwise

is maximal.

Figure 3: P-MaxRS processing scheme.

(si ∩ C (p,R)) = si ensures that si is fully enclosed within R. At
first, a base solution is devised assuming all si ∈ S are axis-parallel
rectangles. If any given si is larger than R, it can safely be pruned,
i.e., it cannot be fully enclosed by R. For a polygon si , we have to
place R with its top-left corner at p, where p is the top-left corner
of si (cf. s1 in Figure 3). Suppose, ri is the rectangle drawn from
the bottom-right point of si – e.g., r1 in Figure 3. Clearly, R will
enclose si completely, if and only if the bottom-right corner of R
lies in ri , which is defined as the prime rectangle for si . Given the
prime rectangles of all axis-parallel rectangles si ∈ S , the problem
can be converted to the rectangle intersection problem. In case of
arbitrary polygons, R encloses a polygon if and only if R encloses
its minimum bounding rectangle (MBR) as shown in Figure 3 for
s3. Thus, given MBR s ′i for all si ∈ S , the same techniques for axis-
parallel rectangles can be applied here too.
MAxRS3: In many practical scenarios, maximizing the overall cov-
erage area over the given set of polygons is of more importance
than the P-MaxRS problem which can return a placement with
many small polygons (see Figure 2). For example, suppose the set
of given polygons represent flood-affected spatial regions within
a state/country. The objective then is to find a way to maximize
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aid support by reaching to as large amount of flood-affected area
as possible. Let us use A(r ) to denote the area of a given region r .
Based on these observations, we introduce a novel problem Maxi-
mizing Area-Range Sum for Spatial Shapes (MAxRS3) as follows:
Given a rectangular spatial field F, an axis-parallel rectangle R (of
size d1 × d2), and a set S of n non-overlapping spatial regions (con-
vex polygons) S = {s1, s2, . . . , sn } (bounded by F), the answer to
MAxRS3 query (AMAxRS3 (S,R)) retrieves a position p for placing
the center of R, such that ∑{∀si ∈S } A (si ∩ C (p,R)) is maximal.

We term∑{∀si ∈S } A (si ∩ C (p,R)) as the score of any position p
forMAxRS3 problem.We note that both P-MaxRS andMAxRS3 only
consider non-overlapping polygons. If there is overlap between two
polygons si and sj , we can either: (1) Combine the two polygons
into a new single one, e.g., snew = si ∪ sj ; or, (2) Consider three
separate disjoint polygons sk (= si ∩ sj ), si − sk , and sj − sk . The
ideas presented in this paper can be readily extended to include
concave (non self-intersecting) polygons, but for brevity we keep
the discussion and algorithms limited to convex case.

3 PROCESSING MAXRS3

We now discuss the challenges relevant to processing MAxRS3,
and devise an efficient algorithm by using a pair of top-to-bottom
sweep-lines, accompanied by two left-to-right sweep-lines.
Although MaxRS and P-MaxRS have efficient O (n logn) solutions,
processing MAxRS3 poses a different set of challenges:
• Both MaxRS and P-MaxRS can be transformed into rectangle
intersection problem. Same is not true for MAxRS3 since containing
the polygons “completely” is not required. The solution for MAxRS3
considers the area to be included to compute the maximal coverage.
• The discrete event-points need to be identified, along with the
corresponding processing at each “interesting” points.

Figure 4: Covered area and vertices of a given si .

Discrete Points: To identify the events, let us assume that each
polygon si ∈ S consists ofmi vertices – vi1,vi2, . . . ,vimi , where
vi1 = (xi1,yi1), vi2 = (xi2,yi2), . . . ... vim = (xim ,yim ), forming
mi edges by connecting adjacent vertices in a pair-wise manner, e.g.,
[{vi1,vi2}, {vi2,vi3},. . ., {vimi ,vi1}]. From the setting of MAxRS3,
we observe that the area of a polygon covered by R can always be
decomposed into a trapezoid (rectangle and squares are a special
case of trapezoid) or a triangle. In both cases, the covered area
is a function of base (i.e., length of edges) and height – which
depends on the slope of certain edges. However, we observe that
the slope of any given polygon si changes only at the vertices, i.e.,
vi1,vi2, . . . ,vimi (see Figure 4). Thus, we use vertices of the input
polygons as our discrete event-points.

Multiple Sweep-lines: At first, we propose to sweep the space
in top-to-bottom manner, i.e., via using a horizontal sweep-line.
During each event at a vertex vi j , we have to compute maximal
placement of R having the highest coverage in the vicinity of vi j .
An interesting observation is that the optimal placement of R may
cover bothvi j ’s above (i.e., up to Y-axis coordinate (yi3 +d2), green
in Figure 4) or below (i.e., up to Y-axis coordinate (yi3 −d2), orange
in Figure 4) regions. Thus, we use two sweep-lines in our algorithm,
always maintaining a Y-axis distance of d2 between them. Let us
consider an example scenario presented in Figure 5, where there
are 4 polygons considered: s1, s2, s3 and s4. The discrete points of
interest will be all the verticesvi j , e.g.,v11,v21,v31,v41, etc. In total,
there are 18 such vertices in this setting. At first we will sweep the
space in top-to-bottommanner, and use two horizontal sweep-lines:
(1) a leader horizontal line (lh ); and (2) a follower horizontal line
(fh ). During the whole process, lh leads (i.e., is below) fh in the
sweeping and the distance between fh and lh is set to d2, i.e., Ylh
= Yfh − d2 (assuming (0,0) is bottom-left point), where Ylh and Yfh
denote the Y-coordinate values of the corresponding sweep-lines.
Both lh and fh stop at all vertices vi j during the sweep – thus, we
have two kinds of events: (1) ehl , when the leader horizontal line
lh stops at a vertex; and (2) ehf , when the follower horizontal line
fh stops at a vertex (see Figure 5). In total, there will be 18 × 2 = 36
events in the example provided in Figure 5.

Figure 5: Leader and follower sweep-lines for MAxRS3.

Events Processing Scheme: In case of ehl and ehf events, we
will only consider the space bounded by the two horizontal lines
lh and fh , i.e., [Ylh ,Yfh ]. For example, in Figure 5, for an event ehf
at v11, only the region bounded by the two orange lines will be
explored. We will again use the concept of multiple sweep-lines to
compute the placement having highest score in [Ylh ,Yfh ] bounded
region, but this time, sweeping will take place in a left-to-right
manner. The idea is to use two vertical sweep-lines: (1) a leader
vertical line (lv ); and (2) a follower vertical line (fv ) (blue lines in
Figure 5). Similar to the horizontal sweep-lines, lv leads (i.e., is on
the right of) fv and the distance between fv and lv is set to d1,
i.e., Xlv = Xfv + d1, where Xlv and Xfv denote the X-coordinate
values. For this secondary sweeping process, the discrete points of
interest are the current intersection points between the polygons
and the horizontal lines – lh and fh . Both lv and fv stop at all such
intersection points during the left-right sweep – thus, we have two
kinds of events: (1) evl , when lv is involved; and (2) ev f , when fv
is involved. For example, the vertical leader event evl (blue circle)
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occurs at one of the intersection points of s2 and lh during the
horizontal follower event ehf . There will be 11× 2 = 22 such events
in the example provided in Figure 5.

During each evl and ev f , we have to find the location p∗ having
highest score, i.e., ∑{∀si ∈S } A (si ∩ C (p∗,R)). For this, we use the
fact that the covered area of a given polygon via R can always be
decomposed into a trapezoid or triangle. We can compute the area
of a given polygon (such as si in Figure 4, wheremi=5) as follows:

A(si ) =
1
2 × (

�����
xi1 yi1
xi2 yi2

�����
+
�����
xi2 yi2
xi3 yi3

�����
+ . . . +

�����
ximi yimi

xi1 yi1

�����
) (1)

When performing the left-to-right sweeping:
(1) The intersection points and covered portion of edges of the
polygons change. For every little increment of covered portion δ ,
we already have (or, can pre-compute) the constant slopes of the
respective edges. In Equation 1, all xi j and yi j values are constants.
(2) We need to maximize A in Equation 1 with the optimal place-
ment of R during an event, within the “permissible” ranges of δ .
However, given the range for δ , Equation 1 is a sum of quadratic
functions in δ and its first derivative is a linear one – thus, the
extreme can be calculated analytically.
(3) Most importantly, the ranges for δ are always bounded by
the event-points of both horizontal and vertical sweep-lines, i.e.,
ehf , ehl , ev f , and evl . Thus, we can compute p∗ for R during a verti-
cal line-event, even if p∗ is in somewhere between two consecutive
events. In summary, we perform a top-to-bottom sweep-line tech-
nique using two horizontal lines lh and fh , and then, perform a
left-to-right sweep of the bounded space by two vertical lines lv
and fv at each ehf or ehl . During the whole process, we keep track
of the maximal coverage area and placement p∗, and eventually,
return the result at the end of the top-to-bottom sweeping.
Algorithmic Details: The processing of MAxRS3 is formalized in
Algorithm 1. In line 1, vertices of all the polygons are sorted in
order of their yi j value and inserted into a list vl ist . In lines 2 – 5,
relevant variables are initialized. Lines 6 – 18 constitute the main
working loop, i.e., the top-to-bottom sweeping. Lines 7 – 14 check
whether the next event should be ehl or ehf , and variables are
updated accordingly. Line 15 performs the left-to-right sweeping
using lv and fv . For brevity, we skip the details of this secondary
sweeping in Algorithm 1. The maximal coverage area and optimal
placement is tracked via lines 16 – 18.
Complexity: Let us assume that there are n polygons, with m
vertices each – so sorting in line 1 of Algorithm 1 takes O ((n ×
m) log(n ×m)). There will be O (n ×m) horizontal line events, i.e.,
ehl or ehf – (cf. lines 6 – 18 of Algorithm 1). In each such event,
when the left-to-right sweep starts, there can be at most 2 × 2 = 4
intersections per non-overlapping convex polygons with lh and fh ,
i.e., O (n) intersections in total. The area-calculation needs O (m)
number of 2 × 2 determinants per polygon, taking a worst-case
total cost of O (n ×m) at each ehl or ehf event. Thus, the overall
time complexity is O ((n ×m)2).

4 CONCLUDING REMARKS
We introduced a novel variant of the MaxRS problem – the MAxRS3
problem, which determines the placement for a given fixed rectan-
gle R in a 2D plane, such that the sum of the areas of the intersec-
tions of a (subset of a) given collection of polygonal shapes and R is

Algorithm 1: ProcessMAxRS3 (S,R,F)

Input :A set of non-overlapping convex polygons S , query
rectangle R of size d1 × d2 and bounding box F

Output :AMAxRS3 (i.e., p∗)
1 vl ist ← the list of all vertices vi j of each polygon si ∈ S sorted
by their yi j value;

2 Ylh ← F.heiдht ;
3 Yfh ← F.heiдht + d2;
4 ehl _index , ehf _index ← 0;
5 p∗,max_coveraдe_area ← NULL, 0;
6 while ehl _index < |vl ist | or ehf _index < |vl ist | do
7 if

(Ylh −vl ist [ehl _index].yi j ) ≤ (Yfh −vl ist [ehf _index].yi j )
then

8 Ylh ← vl ist [ehl _index].yi j ;
9 Yfh ← Ylh + d2;

10 ehl _index ← ehl _index + 1;
11 else
12 Yfh ← vl ist [ehf _index].yi j ;
13 Ylh ← Yfh − d2;
14 ehf _index ← ehf _index + 1;

15 plocal , local_coveraдe_area ← Perform left-to-right
sweep using vertical lines lv and fv ;

16 if local_coveraдe_area > max_coveraдe_area then
17 max_coveraдe_area ← local_coveraдe_area;
18 p∗ ← plocal ;

19 return p∗

maximized. We also presented the solution to MAxRS3 along with
the corresponding algorithmic implementation. Presently, we are
investigating techniques for pruning certain events from consider-
ation during the sweep-line process to speed up the execution. We
are also working on the scalability aspect – i.e., access structures
for the cases when the input is too large to fit in the main memory.
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