
Visualization of Range-Constrained Optimal
Density Clustering of Trajectories

Muhammed Mas-Ud Hussain1(B), Goce Trajcevski1, Kazi Ashik Islam2,
and Mohammed Eunus Ali2

1 Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL 60208, USA

mas-ud@u.northwestern.edu, goce@eecs.northwestern.edu
2 Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
1205007.kai@ugrad.cse.buet.ac.bd, eunus@cse.buet.ac.bd

Abstract. We present a system for efficient detection, continuous main-
tenance and visualization of range-constrained optimal density clusters
of moving objects trajectories, a.k.a. Continuous Maximizing Range Sum
(Co-MaxRS) queries. Co-MaxRS is useful in any domain involving con-
tinuous detection of “most interesting” regions involving mobile enti-
ties (e.g., traffic monitoring, environmental tracking, etc.). Traditional
MaxRS finds a location of a given rectangle R which maximizes the sum
of the weighted-points (objects) in its interior. Since moving objects con-
tinuously change their locations, the MaxRS at a particular time instant
need not be a solution at another time instant. Our system solves two
important problems: (1) Efficiently computing Co-MaxRS answer-set;
and (2) Visualizing the results. This demo will present the implementa-
tion of our efficient pruning schemes and compact data structures, and
illustrate the end-user tools for specifying the parameters and selecting
datasets for Co-MaxRS, along with visualization of the optimal locations.

1 Introduction

Advances in miniaturization of GPS and sensor-equipped (position-aware)
devices, along with progresses in networking and communications, have resulted
in the generation of large quantities of (location, time) data, (O(Exabyte)) [1].
Movement of people, animals, vehicles, birds, etc. are continuously captured by
GPS loggers, and as such, the efficient management of mobility data is at the
core of many applications of high societal relevance. Often, such data are being
scrutinized by clustering [2,3], mining, information retrieval [4], and visualization
techniques [5,6] to detect patterns of interest among the trajectories.

This work explores efficient processing and visualization of the spatio-
temporal extension of a particular type of spatial query – the, so called, Max-
imizing Range-Sum (MaxRS) query, which can be described as follows. Given

M. Mas-Ud Hussain and G. Trajcevski—Research supported by NSF grants III
1213038 and CNS 1646107, ONR grant N00014-14-10215 and HERE grant 30046005.

c© Springer International Publishing AG 2017
M. Gertz et al. (Eds.): SSTD 2017, LNCS 10411, pp. 427–432, 2017.
DOI: 10.1007/978-3-319-64367-0 29



428 M. Mas-Ud Hussain et al.

Fig. 1. MaxRS at three different time instants (t0 < t < tmax).

a set O of weighted objects and a rectangle R (dimension d1 × d2), MaxRS
retrieves a location of R that maximizes the sum of the weights of all the objects
in its interior. MaxRS, and its variants for scalability, approximate solutions,
etc., have been addressed in spatial settings [7,8]. However, many applications
involve moving objects and the continuous variant of MaxRS is needed – Fig. 1
shows how the locations of the instantaneous MaxRS solutions vary over time
for mobile objects.

Co-MaxRS detects and maintains “most interesting” regions over moving
objects trajectories, i.e., highest-density clusters given the range R and time-
period T = [t0, tmax], which is essential for: environmental tracking (e.g., opti-
mizing a range-bounded continuous monitoring of a herd of animals); – traffic
monitoring (e.g., detecting ranges with densest traffic between noon and 6PM);
– video-games (e.g., determining a position of maximal coverage in dynamic
scenarios). Works on trajectories clustering [2,3] did not track the most dense
(based on user-defined criteria) clusters over time. Moreover, proper visualiza-
tion of Co-MaxRS answer-set for different time-periods and ranges would be
handy for focusing on specific optimal regions when analyzing large trajectory
data. Recent works on continuous visualization of spatial data have different set-
tings from us: – [5] enables visualizing DBSCAN-based clusters for trajectories
(no fixed range or optimal clustering considered) and [6] deals with static spatial
events of mobile entities (i.e., does not consider the trajectories themselves).

We provide a system for: (1) Efficiently maintaining Co-MaxRS answer-
set for a given range and time-period; and (2) Providing a user-friendly GUI
to enable visualization of the answer-set. In [9], we introduced useful pruning
schemes and compact data structures (plus TPR*-tree indexing) to enable cost-
effective processing of Co-MaxRS queries. This demo paper presents the system
which implements the techniques proposed in [9] over several real-world datasets
obtained from CRAWDAD (http://crawdad.org) from various domains, along
with the GUI for users to specify the desired parameters and even provide their
own dataset, and modules for visualizing the Co-MaxRS answer-set.

http://crawdad.org


Visualization of Range-Constrained Optimal Density Clustering 429

2 System Design and Demo Details

We now describe the main components of the system architecture and how they
interact with each other, and proceed with details of the demo.
Software Architecture: Our final system is a web-based application with inter-
active and user-friendly interface for both PC and mobile devices, which is imple-
mented using HTML, CSS, and JavaScript (Node.js was used for the server-side
programming). We employ Responsive Web Design principles in building the
website by using CSS media queries, @media rules, and fluid grids—thus, mak-
ing it suitable to work on every device and screen size. The core Co-MaxRS
algorithm is implemented using C++. The software architecture of our system,
illustrated in Fig. 2, is organized in the following main categories:

Fig. 2. Software architecture.

• Query Interface: The users can select each of the required parameters using
the interface by specifying: (1) F – the query area (depends on the underlying
dataset), set dynamically via the zoom-in (+) or out (−) tool; (2) R – specify-
ing d1 and d2 values; and (3) T – the time period, specifying t0 and tmax. Users
can browse through solutions for each T by sliding the time bar. Additionally,
a user will also be able to upload their own dataset, as long as it follows a pre-
fixed format – plain file containing tuples of (object-id, trajectory-id, latitude,
longitude, time, weight (optional, default=1 )).

• Visualization Components: We used Google Maps JavaScript API [10] to dis-
play a map with respective pins for each object at a particular time instant and
the current MaxRS solution. These pins and results will change accordingly
as the user drags the time bar. Also, we used various JavaScript visualization
tools (such as [11]) to enable a different view of the result – trajectories of the
Co-MaxRS solutions in 3D spatio-temporal settings.

• Co-MaxRS Algorithm: Even for small object movements, the optimal loca-
tion of the query rectangle can change while objects participating in the
MaxRS solution stay the same. Instead of maintaining a centroid-location
(equivalently, a region) as a Co-MaxRS solution, we maintain a list of objects
that are located in the interior of the optimal rectangle placement – the



430 M. Mas-Ud Hussain et al.

Co-MaxRS answer-set becoming a sequence (list-of-objects, time-period). For
the example in Fig. 1, Co-MaxRS answer-set is: {((o6, o7, o8), [t0, t1)), ((o1,
o2, o3), [t, tmax)), ((o1, o3, o7, o8), [tmax, tmax))}. We identified criteria (i.e.,
critical times) when a particular MaxRS solution is no longer valid, or a
new MaxRS solution emerges. The basic algorithm uses KDS (Kinetic Data
Structures) – maintaining a priority queue of the critical events and their
occurrence time, and recomputing MaxRS solutions at each event in order.
Recomputing MaxRS is costly, so we devised efficient pruning schemes to: (1)
Eliminate the recomputation altogether at certain qualifying critical events;
and (2) Reduce the number of objects that need to be considered when recom-
putation is unavoidable.

• Data Structures and Indexing: We maintain a list for storing each object oi ∈
O, with its current trajectory, weight, and other necessary information. KDS
maintains an event queue, where the events are sorted according to the time-
value. Each critical event consists of the related objects, and the occurrence
time. Additionally, we also maintained an adjacency matrix to track locality
of objects – which is important for smooth processing of our pruning schemes.
Moreover, to ensure faster processing over large datasets, we used an existing
spatio-temporal data indexing scheme, TPR*-tree (via a C++ library) [12].

• Datasets: To demonstrate the benefits of our system in different domains,
we use several datasets: (1) GPS traces from 500 taxis collected over 30 days
in San Francisco Bay area (http://crawdad.org/epfl/mobility/); (2) (location,
time) information for 370 taxis within Rome for 1 month with sample-period of
7 s (http://crawdad.org/roma/taxi/); (3) Human mobility data, in [13], where
researchers at Microsoft collected data from 182 users in a period of over five
years, with 17,621 trajectories; and (4) A small animal movement dataset
from (http://crawdad.org/princeton/zebranet/). While the first two datasets
are great for demonstrating scalability and traffic-monitoring aspect of our
system, the latter two can be used to show applications in human mobility
tracing and animal tracking processes. Although all of these datasets had
different formats, we converted them into the same format – tuples of (object-
id, trajectory-id, latitude, longitude, time, weight) values. This enabled our
system to handle similarly formatted user-provided data as well.

Demo Specifications: The setup of our demo will consist of a laptop running
the web-based application via a web browser. The application is hosted on our
server operating at Northwestern University, and will be accessed via a public
URL. The demonstration will have three main parts with the following steps:

P1: The first part will have following three main phases:

Phase 1: Specification of the required parameters in the GUI (cf. Fig. 3). This
phase will show: (a) Selection of appropriate R, F, and T ; and (b) Relation
between R and F, i.e., how our system dynamically changes R propor-
tionally to F given an initial value. F can be dynamically set by the user
(± tool).

http://crawdad.org/epfl/mobility/
http://crawdad.org/roma/taxi/
http://crawdad.org/princeton/zebranet/


Visualization of Range-Constrained Optimal Density Clustering 431

(a) (b)

Fig. 3. (a) The main GUI with map and time slider; (b) Answer-set 3D view over T .

Phase 2: Visualization of the Co-MaxRS result at a certain point of time t
using the user-provided parameters over a map (constrained to F). The
locations (linearly interpolated at t) of the objects will be displayed via
pins on the map, and the solution, i.e., an optimal placement of R and
the objects in its interior will be distinctly marked (see Fig. 3a).

Phase 3: Visualization of the whole answer-set for the time-period T in spatio-
temporal (3D) settings (cf. Fig. 3b). Users will be able to analyze how
the trajectories of the optimal clusters are evolving over space and time
(parallelopipeds).

P2: In the second and most important part of the demo, we will exhibit the
benefits of using this tool in analyzing large trajectories data. This part will
show: (a) Selection of the area of focus (F) by zooming-in or out; (b) Change
the value of t by sliding through per unit time (depends on the data set)
within T . We will demonstrate how a user can start from a large F and
relatively larger R, and then continuously refine their region of interest.

P3: The last part of the demo will quickly show steps of P1 and P2 for dif-
ferent datasets, emphasizing how the tool can be useful in different domains.
Additionally, the steps of uploading a custom dataset will be demonstrated.

References

1. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: The next frontier for innovation, competition, and productivity

2. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
J. Intell. Inf. Syst. 27(3), 267–289 (2006)

3. Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti,
F.: Interactive visual clustering of large collections of trajectories. In: IEEE Sym-
posium on Visual Analytics Science and Technology (2009)

4. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol.
(TIST) 6(3), 29 (2015)



432 M. Mas-Ud Hussain et al.

5. Shen, Y., Zhao, L., Fan, J.: Analysis and visualization for hot spot based route
recommendation using short-dated taxi GPS traces. Information 6(2), 134–151
(2015)

6. Andrienko, N., Andrienko, G., Fuchs, G., Rinzivillo, S., Betz, H.D.: Detection,
tracking, and visualization of spatial event clusters for real time monitoring. In:
IEEE DSAA (2015)

7. Choi, D.W., Chung, C.W., Tao, Y.: Maximizing range sum in external memory.
ACM Trans. Database Syst. 39(3), 21:1–21:44 (2014)

8. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and
minimum object enclosing rectangles and cuboids. Comput. Math. Appl. 29(8),
45–61 (1995)

9. Hussain, M.M., Islam, K.A., Trajcevski, G., Ali, M.E.: Towards efficient mainte-
nance of continuous MaxRS query for trajectories. In: 20th EDBT (2017)

10. Google Maps API. https://developers.google.com/maps/
11. Vis.js: JavaScript visualization library. https://visjs.org/
12. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access

method for predictive queries. In: VLDB (2003)
13. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel

sequences from GPS trajectories. In: ACM World Wide Web (2009)

https://developers.google.com/maps/
https://visjs.org/

	Visualization of Range-Constrained Optimal Density Clustering of Trajectories
	1 Introduction
	2 System Design and Demo Details
	References


