
Incorporating Weather Updates for Public
Transportation Users of Recommendation Systems

Muhammed Mas-ud Hussain, Besim Avci, Goce Trajcevski, Peter Scheuermann
Dept. of Electrical Engineering and Computer Science

Northwestern University

Evanston, IL, USA

email: {mmh683, bna728, goce, peters}@eecs.northwestern.edu

Abstract—This work presents a system for augmenting the
functionality of Yelp-like recommendation sites by enabling
users to search for places bounded by travel-time when using
public transportation, and modifying recommendations based on
updated weather conditions. Using public transport, although is
cheaper and efficient, entails that only fixed places of board-
ing/exiting may be used which, in turn, implies walking to (from)
a particular location from (to) a given station. Given the impact of
the weather on the mood and activities, preferences for a certain
type of services may need to be dynamically adjusted based on the
current weather or the near-future forecast, modulo travel-routes
to preferred locations. In this work, we develop a model to predict
a user’s preferred mode of transport (car, or public transit) from
their old check-ins and incorporate the weather context into
the recommendation process. We use event-based modeling to
control the extent of walking depending on user-defined tolerance
information and live weather conditions. We implemented a web
application (both desktop and mobile platforms), utilizing existing
tools such as Google Maps Direction API and OpenWeatherMap
API for retrieving real-time information.

I. INTRODUCTION

With the increased availability and use of GPS-
equipped smart phones, place recommendation sites like Yelp,
Foursquare, Zagat, Zomato, etc. are becoming increasingly
popular. People usually contribute to these recommendation
sites by creating a feedback—i.e., reviews of the places they
have visited. Using these past user reviews/ratings, along with
location and preference information, enables recommending
places of interest to the querying user. Clearly, the richer the
contextual information, the better the quality of recommenda-
tions [1] and one intuitive assumption often made is that, unless
explicitly requested otherwise, people are inclined to go to
easily-reachable places. There are many approaches enabling
context-aware recommendations by incorporating spatial (e.g.,
location), temporal (e.g., current season, time of day) [2], and
spatio-temporal (e.g., user’s mobile profile) [3] contexts.

The important role of public transportation is to enable
access to various locations in urban settings, in a cost-effective
and environment-friendly mode, and for a large number of
people. As an example, [4] compared five large Asian cities
on transportation usage in 2011, revealing that all of them
have a notably small portion of people owning a car (i.e.,
Seoul with the highest proportion, 24.4%), while an over-
whelming number of people (e.g., 93.3% in Hong Kong) use
public transportation. Although such a large number of people
use mass transit, the popular place recommendation sites
have not exploited to the fullest the incorporation of public

transportation information when determining reachability of
places. Complementary to this, often times people’s reviews
for a particular place are affected by the weather, suggesting
a correlation between the ease of reachability, and people’s
impressions and preferences (cf. [5]). People are less inclined
to walk in certain weather conditions, e.g., thunderstorms, ex-
treme heat, snow storm, etc., and their mindset and needs vary
depending on weather. This work enables using these contexts
when filtering candidate sites within a recommendation system,
and performs dynamic updates when the situation changes.

Yelp and similar sites let users choose a distance metric
for recommendations and they usually offer preset distance
measures semantically implying walking, driving, and birds-
eye view distances. Typically, most of the users really care
about the travel-time to those places, using transport mode of
their choice. In this work, we focused on adding two forms
of context to place recommendations: (1) Current route to a
place via a user-preferred mode of transport; and (2) Current
weather and near-future weather predictions. Using travel-time
allows the recommendation system to adapt dynamically to
the situation on routes to places. We recommend places that
are reachable via public transit, targeting the large number of
people who do not own a car (or, do not want to use a car
for certain reasons, e.g., scarcity of parking). However, the
mode of transportation (car-rider or not) is either determined
by our proposed prediction model, or provided by the user
explicitly. One of the consequences of using public transit is
that people can only board/exit at fixed stations and might need
to walk to/from a given station. Our system’s recommendations
are weather-aware in the sense that based on the query-time
weather conditions, places requiring a longer walk (exceeding
a user-defined threshold) are pruned from the final result.

In sum, we developed an adaptive recommendation system
that enables users to make weather-aware and transportation-
aware decisions by dynamically adjusting to the current route
information and weather condition, and incorporating public
transit. We used a real-world dataset from Yelp [6], and lever-
age on existing tools (Google Direction API and OpenWeath-
erMap API) to retrieve live route and weather information.
We note that we are not proposing new recommendation
algorithms—rather, we offer more flexibility in user choices.
Our recommendation result—the ranking of places, is based
on the existing metrics, i.e., travel-time distance, ratings, and
review counts. Even though we developed a stand-alone web
application for demonstration, our system is aimed to be
integrated into an existing recommendation site.

2016 17th IEEE International Conference on Mobile Data Management

2375-0324/16 $31.00 © 2016 IEEE

DOI 10.1109/MDM.2016.57

330

2016 17th IEEE International Conference on Mobile Data Management

2375-0324/16 $31.00 © 2016 IEEE

DOI 10.1109/MDM.2016.57

333

II. PRELIMINARIES

Before getting into the details of our system design, we
briefly review the manners of including contextual information
(e.g., transit and weather) in typical recommender systems,
along with the (properties of the) APIs we used.

Context-aware recommender systems (CARS) have 3 dif-
ferent algorithmic paradigms for incorporating the contextual
information into the recommendation systems: (1) Contextual
pre-filtering; (2) Contextual post-filtering; and (3) Contextual
modeling [1]. If the recommender system is considered as a
black-box, pre-filtering processes the data based on a set of
contexts before using it in the actual model, whereas post-
filtering processes the output of the recommendation model.
Contextual modeling, on the other hand, fuses the data and
the context together to create the recommendation model. Our
system implements both contextual pre-filtering (route and
transit context) and contextual post-filtering (weather context).

Directions API: The Google Directions API is a platform that
enables calculating routes between locations at a particular
time based on different types of transportation mode via HTTP
requests, or remote procedure calls using Javascript API—as
we do it. The API is publicly available at [7].

Weather API: To fetch relevant live weather information, we
use OpenWeatherMap’s weather API, which can be obtained
from [8]. The API is called with latitude-longitude, zip code,
or city name via HTTP requests, and it returns current and
near-future weather information in JSON or XML format.

III. SYSTEM DESIGN

Fig. 1. System Design.

We now describe the main components of the system
architecture and how they interact with each other. When users
pose queries to the system, the argument-signature contains:
the base location (preferably current, that is constantly updated
in case of mobile users); a list of keywords; and a limit on the
travel time. Users can optionally select a preferred mode of
transport—driving, walking, or public transport. In addition,

users have the option to specify an estimated departure time
(by default, it is the current time). As all places have a list
of keywords associated with them, our system first selects
a subset of all places based on the exact keywords match.
Subsequently, the transit-based enrichment and weather-based
filtering phases are applied, respectively before and after
the traditional recommendation (ranking) procedure is used.
Finally, the user is prompted with the selected set of places
along with their location pins on a map. Figure 1 presents
the outline of our system design—U, P, and R denote the
respective sets of users, places, and ratings/reviews. Following
is the detailed description of the executional behavior.

• Exact Match Pruning: The very first step that our system
performs is a keyword-based filtering. At the present state,
the functionality relies only upon applying simple forms of
stemming over keywords and performing exact match.

• Mode-of-Transit & Travel-Route Enrichment: As mentioned,
we consider the travel-time between locations as it aggregates
the transportation mode with distance. To this end, we first
prune the set of places that are practically not reachable by
the user-preferred mode of transport within the user-specified
travel-time limit. For example, if a user selects walking and
sets travel-time limit to 30 minutes, we can prune all the places
that are ≥1.55 miles away from the user’s current location,
since the average human walking speed is 3.1 miles/hour.
For each of the remaining candidate-places, the Google Di-
rection API is invoked, followed by a more refined phase of
eliminating the candidates that are exceeding user-specified
time-limit based on the currently estimated travel-time. The
benefit of using the initial Euclidean distance-based pruning
is important because collecting live route information using
Google Direction API is relatively expensive. In this regard,
we employ caching strategy for faster processing by storing
all the routes information obtained in the last 30 minutes.

Since our work mainly focuses on presenting places based
on the preferred mode of transport (including public transit),
we develop a model to estimate how far each user is willing to
travel. Based on users’ travel tendencies, we predict whether
a user relies on public transit or car more frequently, and
enable our system to recommend public-transport-reachable
places if one does not own a car with the assumption that
users whose check-ins show high dispersion usually own/ride
cars. To understand user dispersion, we first identify how many
clumps of check-in patterns each user has. Our model gathers
users’ check-in locations, and since each user may exhibit
different number of clusters in terms of their check-in locations
indicating proximity of work, home, friend’s places, tours,
etc., we apply Bayesian Information Criterion (BIC) to acquire
the optimal number of clusters. To this end, we use posterior
probabilities Pr[Mi, Lj] for different clustering models, where
Mi is the clustering model with i clusters and Lj is the list of
the locations of check-ins for user j. BIC calculation involves
iteratively applying k-means [9] method to data points for
different k values and choosing the best k value that maximizes
the posterior. Note that k-means clusters are actually spherical
Gaussians, hence BIC can be utilized for determining the
optimal number of clusters. Further discussions about the
optimal number of clusters and clustering method are omitted
due to space limitations—see x-means [10] for more extensive
analysis.

331334

Having chosen the best k, clustering scheme is applied
to check-in data pertaining to every user, who has at least
10 check-ins. Even though we capitalize on k-means for k
optimization, we use k-medians [11] as the clustering algo-
rithm, since it is more robust against outliers. Before analyzing
inner discrepancy of clusters, we make a final pass of outlier
cleaning by removing check-ins farther than 50 miles from
the cluster median, as some users have check-ins at arbitrary
locations which skews the dispersion value within the clusters.
In addition, we eliminate clusters with fewer than 5 check-
ins to have a higher confidence in dispersion values. After
calculating the cluster medians and cleaning each cluster from
outliers, we calculate the within sums of distances (WSD) for
each cluster to obtain dispersion of users’ check-ins. WSD =
pn∑

pi=p1

dist(m, pi), where pi represents each check-in location,

and m denotes the corresponding cluster median. Moreover,
WSD is divided by the total number of check-ins for each
cluster and a weighted (based on the size of each cluster) mean
is calculated for a single user to get the average dispersion
value of that user across all clusters. Finally, the model outputs
that if average WSD is smaller than a threshold value, the user
either does not own a car or usually is not willing to travel
to distant places. The threshold value used in our system is
4 miles (Yelp annotates 5 miles as driving distance), which
is learned from the experiments done over a large real-world
dataset (see Section IV). Even though our model gives a
personalized transit preference, user has the option to override
the model output and choose a preferred mode of transportation
explicitly.

• Black-box Recommendation Module: In a CARS system, a
recommendation model is used when ranking a collection of
entities to be presented to the querying user. As our main goal
in this work is to incorporate transit and weather contexts into
existing recommendation systems, our system relies on mul-
tiple rudimentary recommendation schemes: highest average
rating, least travel time, and most reviews.

Fig. 2. Software Architecture.

• Weather-based Filtering: For users of public transportation,
routes to places may include walking a portion of the total
travel time—which may not be desirable to certain individuals
in specific weather conditions (e.g., rain, snow, extreme heat,

humidity, etc.). Integrating this user-specific weather context
in the recommendations is tricky, as different persons have
different tolerance for weather phenomena. How each user
reacts to weather should, ideally, be inferred from the user’s
behavior accumulated over time, however: (1) Due to privacy-
related issues, user query time and location, and subsequent
check-ins are not available in any public dataset; and (2) One
cannot guarantee with a reasonably high probability that a
review of a particular place is written during the time of the
actual visit. Because of these limitations upon the datasets, in
the current version of the system, we rely on a pre-defined
event model where each user sets the parameters for weather-
specific events that they are uncomfortable with.

• Events Model: Users can define up to five types of pa-
rameterized weather events, associated with one of the static
options: wind, rain, snow, cold, and heat, along with their
preferred tolerance level. Thus, if a person is bothered by the
heat, they should select heat option, specify the maximum
temperature tolerable (e.g., 90◦F), along with the desired
extent of walking time for each interval of values below the
upper-limit. For instance, the user may want to walk only 5
minutes if the temperature is between 85◦F and 90◦F , whereas
he/she is comfortable with walking up to 10 minutes when
the temperature is between 75◦F and 85◦F . In this scenario,
if current temperature is above 90◦F , the user will receive
a warning; if the temperature is detected to be 87◦F , all the
places having more than 5 minutes of walking involved in their
current route from the user’s location will be filtered out.

IV. IMPLEMENTATION AND DEMO OUTLINE

We implemented our prediction model described in Section
III using Python (SciPy library), and performed experiments
to determine optimum threshold values for certain steps of
the model and evaluate performance. The experiments were
done over a real-world dataset extracted from Foursquare [12]
with 1M+ check-ins and 2.15M users. The results indicate that
our model successfully detects significant clumps of check-ins
and omit outliers. Avg. no. of clusters per user after pruning
outliers is 1.48 and avg. dispersion per user is 3.37 miles over
the dataset. Based on the computed weighted WSD, the model
predicts about 22.63% of the users are frequent car-riders. The
system-modules discussed in Section III were implemented
using HTML, CSS, and JavaScript (Node.js for the server-
side programming). We employed Responsive Web Design
principles in building the website by using CSS media queries,
@media rules, and fluid grids—thus, making it suitable to
work on every device and screen size. Adaptive Web Design
is used to detect the kind of device the client is using, and
make adjustments accordingly. Our final system is a web-based
application with interactive and user-friendly interface for both
PC and mobile devices, and its software architecture is given
in Figure 2.

Dataset: In our demo, we used Yelp Data Challenge
dataset [6], containing data of a social network of 366K
users, with 1.6M reviews and 61K businesses in several cities
including Phoenix, Montreal, Las Vegas, Madison, etc. In
particular, the dataset includes 5 different categories of data:
business, review, user, check-in, and tip—in JSON format.

The setup of our demo will consist of a laptop running
the web-based application through a web browser, and a GPS-

332335

Fig. 3. Graphical User Interface.

enabled Android tablet that can run the web app using both
a browser and a native app (via a WebView framework).
The web application will be hosted on our server running
at Northwestern University, and can be accessed via a public
URL. The demonstration will have two distinct parts with the
following main steps:
P1: The first part will be run on the laptop having following
three main phases:
Phase 1: Specification of the parameters of the weather events
in the GUI, in addition to creations of user profiles. This phase
will show: (a) Definition of user-specific weather events; and
(b) Association of weather events and user profiles.
Phase 2: Specification of the parameters of user queries and the
actual execution of the search query using the user-provided
parameters. The recommended places will be listed with a
map displaying the respective pins of each place (implemented
via Google Maps JavaScript API [13]), and can be sorted by
travel-time, average rating, or review counts (cf. Figure 3).
Phase 3: In the final and most important phase, we will exhibit
the effects of current route and weather information by varying
the related parameters. To this end, we will provide an option
to specify a query time and date, which will help to more
clearly emphasize the desired impact of our contextual pre-
filtering and post-filtering schemes. Also, we will create mock
users and check-ins using data from [12] (with options of
adding new random check-ins) to show effectiveness of our
mode-of-transit inference model. We will demonstrate how the
number of clusters and WSD values change with addition of
new of check-ins and varying threshold values.
P2: The second part of the demo will be run on the Android
tablet, showing: (a) The web app seamlessly blending in mo-
bile environment; and (b) Utilization of mobile user contexts
(GPS-based location information).

V. SUMMARY AND FUTURE DIRECTIONS

We exploited the coupling of weather-context with the
transportation context (incorporating public transit and current
route information) in recommendation systems. We imple-
mented a stand-alone system that can be used to augment
the functionality of existing sites, and presented a model to

predict users’ travel tendencies to places. There are several
avenues to extend the current implementation: (1) Including
the parking context in the decision-making process by guiding
driving users to places with higher parking availability (e.g.,
SF park Project [14]); and (2) Incorporating other geo-social
contexts, e.g., crime map, pollution map, etc.

Acknowledgments: Research supported by NSF grants CNS-
0910952 and III 1213038, and ONR grant N00014-14-1-0215.

REFERENCES

[1] G. Adomavicius, B. Mobasher, F. Ricci, and A. Tuzhilin, “Context-
aware recommender systems,” AI Magazine, vol. 32, no. 3, pp. 67–80,
2011.

[2] M. Braunhofer, M. Elahi, M. Ge, F. Ricci, and T. Schievenin, “STS:
design of weather-aware mobile recommender systems in tourism,”
in Proceedings of the 1st International Workshop on Intelligent User
Interfaces: AI*HCI, 2013.

[3] A. Gupta and K. Singh, “Location based personalized restaurant recom-
mendation system for mobile environments,” in Advances in Computing,
Communications and Informatics (ICACCI), 2013, pp. 507–511.

[4] C. C. Cheong and L. Nadiah, “Transport policies and patterns: A
comparison of five Asian cities,” JOURNEYS, September 2013.

[5] S. Bakhshi, P. Kanuparthy, and E. Gilbert, “Demographics, weather and
online reviews: A study of restaurant recommendations,” in Proceedings
of the 23rd International Conference on World Wide Web, ser. WWW
’14, 2014, pp. 443–454.

[6] “Yelp Dataset Challenge,” http://www.yelp.com/dataset challenge.

[7] “The Google Directions API,” https://developers.google.com/maps/
documentation/directions/.

[8] “OpenWeatherMap Weather API,” http://openweathermap.org/api.

[9] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” 2000.

[10] D. Pelleg and A. W. Moore, “x-means: Extending k-means with
efficient estimation of the number of clusters,” in Proceedings of ICML,
2000, pp. 727–734.

[11] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[12] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel, “LARS*:
A scalable and efficient location-aware recommender system,” IEEE
Transactions on Knowledge and Data Engineering, TKDE, 2013.

[13] “Google Maps API,” https://developers.google.com/maps/.

[14] “SF-Park Project,” http://sfpark.org/how-it-works/the-sensors/.

333336

