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Abstract—Technological developments have lead to the prop-
agation of massive amounts of data in the form of text, image,
audio, and video. The unstoppable trend draws researchers’ at-
tention to develop approaches to efficiently retrieve and manage
multimedia data. The inadequacy of keyword-based search in
multimedia data retrieval due to non-existent or incomplete
text annotations has called for the development of a content-
based multimedia data management framework. Specifically,
detecting high-level semantic concepts is one of the rapidly
growing topics in this regard. In order to thoroughly identify
semantic concepts in data which have different representations
and are derived from different modalities, both positive and
negative inter-concept correlations have been recently studied
and explored to enhance the re-ranking performance. In this
paper, an indirect association rule mining (IARM) approach
is introduced to reveal the hidden correlation among semantic
concepts. The effectiveness of IARM is evaluated by Multiple
Correspondence Analysis (MCA). Furthermore, normalization
and score integration are performed to achieve the optimal
classification results. The TRECVID 2011 benchmark dataset
is used to show the effectiveness of the proposed IARM factor
in the re-ranking process.

Keywords-Multimedia Data, Semantic Concept Detection, In-
direct Association Rule Mining (IARM), Re-ranking, Concept
Mining

I. INTRODUCTION

With the increasing rate of digitization in industry,
academia and among general public, efficient management
of high-diversity multimedia data such as text, image, audio,
and video poses a great challenge. In [1], Dragland claims
that 90 % of the world’s data were generated in the past
two years, which makes it a great challenge to effectively
retrieve the meaningful information from the large volume
of data in different representations. Many researchers were
thrilled to investigate a sufficient way to handle the huge
amount of multimedia big data in terms of searching,
browsing, indexing, etc. [2]–[10], but many challenges were
still standing in the way. For example, it did not take long
for the researchers to realize that due to non-existent or
incomplete text annotations, the conventional keyword-based
search was inadequate in retrieving multimedia data. Hence,
content-based approaches were proposed [11]–[17] to better
capture the semantic information through different types
of low-level features. Specifically, many of these content-

based approaches have been applied to improve multimedia
semantic concept retrieval, whose goal is to identify high-
level semantic concepts such as “dancing” and “forest”
from data instances likes images, videos, or any complex
multimedia data.

When facing multiple semantic concept retrievals, instead
of bridging the semantic gap between low-level features and
high-level semantic concept one at a time, it can be treated as
a multi-label classification problem, which is solved at once
by exploring the concept relations. Intuitively, most of the
research work leveraged the positive inter-concept relation-
ships [18]–[22], which means that if a concept is detected in
one data instance, then there is a higher chance to identify
another concept in the same data instance, such as the
correlation between concept “sky” and concept “outdoor”.
On the other hand, negative correlations are also studied
in [23]–[26] to explore the opposite correlations between
concepts in enhancing the overall classification results. For
example, the fact that a data instance contains the concept
“outdoor” usually implies zero possibility of detecting con-
cept “indoor” from the same data instance. Encouraged by
the improvement of leveraging the direct concept correlation,
indirect association rules among the concepts are explored in
this paper. The goal is to reveal the implicit correlation when
two concepts are rarely identified in the same data instance,
but they are indirectly correlated through a mediator concept.
For instance, the concept “basketball” and the concept “vol-
leyball” might seldom co-occur in the same data instance,
but they have a much higher chance of appearing together
with the concept “gym”. That is, we believe that there
exists an indirect association between concept “basketball”
and concept “volleyball”, which is worth discovering and
analyzing.

In this paper, a multimedia semantic retrieval framework
which utilizes both negative correlations and indirect asso-
ciations is proposed to refine the performance. An algorithm
is developed to retrieve the indirect association rules (IAR)
from the statistics information of the concept occurrences.
The Association Affinity Network (AAN) mechanism [23]
is extended in this paper to encompass both negative cor-
relations and IARM correlations. In addition, two types of
labels are defined and generated to estimate the posterior
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probability of a positive IAR and a negative IAR toward the
detected concepts.

The paper is organized as follows: In Section 2, the
proposed framework is depicted for both training and testing
processes, followed by the presentation and the in-depth
discussion of major components. The experiments setup,
evaluation criteria, the experimental results, and the corre-
sponding discussion are all reported in Section 3. Finally,
the conclusion is given in Section 4, which summarizes the
performance of the proposed work.

II. PROPOSED FRAMEWORK

Figure 1 and Figure 2 depict the training process and
testing process of the proposed framework, respectively.
As shown in Figure 1, the training process consists of
three major components, namely “Multimedia Semantic
Concept Detection”, “Concept Correlation Mining”, and
“Dual Correlation Modeling”. The “Multimedia Semantic
Concept Detection” component mainly concerns the high-
level process of building the classification models to detect
the semantic concepts on multimedia data. From the be-
ginning, the objective is to detect N high-level semantic
concepts such as “Beach” and “Dancing” from the training
process of a training dataset with M data instances. Low-
level features are extracted to represent each training data
instance and N binary content-based classification models
are built as the concept detectors Di, where 1 < i < N .
Finally, each detector outputs M ranking scores to indicate
the probabilities of detecting the concept in the M data
instances. The higher the ranking score, the better chance
to identify the concept in the data instance.

As shown on the right side of Figure 1, both Integrated
Correlation Factor (ICF) and conditional probability-based
coarse filtering method are applied when performing nega-
tive correlation selection. A detailed process is described in
[23]. IARM is proposed to reveal the hidden concept corre-
lations from the formatted label matrix. After selecting only
the conjunctive correlations between negative correlations
and IAR corrections, the features extracted from the original
training dataset are fed as the input to independently train
two MCA-based weight estimation models for negative cor-
relations and IAR corrections. Lastly, the “Dual Correlation
Modeling” component combines two sets of weights and
the ranking scores produced from the “Multimedia Semantic
Concept Detection” component and normalizes them to
better train the regression-based score integration model.
Please note that the selected negative correlations, IAR
correlations, two MCA-based weight estimation models, and
the final regression models are all stored so that they can be
applied to the testing data instances.

In Figure 2, the testing process starts with sending the
testing dataset to each of the concept detectors to produce
the testing ranking scores. After that, the same feature
extraction method performed in the training process will be

used to extract the same feature set from the testing instance.
Two trained MCA-based weight estimation models take the
extracted testing features to generate the weights for negative
correlations and IAR correlations. At the end, the testing
scores from the concept detectors and two different types
of weights are normalized and sent to the trained regression
models to generate the final re-ranked testing scores.

Figure 1: The proposed framework for adopting indirect
association rules (IAR) in AAN (Training Process)

A. Indirect Association Rules

Indirect association rules (IAR) were first proposed by Tan
et al. [27] for identifying a pair of items, x and y, which are
rarely appeared together in the same transaction, but they
both highly depend on a set of mediator item Med. The
formal definition can be found at Definition 1.

Definition 1. Indirect Association Rules (IAR)
An itemset pair {X,Y } is indirectly associated through a
mediator Med, if the following conditions hold:

1) sup({X,Y }) < itps
2) There exists a non-empty set Med such that:

• sup({X} ∪ Med) ≥ Meds, and sup({Y } ∪
Med) ≥Meds

• dep({X},Med) ≥ Medd, and dep({Y },Med)
≥ Medd

The threshold above are named itempair support threshold
(itps), Mediator Support Threshold (Meds), and Mediator
Dependency Threshold (Medd), respectively. In practice, it
is subject to have Meds > itps. When the rule is applied to
discover the correlations among semantic concepts, a brief
illustration is depicted in Figure 3. As shown in this figure,
two concepts, CX and CY , can rarely be identified in the
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Figure 2: The proposed framework for adopting indirect
association rules (IAR) in AAN (Testing Process)

Figure 3: Applying IARM in Mining Concept Ontology

same data instance, but they both highly depend on the
presence of a set of mediator concepts CMeds.

Before describing how to incorporate the idea of IARM, it
is necessary to introduce several definitions used throughout
the paper.

Definition 2. Data Instance, Features, and Label

A data instance is referred to as an image, a keyframe,
or a video shot, depending on the content of the introduced
dataset. In the experiment section, the TRECVID 2010
dataset is adopted to validate the proposed framework, where
each data instance represents a keyframe of one video shot.
Features are five well-known low-level features extracted
from both training and testing datasets, including HAAR,
CEDD, HOG, HSV, and YCBCR. Lastly, a label is the
value of either 0 or 1 per instance to indicate whether the
corresponding semantic concept exists in that instance.

Definition 3. Support and Confidence

To calculate the support and confidence values, a com-
bined label matrix must be formed (as shown in Table I),
where each row represents a data instance and each column
represents a concept label. In other words, each element in
this matrix will indicate whether one data instance contains
one semantic concept or not. Therefore, with the idea of
association rule mining [28], each data instance can be con-
sidered as one transaction; while each concept is considered
as one itemset. Let C = {C1, C2, ..., CN}, TI be a set of all
transactions where each transaction I is a set of items such
that I ⊆ C, and Occ(CX) is the number of occurrences
of CX . Thus, for an association rule like CX ⇒ CY , the
support and confidence values can be calculated as shown
in Equation 1 and Equation 2, respectively.

sup(CX ⇒ CY ) =
Occ(CX ∪ CY )

Number of TI
(1)

conf(CX ⇒ CY ) =
Occ(CX ∪ CY )

Occ(CX)
(2)

Definition 4. Itemset Pair and Mediator

IARM is introduced to discover the hidden correlation
when concept X and concept Y seldom appear together in
the same data instance, but they will usually be identified
along with the mediator concept Med. Therefore, Itemset
Pair is defined to include two concepts, e.g., X and Y ,
which rarely appear together and concept Med is the me-
diator.

Definition 5. Dependence: Interesting Ratio (IR)

In addition to the confidence value, an interesting ratio
is another perspective to further verify the significance of
the retrieved rules. For example, if there is an indirect
association rule, where the itemset pair is concept X and
concept Y and the mediator concept is Med, an interesting
ratio is introduced to ensure the following two conditions.
First, concept X highly depends on the appearance of
the mediator concept Med. Second, this IAR rule is not
retrieved because of the high frequency of concept Med.
The same thoughts should be also applied for concept Y .
The interesting ratio between concept X and concept Med
is calculated as shown in Equation 3.

IR(CX ⇒ CMed) =
sup(CX ∪ CMed)

sup(CX)× sup(CMed)
(3)

The entire process of retrieving IAR correlations is de-
scribed in Algorithm 1. At the beginning, the combined label
matrix is the input and the set of the indirect association
rules IAR, frequent 1-itemset FI , and frequent itemset
pair FIP are all initialized as empty sets. The support of
each concept is calculated and compared with the minimum
support minsup to find all the frequent 1-itemsets FI . The
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frequent itemset pair FIP is successively generated using
all possible combinations of FI (as described in Algorithm
1, lines 2 to 7). For each frequent itemset pair, assuming it is
represented as CX and CY , only the support ratio less than
the itempair support threshold itps will be selected since
we are looking for the hidden correlation for the infrequent
itemsets. Later, the possible mediator concept CMed will
be collected based on its support ratio and interesting ratio
toward the selected infrequent itemset pair (as described
in Algorithm 1, lines 8 to 16). The important thresholds
including minsup, itps, Meds, and Medd are decided from
the best performance run in the training process.

Table I: Combined Label Matrix

C1 C2 ... CK ... CN

Instance 1 1 0 ... 0 ... 0
Instance 2 0 0 ... 0 ... 1

... ... ... ... 0 ... ...
Instance i 0 0 ... 0 ... 0
... ... ... ... ... ... ...
Instance M 0 1 ... 0 ... 0

Algorithm 1: IARM Concept Correlation Retrieval
input : Combined Label Matrix M ×N , where M

represents the number of data instances and N
represents the number of concepts

output: IAR - A set of indirect association rules
1 IAR←− ∅; FI ←− ∅; FIPair ←− ∅;
2 for Each Concept Ci, i← 1 to N do
3 if sup(Ci) > minsup then
4 FI ←− Ci

5 end
6 end
7 FIPair ←− Combine(FI)
8 for Each FIPair(CX , CY ) ∈ FIPair do
9 if sup(CX , CY ) < itps then

10 for Each Concept CMed, M ← 1 to
Num(FI) do

11 if sup(CX ∪ CMed) ≥ Meds and
sup(CY ∪ CMed) ≥ Meds and
IR(CX ⇒ CMed) ≥ Medd and
IR(CY ⇒ CMed) ≥ Medd then

12 IAR←− (CX , CY , CMed)
13 end
14 end
15 end
16 end

B. Integrate with Association Affinity Network (AAN)
The prototype of AAN was initially proposed in [29],

called Concept Association Network (CAN). It starts with

applying association rule mining (ARM) to select significant
association links and capture the strong associations among
different concepts. Next, CAN gradually improved with
more essential factors such as negative correlation selection,
estimated weight represented the posterior probabilities of
correlations, and made it to what an AAN is. Inspired by
the idea of AAN and other research work related to associ-
ation rule mining (ARM) [30]–[34], which motivates us to
introduce IAR in exploring the hidden concept correlations.

Figure 4: Two Types of IAR Label Generation

1) MCA-based IAR Weight Estimation: In conjunction
with the negative correlations introduced in [23], for a
target concept Ct, the same methodology of calculating the
probability of detecting a positive target concept is applied
for IAR. Let IAR consist of concept CX , concept CY ,
and mediator concept CMed, and Fi indicate the observed
features for data instance i. If either CX or CY is the target
concept Ct selected from the negative correlations, then
P (C1

t |Fi) can be used to represent the probability that i is
negative, given Fi. With the assumption of IAR mentioned
earlier, it can be expanded as shown in Equation 4.

P (C1
t |Fi) = P (C1

t |C0
IAR, Fi)P (C

0
IAR|Fi)

+P (C1
t |C1

IAR, Fi)P (C
1
IAR|Fi)

= P (C1
t , C

0
IAR|Fi) + P (C1

t , C
1
IAR|Fi)

(4)

To statistically quantify the impact of the IAR toward
the target concept with the observed low-level feature val-
ues, two conditional probabilities, e.g., P (C1

t , C
0
IAR|Fi)

and P (C1
t , C

1
IAR|Fi), are produced and summed up as

P (C1
t |Fi). Two types of labels are redefined and generated

based on the retrieved IAR correlations as shown in Figure 4.
Afterward, the new labels along with the observed features
are used to train the MCA-based weight estimation models
for IAR. The upper side in Figure 4 describes the positive
IAR impact toward the target concept Ct. Given a positive
target concept, e.g., Ct = 1, the new label has value 1 if
all the concepts included in the IAR are positive, and the
new label has value 0, otherwise. The lower side in Figure 4
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depicts the negative IAR impact toward the target concept.
With a negative target concept, e.g., Ct = 0, the label’s value
is 1, if all concepts in the IAR are negative and the label’s
value is 0 for other cases.

Multiple Correspondence Analysis (MCA)-based model
is selected to estimate these two probabilities. Originally,
MCA was extended from the standard correspondence anal-
ysis to analyze the correlation among variables. Later, it
has demonstrated its competence in enhancing multimedia
retrieval research topics through capturing the correlations
among high-level semantic concepts and low-level features
[35]–[37], and modeling posterior probability [38]–[40].

2) Score Normalization and Regression-based Score Inte-
gration: Given the output generated from the target concept
detectors, related concept detectors, and MCA-based weight
estimation models, the effectiveness of using a negatively
correlated concept to detect a target concept was modeled
in [23].

In this paper, the idea of revealing the indirect association
rules among the concept correlation network is introduced.
Hence, a detection matrix DM can be formed where the
first three vectors are target concept detector DMt, related
concept detectors DMr, the negative correlation, which
is between target concept and related concept, modeled
by the MCA-based weight estimation DMnw. Two more
vectors are added at the end to represent the indirect asso-
ciation rule detector DMiar and the corresponding weight
estimated by the MCA-based methodology DMiw. There-
fore, each row DM i can be represented by a row vector
[1, DM i

t , DM
i
r, DM

i
nw, DM

i
iar, DM

i
iw]. A likelihood func-

tion is formulated accordingly as shown in Equation 5. θ is
the parameter vector composed of [θ0, θ1, θ2, θ3, θ4, θ5]T . In
Equation 5, Ci = 1 indicates the label of a data instance is
positive and Ci = 0 means the data instance is labeled as
negative. m is the total number of data instances.

L(DM ; θ) =
m∏
i=1

(g(DM iθ))C
i

· (1− g(DM iθ))1−Ci

where g(x) =
1

1 + e−x

(5)

J(DM ; θ) = −logL(DM ; θ) + λ||θ||2
subject to θ1 ≥ 0, θ2 ≤ 0, θ3 ≤ 0, θ4 ≥ 0, θ5 ≥ 0.

(6)

Here, the variable θ1 is the indicator of the positive target
concept, and thus it is subject to be greater than or equal to
zero. θ2 and θ3 are introduced to better estimate the negative
correlation so that they should be both less than or equal to
zero. Finally, θ4 and θ5 consider the impact on the positive
target concept of having the indirect association rules or not,
and therefore they are both set to be greater than zero. The
variable lambda is adopted in the cost function to avoid the
possible overfitting problem.

III. EXPERIMENTS

A. Dataset

The dataset “IACC.1.B” prepared for the TRECVID 2011
semantic indexing task [41] is adopted as a benchmark
dataset to evaluate the classification results among different
methods. The labels of the 346 high-level semantic concepts
are provided through a collaborative annotation activity
hosted by NIST [42] and the concept list can be found with
detailed definition in [41]. It is a collection of videos with a
total duration of 200 hours, and each video lasts between
10 seconds and 3.5 minutes. The detection scores were
generously provided by the Shinoda Lab at the Department
of Computer Science at Tokyo Institute of Technology [10],
whose group achieved the top performance at the TRECVID
2011 Semantic Indexing Task.

Table II: Dataset statistics information

Dataset IACC.1.B
TRECVID Year 2011
No. Concepts 346
No. Training

Instances 144774

No. Testing
Instances 137327

Average Positive
No. Instances 408.42

Average P / N
Ratio 0.003

Table V: Confusion Matrix

Predicted Class
Positive Negative

Positive
True

Positive
False

Negative
Actual
Class Negative

False
Positive

True
Negative

B. Evaluation Criteria

The well-known measurement method called Mean Aver-
age Precision (MAP) is used. To calculate and understand
the MAP value, a derivation process is described as follows,

First, Precision is an accuracy evaluation method, and
is derived from the confusion matrix as shown in Table
V. Confusion matrix is widely used in machine learning
and data mining areas to visualize the classification results
in table-layout fashion and based on it, precision can be
calculated as shown in Equation 7. It demonstrates the
fraction of retrieved instances that are relevant, where a
high precision value indicates a lower false positive rate.
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Table III: MAP values at different number of instances retrieved for IACC.1.A

Frameworks Top10 Top20 Top40 Top60 Top80 Top100 Top500 Overall
RAW 0.4508 0.4084 0.3576 0.3137 0.2738 0.2441 0.1305 0.1910
DASD 0.4827 0.4020 0.3340 0.3113 0.2786 0.2431 0.1222 0.1778
AAN 0.8626 0.7355 0.6054 0.5588 0.5105 0.4729 0.3397 0.4478

AAN + IAR
( Proposed ) 0.8820 0.7710 0.6343 0.5876 0.5451 0.4945 0.3757 0.5123

Table IV: MAP values at different number of instances retrieved for IACC.1.A using three-fold cross validation

Fold Number Top10 Top20 Top40 Top60 Top80 Top100 Top500 Overall
Fold1 0.8723 0.7810 0.6188 0.5846 0.5541 0.5007 0.3719 0.5075
Fold2 0.8935 0.7533 0.6443 0.5907 0.5367 0.4867 0.3688 0.4935
Fold3 0.8801 0.7786 0.6397 0.5876 0.5444 0.4962 0.3864 0.5103

Overall 0.8820 0.7710 0.6343 0.5876 0.5451 0.4945 0.3757 0.5123

• Precision

Precision =
TruePos

(TruePos+ FalsePos)
(7)

• Average Precision and Mean Average Precision
Average precision (AP) and mean average precision
(MAP) are two metrics extended from precision, as
defined in Equation 8 and Equation 9, respectively.
Average Precision at K is used to evaluate the top K
ranked results, where #(TopR) represents the number
of data instances which are correctly classified as posi-
tive instances among the top R retrieved data instances,
R = 1...K. A higher AP value means more relevant
results are ranked earlier than the irrelevant ones.

AP (K) =
1

K

K∑
R=1

#(TopR)

R
(8)

Mean Average Precision is used to validate the ranked
results for more than one concept, where TC is the
total number of concepts and APC(K) is the average
precision at K for concept C. It can also be used to
represent the overall performance for a three-fold cross
alidation experiment.

MAP (K) =

∑TC
C=1APC(K)

TC
(9)

C. Experimental Results

To evaluate the proposed framework, it was compared
with three different frameworks. First, the original ranking
scores without any modifications were indicated as “RAW”.
Second, the domain adaptive semantic diffusion “DASD”
proposed in [24] was applied. Third, the association affinity
network with only the negative correlation proposed in [23]
was indicated as “AAN”. The last one is the proposed
framework, which is indicated as “AAN + IAR”.

The MAP values at different numbers of retrieved data
instances are reported for each framework as shown in Table
III. The last column represents the MAP values calculated
while considering all the testing data instances. All the
results are the average MAP values of a three-fold cross vali-
dations. The comparisons between “RAW” and “AAN” show
the importance of mining negative concept correlations. Tao
et al. has explained two possible reasons why “AAN” has
higher MAP values against “DASD” in [23]. One is the
selection of significant negative concept correlations and the
other is the accuracy of posterior probability estimation.
Most importantly, the proposed framework produced the
highest MAP in various retrieved levels among all the
frameworks, which can be explained in two-fold. First, using
IAR correlations is able to dig out the valuable correlations
from the infrequent concept itemsets, which are those con-
cepts rarely being identified together in the same data in-
stance. Second, applying IAR correlations is able to identify
interesting negative correlations, because P (C1

t , C
0
IAR|Fi)

and P (C1
t , C

1
IAR|Fi) comprehensively consider the IAR’s

positive and negative impacts toward selected negative cor-
relations from AAN.

In Table IV, the steadiness of the proposed method can
also be reflected from the MAP values generated for each
fold. There are no major differences among the classification
results for three folds, which shows the robustness of the
proposed method. In addition, all the folds can perform close
to 50% MAP values when considering the whole testing
dataset.

IV. CONCLUSION

In this paper, the idea of indirect association rule mining
(IARM) is introduced into a semantic concept detection
framework for multimedia semantic retrieval. First, a novel
algorithm is proposed to retrieve significant IAR correlations
based on the statistic information of the semantic concept
labels. Two types of newly defined labels are used to train
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the weight estimation models for generating the posterior
probability between the IAR and the target positive con-
cepts. Lastly, the IAR correlation model is incorporated
with the negative correlations to refine the final ranking
scores through the explicit normalization and regression-
based model designed for dual correlations. From the exper-
iments, the proposed framework achieved the highest clas-
sification results against other related work demonstrate the
strength in two folds. First, thoroughly exploring the indirect
semantic concept correlations can enhance the classification
results for semantic concept retrieval from a large amount
of multimedia data. Second, discovering IAR correlation
is a good combination with the existing negative-based
correlation framework because of its capability of detecting
the interesting negative correlations.
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