

Semantic Query Optimization by Class Reference Reduction ·
Object-Oriented Databases

Sha Guo, Wei Sun, N aphtali Rishe, Yi Deng
School of Computer Science

Florida International University
Miami, Florida 33199, U.S.A.

Abstract

A 11 ema.ntic query optimizer i11 propo11ed in an object
oriented database Jy!ltem (OODB) in thi11 Jtudy. Al
though 11ema.ntic query optimization ha.J been inten
!lively 11tudied in the context of relational and deduc
tive da.ta.ba.11e management !IY!Item!l (DBMSs} {9, 27},
certain distinct object-oriented fea.ture!l 11uch a.J cla.!IJ
hierarchy have not been taken into con11idera.tion. In
thi5 paper, we 11how that class assertions or constraints
that characterize the common propertie11 of object11 in
a. class and that are widely 11upported by OODB11 can
be used to !lema.ntica.lly optimize OODB querie11 by re
ducing the reference to a. cla.B hierarchy in a. query to
a. set of (sub) cla.!lse!l in the hierarchy. Thill optimiza
tion i11 important, becau11e a.cce1111ing a 11ubset of clas!le!l
is alwa.y11 le!l!l costly than accessing the whole hierarchy
(which implies acceHing all it5 cla!l!le!l} in evaluating
an OODB query. The 11ema.ntic query optimization by
making u11e of cla.H a.!l5ertion5 is clearly uniquely per
tinent to OODB11, and may yield a. substantial gain in
evaluating queries in OODBs.

1 Introduction

The object-oriented technique has been widely ap
plied in various DBMSs. Several object-oriented
database systems (OODBs) have been developed in re
cent years. Some systems such as GemStone [6, 22] ,
Vbase and its successor Ontos [1], Orion [20, 21) and
02 [13] are now commercially available. [16] presented
several prototype systems which are among the most
representative new-generation DBMSs.

Although there h<Ul been no consensus so far on
what an OODB is, some general characteristics and
features that an OODB should possess were pointed
out in [3 , 21]. Each object is uniquely identified by
a system-wide object identifier (oid). Objects, also

\
306

called in!ltance!l, are grouped into claue11; u•o•cu•~.;a
a class will share the same set of attributes and
ods; and a class can be a !lubclas!lj!luperclau of ,w1::r

one. Thus, a class hierarchy exists in an OODB.
class hierarchy reveals the IS-A relationship, or
generalization/specialization among classes.
ing IS-A relationship and its associated inheritance
one of the most important properties in an OODB
00 programming language.

Semantic query optimization (SQO) was proposed
in the early 80s in relational DBMS [9, 25, 27] . The
sic idea of SQO is to optimize queries by transforming
a query qualification into another semantically equiv
alent one using Jemantic integrity con!ltraint!l (SICs)
such that evaluating the transformed query becomes
less costly. SICs, which were probably first introduced
in [15) in relational DBMSs, have been widely used
in many commercial DBMSs. SICs assert permissible
or consistent database states (a database state is the
stored data at a given time instance) for a datab<Ule
application. For example, in a payroll database, the
minimum hourly pay rate has to be $4.35 by law; in a
university, the regulation may require that all gradu
ate students maintain a minimum GPA of 3.0. More
examples can be found in [9, 27] . Although SQO h<Ul
been extensively studied in a relational DBMS and de
ductive DBMS, there has been little discussion in the
literature on SQO in an OODB environment.

There are a few general goals to be achieved by
SQO. In relational DBMSs [25, 27], SQO will normally
involve (in decreasing order of priority of importance):

1. Detecting whether there is a contradiction in a
user's query qualification under the set of SICs;

2. Eliminating unnecessary joins (cla!l!l traver6al6
[21] or ft.nctional join11 in an OODB [7, 33]);

3. Eliminating non.-co!lt-beneficial and semantically

redundant selection predicates (also called re,tric
tion,);

4. Adding co3t-beneficial and semantically redun
dant restrictions.

Motivations, examples and analyses pertinent to
SQO in a relational DBMS can be found in [9, 25, 27).
It seems that these goals and the proposed techniques
are also generally applicable to SQO in OODBs, with
a possibly slight modification.

In [20) a query model in an OODB is provided.
Queries in an OODB have many distinct character
istics. One of the major features in an OODB is that
a query may be posed against a single class, or a class
hierarchy rooted at a class (including all classes in the
hierarchy). In the latter case, when a query is evalu
ated, each instance in each class in the class hierarchy
will be accessed and evaluated against the query quali
fication. In this paper, we show that it is possible that
(1) all instances in a class may not contribute to the
answer to the query, and (2) all instances in a class
will be in the answer to the query. Let the class of
the first type be called a C_Class (a Contradictory
Class), and the class of the second type be called an
LClass (an Implied Class) (also see Example3 1 EY 2
below). For a C_Ciass, accessing instances in the class
becomes unnecessary for evaluating the query, because
none of the instances will satisfy the query qualifica
tion; For an LCiass, evaluating the query qualification
against the instances in the class becomes unnecessary,
because all the instances of the class satisfy the query
qualification, and thus will be in the answer to the
query. In fact, in many OODBs, objects are indexed
by their oids. Thus, all oids in the oid index file con
stitute the evaluation if we ignore how objects are pre
sented to users (in graphs, voices, motion pictures, or
normal texts). Given a query against a class hierarchy,
we want to identify as many C_Classes and LCiasses
as possible in the hierarchy for an OODB. We call this
task the cla:JJ reference reduction, that is, to reduce
a reference of a class hierarchy (including all classes
in the hierarchy) in a query to the reference of a sub
set of classes in the class hierarchy. This optimization
goal is uniquely pertinent to an OODB, and is clearly
distinct from the traditional SQO goals. This subject
has not been addressed in the literature. It is clear
that in order to identify these C_Classes and LClasses
with respect to a query qualification, the properties of
objects in a class should be characterized or asserted.
It is popular that certain con3traint3 can be associated
with objects in a class, for example, the value for the

307

\

attribute age in class Employee must be greater than 18
by the federal law, and so on. Exactly due to the rea
son that 4imilar objects are grouped into a class, these
common features can be captured by using assertions.
This type of mechanism by using constraints are sup
ported by almost all OODBs and 00 languages such as
Gemstone, Smalltalk, C++ and 02. In this study, we
only focus on conjunctive queries and conjunctive con
straints of a class, since conjunctive queries and con
straints are believed to be the most popular ones used
in a practical setting. More precisely, queries and con
straints are conjunctions of the inequalities of the types
(Attr., op C) or (Attrv op Attr~), where Cis a con
stant of the domain Attr.,, Attrv and Attr, are class
attributes such as age 1 , and opE{<,~,>.~,=,#}.
This assumption is reasonable, since (Attrv op Attr,)
represents a 8-join, and (Attr., op C) represents a se
lection in a relational database system (similar opera
tions are also supported and widely used in an OODB)_t the set of constraints defined for a class be called
the clas6 as4ertion of the class. In order to identify
the C_Classes with respect to (wrt) a query, an effi
cient solution to decide whether the query qualifica
tion, together with a class assertion, is 3ati,fi.able or
not is essential. In order to identify the LCiasses, an
efficient solution to decide whether the query qualifi
cation is implied by the class assertion of a class is es
sential. These implication and satisfiability problems
are also encountered in many other database problems
such as identifying the sites that may contain a rela
tion fragments that may contribute to a query in a dis
tributed fragmented database system [10, 31), semantic
query optimization (9 , 30), global query optimization
[8, 17, 24}, efficient updates via views [2, 4, 5]. Thus,
.t.be proposed implication and satisfiability algorithms
w~ll be of use in solving these problems.

In this paper, we assume that all classes are inde
pendent files in the underlying physical system. In
[29) several physical storage models for object-oriented
databases are provided. The physical storage scheme
we assumed has been adopted by OODBs such as
Orion(19). In fact, it is not difficult to observe that
OODB queries which have been semantically opti
mized as proposed will always be executed more ef
ficiently under any 00 DB physical model (or in the
worst case, the equivalently efficiently).

Figure 1 shows a simplified object-oriented data
model concerning one class hierarchy using a sample

1 We note that attributes may be rather complex, which may
involve clau traversal.. (21] . Since this is not quite related to
our cliacu .. ion of SQO, we ignore it only for the aimplification
of preaentation.

university database. This hierarchy is represented as
a rooted directed (from superclasses to subclasses),
acyclic g~aph (a DAG for short), where each node is
a class. The hierarchy says that class Student has
two subclasses Graduate and Undergraduate; and
in turn class Graduate has two subclasses RA and
TA. We assume each class has its own instances that
physically belong to the class. For example, students
include some non-degree track students (who are nei
ther graduates nor undergraduate students) in addi
tion to undergraduate students and graduate students.
Graduate students include RAs, TAs, and those who
are neither RAs nor TAs. The following simplified ex
amples based on the sample database illustrates the
motivation of the proposed SQO.

#~no
narne
major
gpa
credit

Figure 1: An example database schema

Example 1 Suppou a. query i! ("li!i all graduate 8iu
dent8 who take cour!e! of 3 credit!") . The evalua
tion of the query will a.cce84 all graduate 8tudent8 in
cla.!8 Graduate a.s well a.! all graduate !tudeni! in
it' nbcla.ue8 RA and TA, apply the query qua.lifica.-
tion to each of them, and return tho8e qualified grad
uate student" (in!iance!). If the following con!traint
i8 given ("RA and TA graduate student_, mud main.-

. tain full-time statu! by regi,tering cour8e! of at lea.8t
6 credit! in order to maintain their a88ista.ntships "),
then clearly the answer to this query doe! not include
any TA and RA graduate students without acce8.f
ing/evaluating cla8.fe.f RA and TA. Therefore, it i8
.fujjicient to only acce8s graduate students (in.ftances)
in the cla8s Graduate in order to evaluate the query.
Claue8 RA and TA are the C_Cla.ue8 with respect to
the query. If only 1/ 10 graduates are not TA8 or RAs,
then the 8emantically optimized query evaluation plan

\
308

only need8 to acceu 1/10 of instance& - a significant
gain. •

This example shows that when the qualification of
a query conflicts with the class assertion of a class, it
can be directly concluded that none of the instances
in the class (a C_Class) will contribute to the answer
of the query. As a result, there is no need to access
any instances of this class for the evaluation. The fol
lowing indicates another scenario that a query can be
semantically optimized (the LClasses).

Example 2 Suppo8e a query i8 ("li!t all graduate stu
dent_, who take cour8e8 of at lea8t 3 credit,"). The
conventional strategy to evaluate thi" query will ap
ply the query qualification/8election8 to all in!tance!
(graduate student.,} in claHe! Graduate, RA, and
TA. A48Ume that the nme cla84 a88ertion for claH
Graduate as 8hown in Example 1 i! given, the an
!wer to thi! query include8 all RA and TA graduate
!tudeniJ without phy,ically acce!!ing/ evaluating them
on an individual instance ba!i!. •

Example 2 shows that if the class assertion of a class
implies a query qualification, then all instances of this
class are qualified to the query. In many OODBs, ob
jects in a class are indexed by their oids . Thus, all the
oids in the object index file are the desired result.

The rest of the paper is organized as follows: In
Section 2, we show how to identify all the C_Classes
and LClasses when given a query. In Section 3, we
discuss how to solve the implication and satisfiability
problems efficiently and effectively, which is the essen
tial part of the proposed SQO in an OODB. Finally,
Section 4 concludes this paper.

2 Semantic query optimization

In this section, we introduce some basic concepts,
and provide an overall strategy.

Definition 1 A class assertion of a cla8.f X, de
noted cu Ax, consi.,ts of conjunctive constraints. A
coutraint is of the form (Attr., op C) or (Attry op
Attr6 }, where Attr:c, Attr11 , and Attr6 are attribute!
of a clo.u, C is o. con8tant of the domain of Attr.,,
and op E { <, =, >, ~. ¥=, ~}. An instance I belongs to
clo.u X only if I sati8fies Ax . •

The objective of this paper is to identify as many
LClasses and C_Classes as possible when given a query.

--

This is achieved by testing the relationships (implica
tion or satisfiability f contradiction) between the quali
fication of the query and class assertions, as precisely
defined below.

Definition 2
{CdAttr., 11 C2/Attr.,,, •.. , CnfAttr.,,.} is said to be
an assignment for a class cusertion Ax or a query
qualification q if every occurTence of Attr.,, in all in-

. equalities in q or Ax is 6imultaneously replaced by C,,
1 ~ i :::; n. An assignment satisfies q or Ax if and
only if the q or Ax evaluates true under the as1igned
values. There exists a contradiction in q or Ax if
and only if there does not exist an a66ignment which
will 6atisfy q or Ax. In the latter case, we al1o 1ay
that q or Ax is unsatisfiable.

Definition 3

Implication: q is implied by Ax {or Ax implie1 q),
denoted as Ax :::!> q, if and only if every a3-
6ignment that Jatisfies Ax alJo JatiJjieJ q.

Satisfiability: Ax and q iJ satisfiable if and only
if there exiJts an a6.7ignment for Ax and q that
will Jatisfy Ax and q (i.e., Ax and q i3 true under

the a33ignment). •

Given a query Q[X : q] that will retrieve all objects
in the classes in the class hierarchy rooted at X, and
the class assertion Ax of class X, there are three pos
sible relationships between q and Ax as shown in the
Figure 2 below:

Ax contradicts q: In this case , all instances in class
X will not contribute to the answer of the query.

Ax implies q: In this case, all instances in class X
will be in the answer of the query.

Otherwise: Instances in class X need to be accessed
and evaluated on an individual basis as usual.

(~) Ax contr~dicts q (b) Ax implies q (c) Otherwise

Figure 2: Relationships between query qualifica
tion q and class assertion Ax

309

We note that class X may represent a single class
or the class hierarchy rooted at X. In the latter case,
when Ax contradicts q, all instances in X and in its
subclasses will not contribute to the answer of the
query; and when Ax implies q, all instances in class X
and its subclasses will be in the answer of the query.
This is obvious, because an object must satisfy all class
assertions of its super classes (or in other words, class
assertions are also inherited).

We want to identify the maximal set of LClasses and
C_Classes, or equivalently, minimize the classes to be
accessed/evaluated. The following recursive algorithm
is direct. A query qualification q and a class name
X (representing the class hierarchy rooted at X to be
accessed by the query) are the input to the algorithm.
When the algorithm terminates, ISet, initialized to be
empty when the a lgorithm is invoked, contains all the
!.Classes; and CSet, initialized to be empty when the
algorithm is invoked, contains all the C_Ciasses;

Algorithm SQO-CRR(X, q, ISet, CSet)
begin if X = 0 then return; /* the exit rule * f

if conftict(Ax 1\ q) then

end;

SQO-CRR(0, q, ISet, CSet u X .. 11);

el3e i[imply(Ax, q) then
SQO-CRR(0, q, !Set u X .. 11 , CSet);
elJe for X 1 , X2, ... , Xc of X do

SQO-CRR(X5 , q, ISet, CSet);

where the function conftict (ARI\ q) returns true if Ax
conflicts q, false otherwise; the function imply(Ax,
q) returns true if Ax implies q, faiJe otherwise; xa.ll
denotes the set of all classes in the hierarchy rooted at ·
X. E-z;ampie 3 below shows how the algorithm works.

Example 3 A33Ume that a Jtudent muJt take couru3
of at leaJt one credit to maintain hi-7/ her Jtudent Jta
tu3. Each 1tudent iJ aHigned a unique student number
ranging from "500000" to "550000". The following i3
the claH aJJertion for cla33 Student:

Astud•nl = { 5tudent.credit ~ 1,
5tudent.#mo :::; "550000",
5tudent.#mo ~ "500000" }

A graduate 3tudent muJt maintain hiJjher CPA at
ieaJt 3.0. Graduate .7tudent3 have Jtudent number from
"501000" to "50999g",

Acra.dua.t• = { Graduate.gpa ~ 3.0
Graduate.#Jno:::; "509999"
Graduate. #mo ~ "501 000" }

A undergraduate tJtudent must maintain hi.,jher
CPA at least 2. 0. Undergraduate 5tudent6 have 6tu
dent number from "51 0000" to "550000".

Aundergroduat~ = { Undergraduate.gpa. ~ 2.0
Undergraduate. #mo :s; "S 5 0000"
Undergraduate.#.mo ~ "510000"}

RA3 and TA.! mu5t take cour.!e.! of at least 6 credits.

ARA = { RA.credit ~ 6}
ATA = { TA.credit ~ 6}

Suppose that a query is Q[Student : ((# sno ~
"500500") 1\ (#sno :s; "509999"))L which says "li3t
the !tudents who!e id numbers are within 500500 and
509999 ". The query target i3 the claH hierarchy
rooted at Student, or equivalently, it refer6 to the set
of classe5 {Student, Graduate, Undergraduate,
RA, TA}. The above algorithm can thu5 be invoked
as SQO-CRR(Student, ((#sno ~ "500500") 1\

(#sno S "509999")), !Set, CSet), where ISet and
CSet have been initialized to be 0 (empty). We know
that the class assertion AcrCiduCit< of clas! Graduate
implies the query qualification, the clas5 assertions of
class Graduate 's .mbclasses RA and TA imply the
query qualifi cation, and the cla.ss aHertion of class
Undergraduate contradicts th e query qualification
due to (Undergraduate.#mo ~ "510000"). When the
algorithm terminates, CSet = {Undergraduate}
and !Set = {Graduate, RA, TA }. Consequently,
it is sufficient t o acceHje valuate objects in the class

Student . •

As discussed above, efficiently and effectively solv
ing the implication and satisfiability problems (the
conflict() and imply() procedures) is central to the
proposed strategy. In the next section, we discuss how
to solve these problems.

3 Solving the satisfaction and implica
tion problems

We first discuss the implication problem in Sec
tion 3.1. In Section 3.2, the satisfiability problem is
discussed.

3.1 Solving the implication problem

The implication problem (whether Ax implies q) in
the integer domains has been shown to be NP-hard[23).

310

In the following, we provide an efficient algorithm to
determine whether Ax implies q in the real domains.

A. Klug and J. Ullman proposed an algorithm to
solve the implication problems involving the inequali
ties of the form (Attr:r: op Attrv), a special case of our
situation. We will also have a brief discussion of the
Klug-Ullman's algorithm for a comparison.

Klug and Ullman's approach [28) uses an idea sim
ilar to the way that functional dependencies in a rela
tional database system are handled, where a collection
of axioms is used [28) . The Klug-Ullman axioms, as
shown below, for inequalities are then shown to be
sound (only inferring correct. inequalities) and com
plete (inferring every correct. inequalities) [28).

Al: (Attr:r: S Attr:z:)
A2: (Attr: < Attrv) implies (Attr:r: S Attrv)
A3: (Attr:z: < Attrv) implies (Attr:r: :f. Attrv)
A4: (Attr:r: :s; Attrv) and (Attr:r: :f. Attrv)

imply (Attr, < Attr11)

AS : (Attr:z: :f. Attrv) implies (Attrv :f. Attr:r:)
A6: (Attr:r: < Attrv) and (Attrv < Attr,)

imply (Attr" < Attr,)
A 7: (Attr:r: s Attr11) and (Attrv S Attr,)

imply (Attr, S Attr,)
AS: (Attr" S Attr,), (Attr, S Attr11),

(Attr: S Attrw), (Att rw S Attrv)
and (Attrw :f. Attr,) imply (Attr:r: :f. Attrv)

Then, Klug- Ullman's algorithm first computes the
closure of Ax, denoted as A 1, by applying axioms Al
to AS on Ax until there is no any more new inequalities
to be generated. The closure computation procedure
is as follows:

1. Convert each <relationship, say (Attr: < Attrv),
into (Attr:r: :s; Attrv) and (Attr:r: :f. Attrv)·

2. Compute the transitive closure of the :s; relation
ships.

3. Apply axioms A8 to infer additional :f. relation
ships.

4. Reconstruct the < relationships using axiom A4;
that is, (Attr., < Attrv) if (Attr., s Attrv) and
(Attr, :f. Attrv)·

The total time complexity of Klug-Ullman's algo
rithm to test whether Ax implies q is O(IAx 13 + lql)
due to Step(3).

In [26) a more efficient algorithm with the complex
ity O(IAx r:z· 376 + jql) is proposed to compute A':i-

\

For our case, we construct an inequality set A' x
from Ax: let (c 1 I c2 I ••• I c k) be all the distinct con
stants in ascending order of their values, which are
used in all inequalities of the form (Attr., op Ci)
in Ax, we introduce k dummy attributes (Attr,., 11

Attr,.,,, ... , Attr,.,.) to represent these k distinct con
stants, and 2k- 2 inequalities, AADDED = {(Attr,.,, ~
Attr,.,,), (Attrw, ~ Attr,.,,), ... , (Attr,.,._, S Attr,.,.),
(Attrw

1
-:j; Attrw,), (Attrw, -:j; Attr,.,,), ... , (Attr,._ 1

-:j; Attr,.,.)} to represent the relationships among the
newly introduced attributes. For each (Attr., op C,) E
Ax, we transform it into (Attr., op Attr,.,;), where
Attrw, represents the dummy attribute for C,. Let
AREP be the inequality set after the above transfor
mation, and A'x = AREP U AADDED· GA'x is con
structed as the way of constructing G Ax. Then the
closure of A' x, denoted as A'i , is computed [26, 28).
After A'k is computed, dummy attributes are replaced
back with corresponding constants. For each attribute
Attr.,, let C~P = min(C;) for all (Attr., S C;) E A'i,

and Cl'c,, = max(C;) for all (Attrx ~ C;) E A'!. It is
no ted that aft er the above transformation, the size of
A' x is st ill bounded by O(I Ax i) .

The following lemma basically follows the soundness
and completeness of the Klug- Ullman axioms [28]. A
proof can be found in [26].

Lemma 1 Ax implie3 q if and onl y if Ax i3 un3at

i3fiable1 or

• for any (Attr:z: S Att rv) E q1 (A ttr:z: S A ttrv) E

A ,+· and X I

• for any (Attr:z: -:j; Attry) E q1 (Att r:z: :f. Attry) E

A'+· and XI

• f or any (A ttr:z: s C) E q, C ~ C~P; and

• for any (Attr:z: ~ C) E q 1 C $ Cio,.,; and

• for any (Attr :z: f. C) E q1 (Attr:z: f. C) E A1i or
C < Ctow or C > c~, . •

3.2 Solving the satisfaction problem

The satisfiability problem in the integer domains
(i .e., all the domains of attributes contain integers)
has been shown to be NP-hard (23]. The known NP
hard problem of determining whether an undirected
graph is three colorable (12, 14] is reduced to an in
stance of this satisfiability problem as follows: Let S
denote (Ax 1\ q), which is a conjunctive formula con
taining only the inequalities of the form (Attr.,, ~ 1)

311

\
and (Attr.,, s 3) for all attributes Attr.,, in S, and
some unequalities (Attr.,, -:j; Attr.,;). It can be seen
that each represents an area (thus, only three values
three colors are allowed for "coloring" each area), and
the set of unequalities specifies the adjacency of areas,
i.e., (Attr.,, -:j; Attr.,;) indicates that Attr.,, and Attr.,;
are adjacent areas.

In the following, we provide a linear O(JSI)
O(JAx J + Jql) algorithm to determine whether S
(Ax 1\ q) is satisfiable in the real domains.

It is sufficient to consider op E {$, #} for inequal
ities of the type (Attr., op Attry) E S and op E {$
, ~. -:j;} for inequalities of the type (Attr., op C) E S.
For all (Attr.,{ <, s}Attry) E S, we construct a labeled
directed graph Gs = (Vs, Es), where Vs is the set of
distinct attributes in S, and a labeled directed edge
from Attr., to Attry in Es, (Attr.,, Attr_., ®) E Es,
if and only if (Attr., ® Attr_.) E S, where the label
® E {<, $}.

For any two attributes Att r., and Attry in G s, if
they are reachable from each other, (Attr., = Attr11) is
implied by t ransitivi ty. All such attributes as well as
the edges among them form a strongly connected
component (SCC). We may "collapse" each SCC
into a single node. This collapsing is in fact to use
a single attribute in the sec, called representative
attribute /node of the sec, to represent all attributes
in the SCC. After this step , there is no cycle in the
graph.

Now consider all the inequalities {(Attr., $ C1) ,
(Attr= $ C 2) , ••• , (Attr., $ Ck)} for a tt ribute Attr.,:
Let C~P = min(C;) for at t ribute Attr., . Similarly,
Cl'c,w = max(C;) can be obtained for all the inequalities
of the form (Attr., ~ C;) E S .

Now we construct Amin by assigning each attribute
of Gs, say Attr.,, with the value Aiow = max(C;, Ciow)
according to the topological ordering of all nodes of
G s . C; is equal to A7o'w, the assigned value for Attr., 's
parent Attr.,, (equivalently, an edge exists from Attr.,,
to Attr., , and Attr., is called a child of Attr:.). A{0 ,

is an "open" bound if one C; is the maximum and
the edge which contributes the C; is labeled with "<" i
Otherwise Aiow is a "closed" bound.

Similarly, we construct another assignment, denoted
as Am11:, of G s as follows: we assign attributes with
A~P = min(C;, C~P) one by one according to the in
verse topological ordering, where C; is equal to A~~.
the assigned value for Attr~_, child. The way to de
termine the closeness or openness of A!P is similar to
that of Aiow·

\

Lemma 2 S = (Ax A q) i' sati,fia.ble if and only if
for any attribute Attr.., of S = (Ax A q),

• (2} Aj'"" = A~f with both bound, a,, "clo3ed", and

(Attr.z: f Af'""J ¢ (S =Ax A q). •

A proof can be found in [26).
• I • • Constructmg Gs, G 5 , Amin 1 and Amen: only takes

O(ISI) time; Finding those Attr.z: with Afow = A~P
(both bounds are closed) takes O(JSI) time; To test
whether any unequality of S is violated by implied
equations also takes O(JSI) time. As a result, the total
complexity is O(ISI), or O(IAx l + Jql).

Example 4 Con3ider th.e set of inegualitie.! S:

S = { Attr:z: 1 ::; Attr;r,,
Attr:z:, < Attr.z:.,
Attr:, ::; 1.5,
Attr:z:, < Attr.,.,
Attr;r, ::; 5.5,
Attr;r, "/: 4.0,
Attr:::, ::; Attr:::,,

Attr::, # X6,
Attr:::, ::f: 1.4,
Attr:z:, ::; Ati.r:r:,,
Attr::, ;f. Xs,
Attr::, ::; 4.0,
Attr::. ::; 4.5,
Attr:::. f 4.0 }

Attr::, ::; Attr:r:,
Attr::, ~ -3.0 ,
Attr:~:, ::f: -3.0,
Attr::, > 3.5,
Attr;r, ;f. Attr::,,
Attr::, ;f. 5.0,
Attr:~:, ~ 1.0,
Attr:, ::f: 1.2,
Attr::, # 4.0,
Attr:::, < 1.5,

Attr:::, < Attr"'•'
Attr.:z:, ~ 4.0,
Attr::, > 2.0,

Attr:z:, and Attr.,, COn.!titute an sec, thu, they are
collap3ed into a 3ingle node, denoted a.! Attr.,,. (3ee
Figure 3). The pair in,ide each node denote C1~.., and
C~P for that node. The fir't element of the pair out,ide

a node Attr., i.! Afow of the node Attr: in Amin, the
ucond element i.! A~P of the node Attr., in Amra .

4 Conclusions

A novel strategy is proposed in this paper to seman
tically optimize queries by class reference reduction in
an OODB. Class assertions of classes are utilized. Ef
ficient and effective algorithms for solving implication
and satisfiability problems are presented which are also
needed in many other database areas. A potential sig
nificant gain in evaluating a query may be achieved by
the proposed SQO.

312

{3 .5. 4.5)

Figure 3: The construction of the assignment
which satisfies G s

References

[1] Andrews, T.,.and Harris, C., "Combining language
and database advances in an object-oriented de
velopment environment", Pro c. of A CM OOP SLA,
Orlando, Florida, October 1987.

[2] Astrahan, M.M. et a/. "System R: Relational Ap
proach to Database Management", A CM Tran,. on
Databa,e Sy.!tem,, Vol.l, No.2, June 1976, pp.97-
137.

[3] Bertino, E. and Martino, L., "Object oriented
database management sys tems : concepts and is
sues", IEEE Computer, Vol. 24, No.4, 1991, pp.33-
47.

[4] Blakeley, J.A., Coburn , N., and Larson, P.A. "Up
dating Derived Relations: Detecting Irrelevant
and Autonomously Computable Updates", Proc.
11th Inti. Conf. on Ve ry Large Data Ba3e3, 1986,
pp.457-466 .

[5] Blakeley, J.A., Larson, P.A., and Tompa, F.W.
"Efficiently Updating Materialized Views", Proc.
ACM SIGMOD, 1986, pp .61-71.

[6] Bretl, R., et al., "The GemStone Data Manage
ment System", Object- Oriented Concepb1 Applica.
tion.! and Databa3e3, Won Kim and F. Lochovsky,
Eds., Reading, MA, Addision-Wesley, 1989.

[7] Carey, M. J ., D. J. DeWitt and S. L. Vandenberg,
"A Data Model and Query Language of Exodus",
ACM-SIGMOD, June, 1988, pp 413-423

[B) Chakravarthy, U ., and Minker, J. "Processing Mul
tiple Queries in Database Systems", Da.ta.ba3e En
gineering, Vol.l, 1983.

·\

[9) Chakravarthy, U., Grant, J ., and Minker, J .,
"Logic-Based Approach to Semantic Query Opti
mization", ACM TODS, June 1990, pp. 162-207.

[10] Chen, A., Brill, D., Templeton, M., and Yu,
C. "Distributed Query Processing in a Multiple
Database Systems", IEEE Journa.J on Selected Ar
ea, in Communica.tion.,, 1989, pp. 390-398.

[11] Coppersmith, D. and Winograd, S., "Matrix Mul
tiplication via Arithmetic Progressions", Proc. of
the 19th Annua.l ACM Sympo6ium on the Theory
of Computing, 1987, pp 1-6.

[12] Cormen, T., Leiserson, C., and Rivest, R. In
troduction to Algorithm.!, MIT Press, Cambridge,
MA, 1990.

[13] Deux, 0., et a.I, "The Story of 0 1", IEEE Tran.!
action on Knowledge 8 Data Engineering, March
1990.

[14] Garey, M., Johnson, D., and Stockmeyer, L.
"Some Simplified NP-Complete Problems" , Theor.
Comput. Sci ., Vol.l, 1976, pp.237-267.

[15] Hammer, M. and McLeod, D., "Semantic In
tegrity in Relational Database Systems", Proc. ht
Very Large Data Ba.!e.!, September 1975, pp.25-47.

(16] IEEE Tran.!action on Knowledge 8 Da.ta En
gineering, Special Edition on Next Generation
Database System, M. Stonebraker, Ed., Vol. 2, No.
1, 1990.

[17] J arke, M. "Common subexpression isolation in
multiple query optimization", Query ProceJ.!ing in
Databa.!e Sy.!temJ, W. Kim, D. Reiner, and D. Ba
tory, Eds., Springer, New York, 1984.

[18] Klug, A., "On conjunctive queries containing in
equalities," J. ACM, Vol.35, No.1, January 1988,
pp.l46-160.

[19] Kim, W., et al., "Integrating an Object-Oriented
Programming System with a Database System",
Proc 2nd Inti Conf. OOPSLA, San Diego, Septem
ber 1988.

[20] Kim, W ., "A model of queries for object-oriented
databases", Proc. 15th Inti Conf. Very Large
Data Ba.!eJ, Amsterdam, The Netherlands, August
1989.

313

[21] Kim, W., "Object-Oriented Databases: Defini
tion and Research Directions", IEEE Tran.!. on
Knowledge 8 Da.ta. Engineering, Vol. 2, No. 3,
September 1990, pp. 327-341.

[22] Maier, D., Stein, J., Otis, A., and Purdy, A., "De
velopment of an Object-Oriented DBMS", Proc. of
ACM OOPSLA, Portland, Oregon, October 1986.

(23] Rosenkrantz, D.J ., and Hunt III, H.B., "Process
ing Conjunctive Predicates and Queries," Proc. 6th
Inti. Conf. on Very La.rge Da.ta Ba.!e.!, 1980, pp.64-
72.

(24] Sellis, T. "Global Query Optimization", Proc.
ACM SIGMOD, 1986, pp.191-205.

[25] Shenoy, S. T. and Ozsoyoglu, z. M., "Design and
Implementation of a Semantic Query Optimizer",
IEEE TKDE, Sept, 1989, pp 344-361.

[26] Sun, W., and Weiss, M.A. "An Efficient Algo
rithm for Testing Implication Involving Arithmetic
Inequalities", to appear in IEEE Tran.!. on Knowl
edge and Data Eng ..

[27] Sun, W., and Yu, C., "Semantic Query Optimiza
t ion for Tree and Chain Queries", to appear in
IEEE TranJ. on Knowledge 8 Data Engineering.

(28] Ullman, J.D. Principle.!
of databaJe and knowledge-ba.!e .!y.!lemJ Vol. I 8
II, Computer Science Press, 1989, pp.885-892 .

[29] Willshire, M.J ., "How spacey can they get? space
overhead for storage and indexing with object
oriented databases", IEEE Int 'I Conf on Data En
gineering, Kobe, Japan, 1991, pp.l4-22.

(30] Wong, E., and Youssef, K., "Decomposition- A
Strategy for Query Processing" , A CM Tran.!. on
Databa.!e Sy.!tem.!, Vol. 1, No. 3, Sept. 1976

[31] Yu, C., Guh, K., Brill, D., and Chen, A. "Par
tition strategy for distributed query processing in
fast local networks", IEEE Tran.!. on Software En
gineering, 1989, pp. 780-793.

[32] Yu, C., and Sun, W., "Automatic Knowledge Ac
quisition for Semantic Query Optimization", IEEE
Tran.! . on Knowledge 8 Data Engineering, Septem
ber 1989, pp.362-375.

[33] Zaniolo, C. "The database language Gem", A CM
SIGMOD, San Jose, California, May 1983, pp.207-
217.

© 1994 by Knowledge Systems Institute

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

ISBN 0-9641699-0-8 (paper)

Additional copies can be ordered from

Knowledge Systems Institute
3420 Main Street
Skokie, ll... 60076
USA

Printed in the United States of America

\

...

