
Geoinformatica
DOI 10.1007/s10707-016-0275-9

Probabilistic spatio-temporal resource search

Qing Guo1 ·Ouri Wolfson1

Received: 1 March 2016 / Revised: 18 August 2016 / Accepted: 12 October 2016
© Springer Science+Business Media New York 2016

Abstract In this paper, we deal with the resource search problem in a probabilistic setting.
In a resource search problem, there are spatially located static resources and a mobile agent.
The agent looks to obtain one of the resources while minimizing the cost. This cost may
consist of different types of costs the agent has to pay, from travel time to the cost of obtain-
ing a certain resource. We assume that the agent has no knowledge of exact availability of
the resources in real-time, but some prior or partial data gives estimations of this informa-
tion. This model applies to many situations that arise in urban transportation systems, such
as drivers looking for street parking, taxis looking for new customers, and electric vehicles
looking for charging stations. Our approach to the resource search problem only employs
uncertain information about resource availability, minimizes the expected cost, and utilizes
concepts from decision theory. A simulation that uses real-world data is used to compare
our approach to alternatives.

Keywords Spatial databases · Spatio-temporal databases · Probability · Probabilistic
data · Routing

1 Introduction

Despite the rapid growth in popularity of mobile devices, wireless embedded sensors,
and location-based services, locating geographically-distributed resources still remains

� Qing Guo
qguo@cs.uic.edu

Ouri Wolfson
wolfson@cs.uic.edu

1 Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10707-016-0275-9-x&domain=pdf
http://orcid.org/0000-0002-3189-062X
mailto:qguo@cs.uic.edu
mailto:wolfson@cs.uic.edu

Geoinformatica

challenging. Certainly, with the help of smartphones, a taxi driver is able to locate poten-
tial passengers [14]; with the help of wireless embedded sensors, a vehicle is able to locate
available on-street parking spaces (e.g., the SFpark project1). However, not all taxi passen-
gers have smartphones and have subscriptions to taxi request services such as Uber, and
even for cities like San Francisco, the cost of installing and maintaining embedded sensors
for the whole city is so prohibitive that SFpark only covers a very small portion of the city.

To solve the difficulty of obtaining real-time and accurate resource availability data for
resource-search, it is common to use crowdsourcing methods. However, in crowdsourcing,
only part of the agents are used for data collection. This often leaves the exact number
of available resources per location unknown to an agent. In other words, oftentimes, only
uncertain data is available. Therefore, in this work we focus on uncertain data for resource
search.

In our problem setup, we assume that there is a directed graph representing a road
network, and there are resources located on the edges of the graph. In contrast to Points-
of-Interest, a resource may be used by only one agent at a time. An available resource may
become unavailable at a later time, and vice versa. Each edge is associated with a cost. This
cost may be the cost of traversing the edge (travel cost, e.g. travel time), or the travel cost
plus the cost of obtaining a resource on that edge (usage cost, e.g. walking distance from
a parking block to the final destination). We call this combined cost the general cost. Each
edge is also associated with a probability distribution of the number of available resources
during a certain time period. We call any data type that represents the probability distribu-
tion an uncertainty metric. In this paper, we deal with two uncertainty metrics:2 one is the
probability of having at least one available resource on an edge, and the other is the mean
and variance of the number of available resources on an edge.

Using uncertain data, we address the problem of guiding the agent through the road
network to efficiently find a desired resource. In other words, we aim to find an optimal
search-path,3 and to do so by an efficient algorithm.

What is the meaning of an optimal search-path for a resource? An existing way of defin-
ing such a path is the Probability Maximization (PM) algorithm [11, 24]. The PM algorithm
chooses a path with the maximum overall probability of finding a resource from all paths of
length (cost) K or less.

This approach has several drawbacks. First, every infinite path has a probability 1 of
finding a resource.4 Thus, all unbounded search-paths have identical probability. Therefore,
PM does not work when the agent is willing to search as long as it takes in order to find a
resource (e.g. a taxi cab searching for a customer). Second, consider the example in Fig. 1.
This road network consists of two nodes and two parallel edges. Each edge has the same
probability 0.5. It takes 15 minutes to traverse the upper edge, and 5 minutes to traverse

1http://sfpark.org/
2The uncertain data may be obtained from historical data, partial real-time data, or a combination of both. One
example is Xu et al. [22], where the authors used a crowdsourcing approach to approximate the parking avail-
ability per block. Another example is Mathur et al. [15], where the authors proposed using existing municipal
vehicles equipped with GPS receivers and ultrasonic sensors to detect on-street parking availability.
3Observe that the paths do not have to be Hamiltonian. In other words, an edge is allowed to be visited
multiple times, because an unavailable edge (i.e. an edge that does not have an available resource) may later
become available.
4Assume that the infinite path is {e0 → e1 → · · · }, then the overall probability of getting at least one
available resource along it, is p = 1 − ∏∞

i=1(1 − pi) = 1, where pi is the probability of finding a resource
on edge ei .

http://sfpark.org/

Geoinformatica

Fig. 1 An example network.
The upper and lower edges have
the same probability (0.5), but
different travel costs (15 minutes
and 5 minutes) A B

15 min.
P = 0 .5

5 min.
P = 0 .5

the lower one. Given the maximum search time of 15 minutes, PM may choose either edge
because they have the same probability. But the lower path is clearly superior because it
is shorter. This difference is not captured by PM. Third, there is no straightforward way to
consider usage costs in PM.

Therefore, in this paper we focus on an alternative method, called the General Cost Mini-
mization (GCM), to efficiently search for a resource. As the name suggests, GCM produces
a path of minimum expected general cost, and does so efficiently. Consider again the exam-
ple in Fig. 1. Because the shorter edge has a lower expected cost, it is preferred by GCM.
GCM produces such a path efficiently, for bounded and unbounded (i.e. infinite) paths.

The model we develop in this paper applies principles of decision theory, more specif-
ically, the principle of maximum expected utility (in our case, minimum expected general
cost). This principle has a long history of development in the artificial intelligence commu-
nity [18]. According to decision theory, if an agent’s utility (e.g. most monetary gains, or
least cost) is specified, then an action that optimizes the expected utility will result in the
most satisfactory situation. Specifically, we use a dynamic programming approach to com-
pute the minimum expected general cost of a path within a certain length K , as well as for
unbounded searches.

Now observe that there are two variants of the resource-search problem. In one variant
the probabilities are unaffected by observations. This implies that every time the agent tra-
verses an edge e, regardless of whether the agent has traversed e previously, e will have
an available resource with the same probability. However, in some applications such as the
parking search, since vehicles usually park for some period of time, the availability proba-
bility of a block is not independent of observations. When the agent traverses an edge e and
does not find parking, it is very likely that parking will be unavailable in the next minute,
even if the probability of e is high. To capture this intuition, we apply the notion of the
recovery function, which adapts the probabilities according to observations [9]. Then we
devise the Adaptive General Cost Minimization (AGCM) algorithm, which is a variant of
GCM that minimizes the expected general costs for probabilities that behave according to a
recovery function.

Finally, we test our algorithms experimentally using real-world data from SFpark, and
from GPS taxi trajectories collected in Beijing. We compare our approach with the Prob-
ability Maximization (PM) algorithm. The experimental results show that our approach
provides significant improvements over PM. And these results hold even in the face of errors
in probabilities or means.

Following is a summary of the main contributions of this work:

– We provide an efficient dynamic programming algorithm that finds an optimal path
with the minimum expected general cost, for both bounded and unbounded searches.
This cost may include not only the cost of traveling the edges, but also other types of
costs in general.

Geoinformatica

– To take advantage of observations made during a search, we adopt the notion of proba-
bility recovery function, and devise the corresponding algorithm (AGCM) to compute
a path minimizing the expected general cost.

– We adapt our approach that uses the probability as the uncertainty metric to accommo-
date another uncertainty metric, i.e. the mean and variance.

– We conduct experiments using real-world data from SFpark, and from GPS taxi tra-
jectories collected in Beijing, comparing the performance of our algorithms with
PM.

– We evaluate the algorithms’ sensitivity to errors in the uncertainty data.

The rest of the paper is organized as follows. Section 2 is a survey of related work.
Section 3 presents the basic model of the resource search problem with general costs, and
devises the General Cost Minimization algorithm. Section 4 extends the basic model to
the Adaptive GCM algorithm by considering the recovery function. Section 5 extends the
basic model to unbounded resource-searches and presents the Unbounded GCM algorithm.
Section 6 shows how to use the mean and variance as another uncertainty metric. Section 7
presents experimental results. Section 8 concludes the paper.

2 Related work

With the fast increase in the accessibility of location-based services, new approaches for
sensing and monitoring available spatial objects have been developed [12, 21]. These detec-
tion technologies have encouraged research of urban transportation systems, using either
real-time data about resource availability [14], or historical data as prior knowledge [23, 24].

Among these applications, parking detection and search problems have been extensively
studied. Vehicles equipped with GPS and ultrasonic sensors are used to generate a map of
parking availability [15]. Wireless sensors are used to track open parking spaces in parking
facilities [17]. These techniques rely on investing new detection devices. By contrast, more
flexible detection techniques that utilize existing end-user smartphones for crowdsourcing
were developed. Mobility patterns of smartphone users are used by Ma et al. [13] and Xu
et al. [22] to detect parking availability of street blocks, by classifying parking and unpark-
ing activities. Another approach using Wi-Fi signature matching was introduced by Nawaz
et al. [16] for the detection of unparking activities. Note that crowdsourcing approaches usu-
ally generate uncertain data, since they can only penetrate to a portion of the agents involved
in the activities affecting the environment.

The parking search problem has been tackled assuming that complete deterministic data
is available. For example, reservation systems for parking spaces were studied by several
authors [4–6]. Parking by reservation attempts to circumvent the competition for parking.
However, existing parking systems are not reservation-based but inherently competitive.
Ayala et al. [1–3] introduced parking slot assignment games to analyze parking activities
in competitive settings. These systems assume complete deterministic parking availability
information, as SFpark is providing. As argued, such information is unlikely to be available
on a large scale due to the costs involved in installing and maintaining the sensors.

Using crowdsourcing, resource availability information is often represented in proba-
bilistic settings [10, 11, 19, 20, 24]. Yuan et al. [24] propose to maximize the overall
probability of finding a resource within a given time limit. One disadvantage of this

Geoinformatica

proposal is that it only guarantees that the travel cost of a search stays within a limit, but
does not minimize the general cost. By contrast, our model minimizes not only travel costs,
but also other costs representing the user’s preferences for certain resources.

In Safra et al. [19], the probabilities are about whether a query is satisfied. For example,
the query can be whether a restaurant is good according the user’s preference. Therefore,
the truth value of each spatial location is constant, and there is no need to revisit a location.

Jossé et al. [11] and Verroios et al. [20] assume that the exact availability of resources
is given when a search request is initiated. (In contrast, we only assume probabilistic avail-
ability information.) Consequently, they solve a different problem. Then some probability
decay function is used, which is a decreasing function of time for the probability that a
known available resource stays available. These decay functions are similar to our recov-
ery function, except that they go in opposite directions. Ours increases, whereas theirs
decreases.

In Jossé et al. [11], Safra et al. [19], and Verroios et al. [20], variants of the traveling
salesman problem are used as the theoretical solution. Since it is NP-hard, various heuris-
tics that approximate the optimal solution are proposed by these authors. These techniques
compute Hamiltonian paths for the resource search. One disadvantage of using Hamilto-
nian paths as the solution is that no resource location can be visited more than once. But an
unavailable resource location may become available after the agent visits it for the first time.

Jossé et al. [10] considers a model similar to ours. However, the paper states that it
is impossible to minimize the cost and maximize the probability of success at the same
time, and proposes two solutions, i.e. minimizing the cost for the paths with probabilities
greater than a threshold, or vice versa. By contrast, in this paper we show that the expected
cost minimization is an effective way of combining costs and probabilities. Moreover, the
exact algorithm proposed in Jossé et al. [10] performs searches by expanding all possible
routes, resulting in exponential complexity. To mitigate this complexity, the authors propose
some pruning techniques. By contrast, due to the application of dynamic programming, our
approach is polynomial in the size of the road network.

This paper combines and extends our previous work [7, 8]. Specifically, Guo andWolfson
[7] deal with unbounded search without usage costs, while Guo and Wolfson [8] deal
with bounded search with usage costs. In this paper, we present the case of unbounded
search with usage costs. This is a nontrivial combination of the previous two cases. This
paper also extends the previous papers by providing detailed experimental evaluation, as
well as proofs. In addition, in this paper we present a way to combine historical data and
real-time data.

3 Basic model

In this section, we present the assumptions and notation we use in the paper (Section 3.1),
and define the expected general cost of a path (Section 3.2). After that, we show how to find
a path with minimum expected general cost within a certain length (Section 3.3).

3.1 Problem setup

Let us first define a road network as a graph. In this graph, the vertices are the intersec-
tions of the roads; the directed edges are the road segments connecting the intersections,

Geoinformatica

indicating the allowed travel directions. We assume that there are n vertices in the road net-
work, denoted by vi , where i = 1, 2, . . . , n. Also, let edge eij be the road segment between
vertices vi and vj .

We define a search-path as a path, not necessarily simple, in the road network that is
provided by any resource search algorithm to the agent. It may be bounded by a constant
K representing the maximum number of edges in the search, or it may be unbounded. An
unbounded search is requested by an agent willing to continuously traverse the network
until obtaining a resource.

Now we define the edge costs. Let cij denote the cost of eij . In general, cij consists of
two types of costs. One is the travel cost, denoted as tcij , which is the traversal time of eij .
The other is the usage cost, denoted as ucij , which is the cost of obtaining a resource on
eij . For example, in parking search, the vehicle is usually parked at a different location than
the exact address of the final destination of the user, due to availability. If parked at edge
eij , then its usage cost ucij is the time to walk from eij to the final destination of the agent.
Therefore, cij = tcij + ucij . Note that all costs are nonnegative.

The following explains how to determine the final cost of an actual resource search. The
final cost depends on whether a search is successful, i.e. whether the agent finds a desired
resource following a search-path. If the search is successful, then the final cost is the total
travel cost of the edges traversed (i.e. the prefix of the search-path), plus the usage cost
of the obtained resource, if any. On the other hand, if the search is unsuccessful, assume
that it ends at vi , the last vertex on the search-path. Then the final cost is the total cost of
the edges on the path, plus a constant βi (βi ≥ 0). This βi denotes the additional penalty
for not finding any resource after terminating the search at vi . For example, in parking
search, βi is the cost of traveling from vi to a private garage and parking there. In a taxi-
customer search, βi is the cost for the taxi driver of returning home without finding any
customer. Often all the βi’s are identical, i.e. independent of i. In the above examples,
this means that the cost of garage parking is identical, regardless of the vertex at which
the option is exercised; similarly, the cost of giving up the taxi-customer search is often
independent of the vertex at which the decision is made. In this case there is a single penalty
cost, β.

Note that without penalty βi , the resource search problem becomes trivial. Specifically,
if ∀i, βi = 0, the minimum expected general cost of any resource search is zero and is given
by a zero-length path.

It is necessary to distinguish between travel costs and usage costs. This is because the two
types of costs happen at different times during a resource search, and thus affect the final
cost of a search differently. Specifically, the travel cost of an edge is added to the final cost
as long as the agent has traversed the edge, while the usage cost of an edge is added to the
final cost only if the agent has found an available resource on it and obtained the resource.
This difference means that simply adding the usage cost to the travel cost and plugging this
sum to any existing algorithm will not produce correct results.

Now we define the probability. Denote by pij the probability of edge eij being available
(0 < pij < 1). Intuitively, pij is the probability that eij has at least one resource available
during a certain time interval (e.g. between 17:00 and 18:00). Consequently, 1 − pij is the
probability that no resource is available on eij .

In Section 3 we assume that the probabilities are fixed for any given search. In Section 4
we demonstrate that this assumption does not always hold in real-world applications; and
we adapt the results of Section 3 accordingly.

Geoinformatica

3.2 Expected general cost of a search-path

We define the expected general cost of a search-path. In our definition, the expected gen-
eral cost is defined in a recursive (or stepwise) fashion. Specifically, the expected cost of
a search-path is defined by the expected cost of its first edge and the expected cost of the
sub-path without the first edge. This recursive definition makes it possible to devise a Bell-
man equation to compute a path with the minimum expected general cost using dynamic
programming, as demonstrated in Section 3.3.

For search-path {v0 → v1 → · · · → vK }, denote its expected general cost as
C{v0→v1→···→vK }, then

C{v0→v1→···→vK }

=
⎧
⎨

⎩

tc01 + p01uc01 + (1 − p01)C{v1→···→vK },
if uc01 ≤ C{v1→···→vK }.

tc01 + C{v1→···→vK }, otherwise.

(1)

The first case in Eq. 1 deals with the situation when the usage cost of the first edge e01 is
not greater than the expected cost of the rest of the path. In this case, after traversing the
first edge (the first term tc01), the second term (p01uc01) gives the expected cost of finding
the resource on the first edge of the path, and ending the search there; and the third term
((1 − p01)C{v1→···→vK }) is the expected cost of not finding a resource and continuing the
search on the rest of the path. The second case in Eq. 1 is when the usage cost of the first
edge e01 is greater than the expected cost of the rest of the path. In this case, regardless of
whether there exists an available resource on the first edge, the agent continues the search
without obtaining any resource on e01. Similarly:

C{v1→···→vK }

=
⎧
⎨

⎩

tc12 + p12uc12 + (1 − p12)C{v2→···→vK },
if uc12 ≤ C{v2→···→vK }.

tc12 + C{v2→···→vK }, otherwise.
· · ·
C{vK−1→vK }

=
⎧
⎨

⎩

tcK−1,K + pK−1,K ucK−1,K + (1 − pK−1,K)βK,

if ucK−1,K ≤ βK.

tcK−1,K + βK, otherwise.

3.3 Expected general cost minimization

In this subsection, we show how to compute the minimum expected general cost of all
paths within length K using dynamic programming. The result is composed of two parts:
an optimal path and an auxiliary action indicator sequence. Recall that with usage costs,
obtaining the first-found available resource along the optimal path may not be the optimal
action. To achieve the minimum expected general cost, it is crucial to make sure to obtain an
available resource only if its usage cost is lower than the expected general cost of continuing
the search along the remaining optimal path. To do this, we produce an action indicator
sequence during the computation. This sequence specifies whether the agent should obtain
a resource if one is found available along the optimal path.

Geoinformatica

Before presenting the detailed computation, we first define some notation. For k ∈
{1, . . . , K}, let the k-step look-ahead from node vi be the set of all paths starting from vi

with length k or less. Denote by Ck
i the minimum expected general cost of a path in the

k-step look-ahead from vi . Assume that vj is an immediate successor of vi in the network.
Denote by Ck

ij the expected general cost of a path in the k-step look-ahead from vi , for
which: 1) the first two vertices are vi and vj , and 2) the expected general cost of the remain-
ing sub-path within length k − 1 is the minimum among all paths within length k − 1 from
vj . We call the pair (vi , k) a decision point.

The following equations indicate how to compute Ck
i and Ck

ij recursively, and produce

the optimal path and the action indicator sequence:5

Ck
i =

⎧
⎨

⎩

min∀j, s.t. eij exists

{
Ck

ij , βi

}
, if k > 0.

βi, if k = 0.
(2)

Ck
ij =

{
tcij + pijucij + (1 − pij)C

k−1
j , if ucij ≤ Ck−1

j .

tcij + Ck−1
j , otherwise.

(3)

nextki =
⎧
⎨

⎩

argmin
∀j, s.t. eij exists

{
Ck

ij

}
, if Ck

i �= βi.

−1, if Ck
i = βi.

(4)

skipk
i =

{
false, if j0 = nextki �= −1 and ucij0 ≤ Ck−1

j0
.

true, if j0 = nextki �= −1 and ucij0 > Ck−1
j0

.
(5)

Now we give detailed explanations of the above equations:

Equation 2: When the agent is at decision point (vi , k), the next node vj should be chosen
such that the expected cost of the remaining path is the minimum. If the penalty βi

for terminating the search is smaller than the minimum expected general cost of the
remaining path, or no further search is allowed (k = 0), then the agent should stop the
search and take penalty βi .

Equation 3: This computes the expected cost for decision point (vi , k), given that vi and
vj are the first two nodes, and assuming that the sub-path from vj with (k − 1)-step
look-ahead has the minimum expected general cost. This is computation is based on
Eq. 1.

Equation 4: At decision point (vi , k), record by nextki the index of the successor node vj

of vi that minimizes the future expected cost. Let nextki = −1 to indicate that the search
is terminated. We call nextki the optimal action for the agent at decision point (vi, k). This
is because when the agent is at node vi and has k more edges to search, nextki is the index
of the successor node that the agent should proceed to in order to minimize the future
expected cost.

Equation 5: skipk
i is a Boolean value that assists the agent when conducting the resource

search. Specifically, at decision point (vi, k), if skipk
i = true, then the agent should pro-

ceed to node j = nextki and continue the resource search, even if edge eij has an available
resource. This is because skipk

i being true means that the usage cost of eij is greater than
the expected general cost of the rest of the optimal path. On the other hand, if skipk

i =
false, then the agent should obtain a resource from eij if there is one available.

5“s.t.” is short for “such that”.

Geoinformatica

Equations 4 and 5 are used to produce the optimal path and the action indicator sequence
as follows. Assume that v0 is the starting node, then l1 = nextK0 , l2 = nextK−1

l1
, . . . , until

the first k0 such that nextK−k0
lk0

= −1. The resulting path {v0 → vl1 → · · · → vlk0
} is

the optimal path that always minimizes future expected general costs as the agent traverses
along this path.

The following theorem confirms the optimality of this approach:

Theorem 1 The expected cost CK
i computed by Eqs. 2 and 3 is the minimum among all

paths with length K or less, starting at vertex vi . Furthermore, CK
i can be computed in time

O(ndK), where d is the maximum degree of a node.

Proof See Appendix.

Equations 2 and 3 can be regarded as the Bellman equation [18] in a dynamic program-
ming method for computing the minimum expected general cost of any path with length K

or less. This is because each Ck
i only needs to be computed once.

Algorithm 1 (GCM) computes the minimum expected general costs and the correspond-
ing optimal paths and action indicator sequences. Overall, it builds the minimum expected
general costs bottom-up by Eqs. 2 and 3 using dynamic programming for increasing k, until
the K is reached. Clearly, Algorithm 1 has a time complexity of O(ndK).

Geoinformatica

4 Adaptive probabilities

In this section, we present a modified version of the basic resource search model in Section 3
that allows adaptive probabilities. Specifically, in the model of Section 3, the probabili-
ties are assumed to be constant for a given time interval. This implies that every time the
agent traverses an edge e, regardless of whether the agent traversed e previously, e will have
an available resource with the same probability. This assumption represents real-world sit-
uations in some applications. However, in applications such as the parking search, since
vehicles usually park for some period of time, the availability probability of a block is not
independent of observations. When the agent traverses a parking block and does not find
parking, it is very likely that parking will be unavailable in the next minute, even if the prob-
ability of this block is high. The model in this section is adapted to take observations into
consideration: the observation that there is no availability at the moment is a good indica-
tor that this block will have a lower probability of availability for some time in the future.
Therefore, in this section, we allow the probability of an edge to decrease after observing
that it is unavailable.

4.1 Probability recovery function

In order to utilize the observations during a search, we define the recovery function for the
probabilities as follows [9]:

Definition 1 A recovery function p′
ij = Recovery(pij , tij) for the probability of edge eij ,

where tij is the time that has elapsed since edge eij ’s last traversal, is a function of time
that is valued at zero when the agent traverses eij and finds no available resource, and
monotonically increases until either of these events occurs: 1) the prior probability pij is
reached, or 2) a new traversal of eij occurs. In the first case the probability stays at pij , and
in the second it drops back to zero.

4.2 Expected cost minimization with recovery function

In this subsection, we describe a resource search algorithm, derived from GCM, that incor-
porates the probability recovery function. We call this modified algorithm the Adaptive
General Cost Minimization (AGCM) algorithm.

Now we make an important assumption on the probability recovery function that we
use for AGCM. We assume that the recovery function recovers a probability to its prior
value within in a limited time t0. That is, ∀tij ≥ t0, p

′
ij = Recovery(pij , tij) = pij .

With this restriction, only a limited history of visited edges needs to be tracked to com-
pute the recovered probabilities. In other words, it prevents the need of tracking a complete
traversal history. Denote by h the minimum number of edges needed to be tracked, then
h =
t0

/
cmin�, where cmin = min

all eij

cij .

Now we show how to find the minimum expected general cost of paths with length
at most K considering the recovery function. In order to keep track of a history of
the last h edges that the agent has considered, we expand the concept of decision
point so it contains a history of previously traversed nodes. Specifically, decision point
(vi |{vi−h, . . . , vi−1}, k) means that the agent is currently at node vi in k-step look-ahead,
and that {vi−h, . . . , vi−1} is the previous h nodes the agent has traversed before vi . Sim-
ilarly to the basic model, denote by Ck

i|i−h,...,i−1 the minimum expected general cost for

Geoinformatica

decision point (vi |{vi−h, . . . , vi−1}, k). Denote by Ck
i,j |i−h,...,i−1 the expected general cost

of the paths for decision point (vi |{vi−h, . . . , vi−1}, k), such that 1) vi and vj are the first
two nodes of the path, and 2) the remaining sub-path starting from vj that is consistent with
the history, has a minimum expected general cost with (k−1)-step look-ahead. Then similar
to Eqs. 2, 3, 4, and 5, these two costs can be computed as:

Ck
i|i−h,...,i−1 =

⎧
⎨

⎩

min∀j, s.t. eij exists

{
Ck

i,j |i−h,...,i−1, βi

}
, if k > 0.

βi, if k = 0.
(6)

Ck
i,j |i−h,...,i−1 =

{
tcij + p′

ijucij + (1 − p′
ij)C

k−1
j |i−h+1,...,i , if ucij ≤ Ck−1

j |i−h+1,...,i .

tcij + Ck−1
j |i−h+1,...,i , otherwise.

(7)

p′
ij = Recovery(pij , tij). (8)

nextki|i−h,...,i−1 =

⎧
⎪⎪⎨

⎪⎪⎩

argmin
∀j, s.t. eij exists

{
Ck

i,j |i−h,...,i−1

}
,

if Ck
i|i−h,...,i−1 �= βi.

−1, if Ck
i|i−h,...,i−1 = βi.

(9)

skipk
i|i−h,...,i−1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

false, if j0 = nextki|i−h,...,i−1 �= −1

and ucij0 ≤ Ck−1
j0|i−h+1,...,i .

true, if j0 = nextki|i−h,...,i−1 �= −1

and ucij0 > Ck−1
j0|i−h+1,...,i .

(10)

Note that in the beginning of a search, the length of history may be smaller than h edges.
In this case, h in above equations should be replaced by the actual length of history.

Similarly to the basic model in Section 3, based on these equations, a dynamic pro-
gramming algorithm (i.e. AGCM) can be developed. Specifically, Ck

i|i−h,...,i−1 is computed

by Ck−1
j |i−h+1,...,i−1,i of every successor node vj of vi . This requires the computation of

the minimum expected general cost for each decision point. For node vi , there are at most
dh possible predecessor paths, where d is the maximum degree of a node in the graph.
Therefore, for a (vi, k) pair, there are at most dh decision points.

Considering the total number of decision points, the time complexity of AGCM is
O(ndh+1K). If the length bound of the recovery function h is constant, this time complex-
ity is polynomial in the size (n nodes) of the graph. Although it is exponential in h, we
show in Section 7.2 that only a short history for the recovery function is needed to achieve
satisfactory performance for real-life problems. In addition, as in the basic model, given the
prior probabilities, these optimal paths can be precomputed for each possible starting loca-
tion and stored for later use. Therefore, for a reasonable h, AGCM is scalable in terms of
the network size.

5 Unbounded search optimization

In this section, we expand the basic model in Section 3 to unbounded searches. And then
we provide an efficient algorithm to compute the minimum expected general cost of an
unbounded search, and find the path of such a search.

First, we make some important assumptions on the usage costs for this section. Note that,
if all usage costs for the edges are greater than or equal to their corresponding penalty, i.e.
∀i, j such that eij exists, it holds that βi ≤ ucij , then the optimal path is a zero-length path.

Geoinformatica

In other words, the optimal action for the agent is to not initiate the resource-search and
take the penalty right away. Therefore, in this section, we assume that ucij ≤ βi . Another
assumption is that the usage costs are symmetric, i.e. ∀i, j such that eij exists, ucij =
ucji . In most applications, such as parking search and taxi-customer search, usage costs are
indeed symmetric and lower than the penalties. Based on these assumptions, we present a
theorem that simplifies Eq. 3 and hence the search process for resources:

Theorem 2 If ∀i, j such that eij exists, ucij = ucji ≤ βi , then ∀k, ucij ≤ Ck
j .
6

Proof See Appendix.

Theorem 2 means that for symmetric usage costs, if they are not greater than the corre-
sponding penalties, then the second case in Eqs. 3 and 1 will never happen.7 In other words,
there is no need to compare the usage cost with the expected cost of continuing the search;
once a resource is found available for the first time during the search, the agent can just
obtain it and conclude the search. In this case, Eq. 5 can be disregarded, and Eq. 3 can be
rewritten as:

Ck
ij = tcij + pij ucij + (1 − pij)C

k−1
j . (3′)

Now we present the proof of convergence for this modified problem defined by the
assumption that ∀i, j such that eij exists, ucij = ucji ≤ βi , and Eqs. 2, 3′, and 4.

The convergence proof of the minimum expected general cost of an unbounded search
is based on the concept of contraction [18], defined as follows. Assume that {Uk : k =
1, 2, . . . } is a set of vectors, and B is an operator (e.g. function). Assume that B defines a
sequence Uk+1 = BUk . If there exists 0 ≤ γ < 1, such that ∀k, k′ ∈ {0, 1, . . . }, ||Uk+1 −
Uk′+1|| = ||BUk−BUk′ || ≤ γ ||Uk−Uk′ ||, thenB is a contraction.8 An important property
of a contraction is that it has a single fixed point, and repeatedly applying the contraction
will lead to that fixed point in the limit (Banach fixed-point theorem or contraction mapping
theorem) [18]. In the resource search problem, consider the vector Ck = {Ck

1 , . . . , C
k
n} of

the minimum expected general costs as the vector Uk , and Eqs. 2 and 3′ as the operator B.
Then the following Lemma 1 indicates that B is a contraction, and the resulting Theorem 3
indicates that the minimum expected general cost of an unbounded search converges:

Lemma 1 In Eqs. 2 and 3′, ∀k, k′ ∈ {0, 1, . . . }, ||Ck+1 − Ck′+1|| ≤ γ ||Ck − Ck′ ||, where
γ = 1 − pmin.

Proof See Appendix.

Theorem 3 The minimum expected general costs Ck defined by Eqs. 2 and 3′ converge to
a fixed point when k → ∞.

Algorithm 2 (UGCM) computes the minimum expected general cost and optimal path of
unbounded searches. It builds the minimum expected general costs bottom-up by Eqs. 2, 3′,

6As a special case, Theorem 2 holds when all usage costs are zero (ucij = 0 for all edges). In the case of
parking this means that the walking time is negligible compared to driving time, which is certainly true when
the objective function to minimize is, for example, pollution.
7The proof of Theorem 2 applies to Eq. 1 as well.
8The distance between vectors is measured by max norm. The max norm of V = {V1, . . . , Vn} is defined as
||V || = max

1≤i≤n
{|Vi |}.

Geoinformatica

and 4 using dynamic programming for increasing k, until the error is bounded, i.e., k is large
enough so that Ck

i and Ck−1
i are close enough for every node vi . When implementing the

algorithm, there is no need to store the costs and indices for every k in each iteration; only
the vectors Ck and Ck−1 need to be stored.

Infinite path representation Observe that UGCM computes the minimum expected
general costs, and the optimal unbounded search, which may be an infinite path. Now we
explain how an infinite path is represented by finite notation. The key is that whenever the
agent arrives at the same node, the same action is recommended, i.e. proceed to the same
successor, or terminate the search. Intuitively, whenever the agent arrives at this node, all
the unbounded paths are considered; the set of unbounded paths from a given node is iden-
tical, regardless of how many times the agent arrives at it. This means that nextki stays the
same for k → ∞. Denote that nexti = lim

k→∞ nextki . We call the vector {nexti : i = 1, . . . , n}
an optimal policy.

Note that, for a finite search with length K or less, the above argument does not hold.
That is, for k, k′ ≤ K (k �= k′), the optimal actions nextki and next

k′
i may be different.

In essence, Algorithm 2 is a finite algorithm approximating the optimal policy in an
unbounded search. Therefore, for large enough k = k0 such that the error is bounded by ε,
the optimal policy in theory is estimated by nexti = nextk0i , i = 1, . . . , n.

Complexity of UGCM The complexity of UGCM is dependent on the number of itera-
tions in the while loop. Denote this number by N . In turn, N depends on the given local
error bound ε via a global error bound ε0. The local error bound ε bounds the error between

Geoinformatica

two iterations of the while loop in UGCM; the global error bound ε0 measures the distance
between the current value of Ck and its converged value (denoted by C = lim

k→∞ Ck).

To obtain the relationship between N and ε0, we first give a bound on the expected cost
of any unbounded search-path:

Lemma 2 If ∀i, j such that eij exists, ucij = ucji ≤ βi , then the expected cost of
unbounded path {v0 → v1 → · · · } is bounded by the following:

C{v0→v1→··· } ≤ tcmax + ucmax · pmax

pmin
,

where tcmax = max
all eij

{
tcij

}
, ucmax = max

all eij

{
ucij

}
, pmax = max

all eij

{
pij

}
, and pmin =

min
all eij

{
pij

}
.

Proof See Appendix.

The following lemma specifies the relationship between N and ε0, and gives an idea of
how fast the convergence is.

Lemma 3 Let N denote the number of iterations in the while loop of UGCM.
For a given global error bound ε0, if the following inequality holds: N ≥(
log βmax+(tcmax+ucmax·pmax)/pmin

ε0

)
/
(
log 1

1−pmin

)
, then ||CN − C|| ≤ ε0.

Proof (Sketch) By Lemma 2, the maximum initial error is ||C0 − C|| ≤ ||C0|| + ||C|| ≤
βmax + (tcmax + ucmax · pmax) /pmin. 9 By Lemma 1 and the above inequlity, ||CN − C|| ≤
(1 − pmin)||CN−1 − C|| ≤ · · · ≤ (1 − pmin)

N ||C0 − C|| ≤ (1 − pmin)
N (βmax +

(tcmax + ucmax · pmax) /pmin) ≤ ε0. Taking the logarithm for both sides, we get the
inequality in the lemma.

The following lemma specifies the relationship between the local error bound ε and the
global error bound ε0.

Lemma 4 Let ε0 = ε (1−pmin) / pmin. ∀k, if ||Ck+1 −Ck|| ≤ ε , then ||Ck+1 −C|| ≤ ε0.

Proof See Appendix.

When implementing UGCM, one would normally want to guarantee the global error to
be bounded by ε0, that is, the error between the minimum expected general costs and their
estimated values by UGCM. Given ε0 (for example ε0 = 0.1 minutes), the local error bound
ε used in Algorithm 2 should be computed based on Lemma 4.

Using Lemmas 3 and 4, we can get the relationship between N and ε, and hence time
complexity of UGCM:

Theorem 4 Given the local error bound ε, the time complexity of UGCM is
O(ndN), where d is the maximum degree of a node in the network and N =(
log βmax+(tcmax+ucmax·pmax)/pmin

ε(1−pmin)/pmin

)
/
(
log 1

1−pmin

)
.

9It can be verified that for max norm, the triangle inequality ||U + V || ≤ ||U || + ||V || holds.

Geoinformatica

Note that, this complexity is derived under the assumption that the network is represented
by an adjacency list. Also note that, fixing other parameters such as tcmax and pmin, this
complexity is linear in the number of nodes n. Also, taking advantage of being an offline
algorithm (i.e. an optimal policy can be computed before the agent starts the actual resource
search), if the probabilities for specific time periods do not change very often, then the opti-
mal policies for different time periods (e.g. each hour on each weekday) can be precomputed
and stored.

Effect of penalty β Note that in an unbounded search, the optimal solution is not always
an infinite path. It is possible that for a certain node vi , its penalty βi is smaller than the
minimum expected cost of continuing the unbounded search from vi (see Eq. 2). In this case,
the optimal action for the unbounded search is to terminate the search and take the penalty.
For example, consider the taxi-customer search scenario. At 11 pm, for a node vi that is
very close to the driver’s home, the driver might consider βi as a relatively small quantity
(still larger than its corresponding usage cost), because terminating the customer search at
this point does not incur a big loss in terms of income and gas consumption. (Although we
assume that the costs and penalties stay the same during any resource search, they can be
different for different time intervals, e.g. hours of a day.)

On the other hand, if the penalties are large enough, then the agent should never
terminate the resource search. Recall that the upper bound on the expected cost for
any infinite path is (tcmax + ucmax · pmax) /pmin (see Lemma 2). Therefore, if βi >

(tcmax + ucmax · pmax) /pmin (∀i = 1, . . . , n), then for any decision point, terminating the
search will not be the optimal action. In other words, the optimal path in this case is an infi-
nite path, and the penalty should never be taken. Moreover, in this case, the optimal policy
computed by UGCM is not related to the specific value of βi . An intuitive explanation is
that the probability of not finding a resource following the unbounded optimal path is zero,
therefore the penalty for that is negligible.

Observe that following any infinite path, with probability one, the agent will find a
desired resource. This is because the probability of finding a resource on any edge is posi-
tive, so the accumulated probability that the agent cannot find any resource along the infinite
path is zero. Therefore, in applications such as taxi-customer search, if the agent does not
have a time constraint to search for a resource, but does care about finding a resource with
probability 1, then an unbounded resource search with large penalties will force searching
until a resource is found.

6 Mean and variance as uncertainty metric

The uncertainty metric obtained from crowdsourcing is often the mean and variance of
the number of available resources per edge, instead of probability [22]. In this section, we
present how to convert the mean and variance to probability so our approach can apply to
them.

6.1 Convert mean and variance to probability

To convert the mean and variance to probability, we assume that the number of avail-
able resources on an edge during a certain time period follows a discretized Gaussian
distribution. The reasons to choose the Gaussian distribution are that it only requires the
mean and variance to describe, and the conversion between the mean and variance and the

Geoinformatica

probability is simple and tractable. Empirically, we validated that indeed the estimations of
the probability from the mean and variance using Gaussian distribution are very close to the
actual probabilities.

Now we present the details. Assume that for an edge e, the number of available resources
on e is R (R ∈ {0, . . . , Rmax}), where Rmax is the maximum capacity of e. We assume that
R is associated with a real-valued random variable X that follows Gaussian distribution.
Specifically, Pr(R = 0) = Pr(X < 0.5),Pr(R = 1) = Pr(0.5 ≤ X < 1.5), . . . , Pr(R =
Rmax − 1) = Pr(Rmax − 1.5 ≤ X < Rmax − 0.5),Pr(R = Rmax) = Pr(X ≥ Rmax − 0.5).
Therefore, the probability of edge e being available is p̂ = Pr(R ≥ 1) = Pr(X ≥ 0.5) =
∫ ∞
0.5

1
σ
√
2π

e
− (x−μ)2

2σ2 dx, whereμ is the mean and σ 2 is the variance of the number of available

resources. Assume there are m samples of the number of available resources on e, denoted
by r1, . . . , rm. Then the mean μ can be estimated by sample mean μ̂ = r̄ = 1

m

∑m
l=1 rl ; the

variance σ 2 can be estimated by unbiased sample variance σ̂ 2 = s2 = 1
m−1

∑m
l=1(rl − r̄)2.

Replacing the probability in our algorithms with above p̂, one can use the mean and variance
of the number of available resources for each edge to compute the optimal paths. We call
the modified algorithms GCM-m, AGCM-m, and UGCM-m.

6.2 Combining historical data and real-time data

To improve the accuracy of estimations in the mean and variance, we use the Kalman filter
method introduced by Xu et al. [22] to combine historical data and (partial) real-time data.
Unlike other methods, Kalman filter is free of external parameters, hence does not require
parameter tuning.

Now we talk about the estimation for a certain block during a certain time period (e.g.
between 17:00 and 18:00). Denote the historical mean and variance of its availability as q

and Q. Also denote the real-time mean and observational variance as a and A. Then, the
estimated mean by Kalman filter is μ̂ = A·q+Q·a

Q+A
, and the estimated variance is σ̂ 2 = Q·A

Q+A
.

Note that μ̂ is a weighted average of the historical and real-time mean. Observe that for the
two types of data, the one with a larger variance has a smaller weight in μ̂. This confirms
the intuition that the more fluctuating data contributes less to the final estimation.

7 Experiments

To test our models, we compare them with a baseline algorithm using real-world data from
SFpark, and from GPS taxi trajectories collected in Beijing.

7.1 Baseline algorithm

The baseline algorithm we use is the Probability Maximization (PM) algorithm adapted
from Jossé et al. [11] and Yuan et al. [24]. For any specific path {v0 → v1 → · · · → vK }, the
overall probability of getting at least one available resource along it, is P{v0→v1→···→vK } =
1−∏K

i=1(1−pi−1,i). PM chooses a path with the maximum overall probability of finding a
resource from all possible paths within a certain length. We use the dynamic programming
technique similar to our algorithms to compute these paths.

Now we present the details of PM. Analogous to Eq. 1, the probability of a path
and its sub-path without the first edge have relationship P{v0→v1→···→vK } = 1 − (1 −

Geoinformatica

p01)
(
1 − P{v1→···→vK }

)
. Similarly to GCM, we first define some notation for decision point

(vi , k) (i.e. when the agent is at node vi and has k more edges to search). Denote by P k
i

the maximum probability of a path in the k-step look-ahead from vi . Assume that vj is an
immediate successor of vi in the network. Denote by P k

ij the probability of a path in the
k-step look-ahead from vi , for which: 1) the first two vertices are vi and vj , and 2) the prob-
ability of the remaining sub-path within length k−1 is the maximum among all paths within
length k − 1 from vj . Then analogous to Eqs. 2, 3, and 4, we have10

P k
i =

⎧
⎨

⎩

max
∀j, s.t. eij exists

{
P k

ij

}
, if k > 0.

0, if k = 0.

P k
ij = 1 − (1 − pij)

(
1 − P k−1

j

)
.

nextki =
⎧
⎨

⎩

argmax
∀j, s.t. eij exists

{
P k

ij

}
, if k > 0.

−1, if k = 0.
Using these equations, a dynamic programming algorithm similar to GCM can be imple-
mented. We call it the Probability Maximization (PM).

Similarly to GCM, PM can be adapted to accommodate adaptive probabilities. For exam-
ple, Jossé et al. [11] assume that when a search request is initiated, some resource locations
are known to be available (i.e. their probabilities are one), and then their probabilities decay
with time. They propose to pick a Hamiltonian path with the highest overall probability con-
sidering the decay. For our parking experiments in Section 7.2, we change the probabilities
according to the recovery function.

7.2 Parking search

7.2.1 Simulation setup

The San Francisco Municipal Transportation Agency (SFMTA) initiated a project called
SFpark, in which wireless sensors are embedded under the pavement of street parking spaces
to detect their occupancies in real-time. Per-block availability was published in real time.
Most cities do not have the financial resources that SFpark requires; therefore, the approach
developed in our work could benefit urban transportation systems in general. We used the
SFpark data which we collected in the simulation environment described next.

A tuple has schema 〈blockId, availability, operational, timestamp〉 in SFpark database.
It is a report that at time timestamp, the number of available parking spaces on block blockId
changes to availability. operational is the total number of parking spaces on that block.
Given this database, the parking availability of any block at any time can be retrieved. This
is done by a query that takes a blockId and a time t as input, and searches for the latest
report of blockId whose timestamp is earlier than t .

In our experiments, we use the historical availability reports from SFpark for a tourist
area in San Francisco called Fisherman’s Wharf. We built a graph of the road network of this
area based on the block data given by the SFpark database. The graph consists of 40 nodes

10There is no equivalence of Eq. 5 for PM. This is because in PM, the agent should obtain the first resource
that is found available.

Geoinformatica

and 63 edges. This is a reasonable size for street-parking search, because such a search
usually involves a small area. Even for a large graph representing for example a city, the
parking search algorithm can be performed on a subgraph within a certain radius from the
user’s destination, e.g. a subgraph in which the walking time from every node to the user’s
destination is at most 30 minutes. Indeed, in our experiments we limit the maximum path-
length of the searches to 30 blocks (edges), considering the average travel cost of an edge
in the network is about one minute.

We conducted our simulations for a weekday between 20:00 and 21:00. For each sim-
ulation, we randomly and uniformly generate a starting time between 20:00 and 21:00.
Similarly, the initial location for each simulation is generated uniformly at random. We
assume that the user’s final destination is the same as the initial location (i.e. a node in the
network). In other words, we assume that the user requests parking navigation when she is
at her final destination and has not found parking there. The usage cost of each edge is the
shortest walking time from this edge to the user’s final destination. To avoid complications
that would be irrelevant to the search time, we assume that the vehicle moves at a constant
velocity. To test the algorithms for different availability levels (a measure of the scarcity
of resources), we artificially removed a certain percentage of the parking spaces on each
block in some experiments. For each combination of the parameters, we conducted 10,000
simulations that compute the average final cost for each algorithm.

We compute the uncertainty metrics of each block in the following way, which resem-
bles a process of hourly data collection using a detection vehicle equipped with ultrasonic
sensors [15]. We scan the previous 20 weekdays for parking availability data; for each hour
on each day, we use a fixed route to scan all the blocks from the beginning of that hour. We
record the number of available parking spaces when scanned for each block. And then, for
each block, we compute the proportion of days on which the edge is available, i.e. there is
at least one available parking space. We use this proportion as the probability of the blocks.
The historical mean and variance of a block are estimated by the sample mean and unbiased
sample variance of these numbers following Section 6. The real-time mean is estimated by
the last scanning before the resource-search request. The real-time variance is estimated by
the average hourly squared difference from the beginning of the day of search request. For
example, if the availability of a block has been hourly scanned as 3,2,1,0 since 8:00, then

the real-time variance for a request at 11:30 is estimated as (3−2)2+(2−1)2+(1−0)2

3 = 1, and
real-time mean is estimated as 0. This estimation is from the assumption that the hourly
transition distribution of availability throughout the same day stays the same.

7.2.2 Recovery function for the experiments

There is a wide range of choices for the recovery function defined in Section 4.1. In our
experiments we found that as long as the probability stays low for a reasonable time period
after traversal, the results are similar, regardless of the specific choice of the recovery
function. Therefore, we use a simple step function:

p′
ij = Recovery(pij , tij) =

{
0, if tij < 2 min.
pij , otherwise.

(11)

In this equation, tij is the time that has elapsed since block eij ’s last traversal by the search-
ing agent, and 2 minutes is a threshold. Equation 11 means that the recovery function is a
step function which is 0 if the time after the last traversal is smaller than 2 minutes, and pij

otherwise. The threshold of 2 minutes was determined experimentally such that it optimizes
the performance of both PM and AGCM. Note that the 2-minute threshold is long enough

Geoinformatica

to prevent the agent from continuously going back and forth on the same edge. Experimen-
tally we determined that this fixation on an edge is undesirable, and is exactly the reason
for introducing the recovery function.

7.2.3 Results

We tested the algorithms for different unavailability levels, i.e. percentages of parking
spaces removed. The results are shown in Figs. 2 and 3. In these figures, AGCM-m is the
version of ACGM using historical mean and variance of the availability data, and AGCM-
KF is the version of ACGM-m using Kalman filter combining historical and real-time data.
In Fig. 2, usage costs are not considered; in Fig. 3, usage costs are considered. The results
coincide with the intuition: the higher the unavailability level, the longer time on average it
takes to find parking (and walk to the final destination) for the algorithms.

As Figs. 2 and 3 indicate, the improvements that AGCM brings over PM are significant.
Also, the performance of AGCM-KF is very similar to that of AGCM, suggesting that in
parking search, using the mean and variance of the number of available resources to replace
the probabilities does not compromise the performance of our approach. Note that, com-
bining historical data with real-time data (AGCM-KF) does improve the performance over
using historical data only (AGCM-m) in some cases, but not always. This conclusion is sup-
ported by Xu et al.’s work [22], which shows that Kalman Filter improves Boolean accuracy
(percentage of correct classifications as available or unavailable) only marginally.

7.3 Taxi-customer search

In this set of experiments we use Beijing’s road network as the graph. It has 121,317 nodes
and 161,758 edges. We use the Beijing taxi trajectory dataset used by Ma et al. [14] and
Yuan et al. [24] to generate customer requests. The trajectories are segmented into individual
trips, some of which are occupied trips and others unoccupied. In this dataset, there are

0% 5% 10% 15% 20%

1

2

3

4

5

Unavailability level
(percentage of parking spaces removed)

A
ve
ra
ge

co
st
(m

in
.)

PM
AGCM

AGCM-m
AGCM-KF

Fig. 2 Average time to find parking with different unavailability levels. Usage costs are zero

Geoinformatica

0% 5% 10% 15% 20%

4

6

8

10

Unavailability level
(percentage of parking spaces removed)

A
ve
ra
ge

co
st
(m

in
.)

PM
AGCM

AGCM-m
AGCM-KF

Fig. 3 Average cost for parking with different unavailability levels, with non-zero usage costs

3,787,022 occupied trips on a particular day. We consider the time and location of the origin
of each occupied taxi trip as the time and location of a taxi-ride request.

Following Ma et al. [14], we generate the probabilities of the edges in the following
way. We divide an hour into 12 time bins, each with a span of 5 minutes. For edge eij ,
we count the number of time bins rij in which there are taxi-ride requests on it during that
hour, and estimate the probability of eij by pij = rij /12. In the dataset, there are 195,520
taxi ride requests during the hour that we used to compute the probabilities. In order to
model unsatisfied requests, and also to test different demand levels for taxi rides, as in Ma
et al. [14] we inflate the probabilities for some experiments by a multiplier δ. (If a probabil-
ity becomes bigger than one after multiplied by δ, we use one.) The mean and variance of an
edge is estimated by the sample mean and unbiased sample variance as in Section 6 using
the number of taxi ride requests in each time bin on the edge as samples. For a demand level
inflated by δ, we compute the sample mean and unbiased sample variance with the inflated
samples each multiplied by δ.

Taxi drivers in Beijing usually do not like long trips that end up in remote areas, because
those increase the likelihood of having to drive back to the city center empty. This preference
needs to be encoded in the usage cost. However, the destinations of passengers from the
same starting location are usually different, and they are usually unknown to the taxi driver
before a passenger is picked up. Therefore, we approximate the usage costs of the edges
by the average trip length for each edge as the trip origin. Specifically, for an edge e, if on
average, trips starting from e are longer than 15 km, we assign a usage cost of half of its
average trip duration to e. This means that approximately half of the trips that are longer
than 15 km end up in remote areas.

We generate the stream of taxi-ride requests for each edge as follows. For edge eij ,
during each 30-second interval since the starting time, we generate a taxi-ride request with
probability pij . We assume that a taxi request is only active inside the interval during which
it is generated. We conducted 100,000 experiments for each data point in our plots; for each

Geoinformatica

0 20 40 60 80 100 120

5

10

15

20

K

A
ve
ra
ge

co
st

(m
in
.)

PM
GCM

GCM-m

Fig. 4 Average cost for different values of maximum length K , with non-zero usage costs. Demand level
δ = 1.5

experiment the initial location of the taxi was chosen randomly, and three search-paths were
generated, corresponding to the three algorithms being compared.

We first tested the effect of the length bound K for bounded searches. The result is
shown in Fig. 4.11 It can be seen that for GCM, the performance improves with increasing
K . However, the decrease in the resulting average costs is slower for larger K . This means
that the performance improvement resulted from an increase in K may disappear when
K is sufficiently large. This suggests that for GCM, the minimum expected general costs
do converge. By contrast, also from Fig. 4, the performance of PM worsens quickly with
increasing K . This is because when K → ∞, almost all paths have identical probability
(i.e. probability 1), making different paths indistinguishable.

To verify the convergence of the minimum expected general costs in UGCM, we did
another experiment as shown in Fig. 5. In this figure, the horizontal axis is K (i.e. the
maximum length of a search), and the vertical axis is ||Ck − Ck−1||, which is marked as
error in the figure, because it measures how far the minimum expected general costs are
from their converged values. Clearly, from Fig. 5, the minimum expected general costs
converge because the error approaches to zero as K → ∞. Specifically, for example, when
K = 170, the error is 2 × 10−4 minutes. This means that when K ≥ 170, increasing K

by one will result in the improvement of the minimum expected general costs by at most
2 × 10−4 minutes.

We also tested PM, UGCM, and UGCM-m for different demand levels (measured by
multiplier δ). For PM, we used K = 30 as the maximum length of a search, and we make
the agent restart the search if no customer is found after traversing 30 edges. The results,
as shown in Fig. 6 (where usage costs are zero) and Fig. 7 (with non-zero usage costs),
indicate that the more frequent the taxi-ride requests are, the faster to find a customer along

11Note that in Fig. 4, the GCM curve is below the GCM-m curve. They appear close due to the larger scale
of the vertical axis.

Geoinformatica

50 100 150 200

0

0.2

0.4

K

E
rr
or

(m
in
.)

Fig. 5 Error in expected general costs for different values ofK , for GCMwith non-zero usage costs. Demand
level δ = 1.5

a search, for all algorithms. Figures 6 and 7 also show that the performance of UGCM is
superior to PM, measured by the average final costs of the resource searches. We also see
that the performance of UGCM-m is very close to that of UGCM.

To test how sensitive the algorithms are to data errors, we introduce errors to the proba-
bilities and means in the following way. For a given error rate er , with 50 % chance, we add

1 1.2 1.4 1.6 1.8 2

2

3

4

5

6

A
ve
ra
ge

co
st

(m
in
.)

PM
UGCM

UGCM-m

Fig. 6 Average time to find a customer for different demand levels (measured by δ). Usage costs are zero

Geoinformatica

1 1.2 1.4 1.6 1.8 2

2

3

4

5

6

A
ve
ra
ge

co
st

(m
in
.)

PM
UGCM

UGCM-m

Fig. 7 Average cost for different demand levels (measured by δ), with non-zero usage costs

this percentage to the original data, and with 50 % chance, we substract this percentage from
the original data. Specifically, after introducing errors, the probability p of an edge becomes
p(1 + er) or p(1 − er); the sample mean r̄ becomes r̄(1 + er) or r̄(1 − er). The result is
shown in Fig. 8. Clearly, UGCM and UGCM-m outperform PM even with data errors.

0% 50% 100% 150% 200%

3

4

5

6

7

Error rate

A
ve
ra
ge

co
st

(m
in
.)

PM
UGCM

UGCM-m

Fig. 8 Average cost for different error rates, with non-zero usage costs. Demand level δ = 1.5

Geoinformatica

20 40 60 80 100 120 140
0

1

2

3

4

K

A
ve
ra
ge

C
PU

tim
e
(s
ec
.)

PM
GCM

Fig. 9 Average CPU time of running the algorithms for different values of K

Finally, we evaluate the running time of the algorithms. Figure 9 shows the average CPU
time of the two algorithms in comparison for different values ofK . Clearly, the computation
time of GCM is linear in K as shown in Section 3.3.

8 Conclusions

In this paper, we use the minimum expected general cost as the optimization criterion for
the spatio-temporal resource search problem with uncertain data. Clearly, it is beneficial to
be able to consider general costs that include usage costs in the resource search problem.
We show that our optimization criterion is advantageous over other possible optimization
criteria such as Probability Maximization.

In applications such as on-street parking search, traversing a resource location and not
finding the desired resource means an immediate decrease of its probability. To utilize this
observation, we propose the Adaptive General Cost Minimization algorithm. This algorithm
has a time complexity that is exponential in the length of the path that needs to be tracked
during recovery. However, its efficiency is still reasonable because the length of recovery-
path is usually very small. This is demonstrated by experiments. For example, in the SFpark
case the probability recovers to its initial value within 2 minutes, thus the algorithm is
exponential in the number of edges that can be traversed in 2 minutes.

Under certain conditions, the expected cost of a search is finite even if the search time is
unbounded, and the Unbounded General Cost Minimization algorithm finds the tight lower
bound, and does so efficiently. Furthermore, it finds the path corresponding to the minimum
expected general cost, even if the path is infinite. This fact is useful for applications such as
taxi-customer search, because an unbounded search gives a probability of one for finding a
resource.

For some data collection methods, the uncertain data about the availability of the
resources may be the mean and variance of the number of resources for each location instead

Geoinformatica

of the probability of having a least one available resource. We use discretized Gaussian dis-
tribution to convert the mean and variance to probability. Experiments show that applying
the mean and variance to our approach produces comparable results.

Finally, we demonstrate by experiments that, even with data errors, our approach
outperforms Probability Maximization.

Acknowledgments This work was supported in part by the NSF under grants IIS-1213013 and IIP-
1534138.

Appendix: Proofs

Proof for Theorem 1 First, we define some notation. Let (Ck
i)′ denote the expect cost (not

necessarily the minimum) of any possible path with k-step look-ahead from node vi . Let
(Ck

ij)
′ denote the expected cost (not necessarily the minimum) of any possible path with

k-step look-ahead given that vi and vj are the first two nodes of the path.
When k = 0, ∀i = 1, . . . , n, C0

i = βi is the only possible expected cost for the zero-
length path starting from vi . Therefore C0

i is the minimum.

Assume that when k = k0 − 1, ∀i = 1, . . . , n, Ck0−1
i is the minimum expected general

cost for all paths starting at vi with length k0 − 1 or less. That is, Ck0−1
i ≤ (C

k0−1
i)′.

Then, when k = k0, for any given vi , we consider two categories of possible successor
nodes for vi ({vj ′ } and {vj ′′ }):
1) ∀j ′ such that eij ′ exists and ucij ′ ≤ C

k0−1
j ′ .

By Eq. 3,
C

k0
ij ′ = tcij ′ + pij ′ ucij ′ + (1 − pij ′)Ck0−1

j ′ .

Because ucij ′ ≤ C
k0−1
j ′ ≤ (C

k0−1
j ′)′, by Eq. 1,

(C
k0
ij ′)′ = tcij ′ + pij ′ ucij ′ + (1 − pij ′)(Ck0−1

j ′)′.

Clearly, Ck0
ij ′ ≤ (C

k0
ij ′)′.

2) ∀j ′′ such that eij ′′ exists and ucij ′′ > C
k0−1
j ′′ .

By Eq. 3,
C

k0
ij ′′ = tcij ′′ + C

k0−1
j ′′ .

The relationship between ucij ′′ and (C
k0−1
j ′′)′ in this second case can be either way.

a) When ucij ′′ ≤ (C
k0−1
j ′′)′, by Eq. 1,

(C
k0
ij ′′)′ = tcij ′′ + pij ′′ ucij ′′ + (1 − pij ′)(Ck0−1

j ′′)′.

In this case, Ck0
ij ′′ ≤ (C

k0
ij ′′)′ because C

k0−1
j ′′ < ucij ′′ and C

k0−1
j ′′ ≤ (C

k0−1
j ′′)′.

b) When ucij ′′ > (C
k0−1
j ′′)′, by Eq. 1,

(C
k0
ij ′′)′ = tcij ′′ + (C

k0−1
j ′′)′.

In this case, again C
k0
ij ′′ ≤ (C

k0
ij ′′)′.

Geoinformatica

Integrating cases 1) and 2), we can conclude that ∀j such that eij exists, Ck0
ij ≤ (C

k0
ij)′.

Therefore, by Eq. 2, ∀j such that eij exists, C
k0
i ≤ min

{
C

k0
ij , βi

}
≤ min

{
(C

k0
ij)′, βi

}
.

Because {vj } here covers all possible successors of vi , we can get C
k0
i ≤ (C

k0
i)′.

By induction, we can reach the conclusion that CK
i is the minimum expected general

cost for all paths starting at vi with length K or less, in other words, CK
i ≤ (CK

i)′.
The time complexity O(ndK) is a direct result of applying Eqs. 2 and 3 for dynamic

programming (refer to Algorithm 1).
Proof for Theorem 2 When k = 0, ∀i, j such that eij exists, by Eq. 2, ucij ≤ βj = C0

j .

Assume that when k = k0 − 1, ∀i, j such that eij exists, it holds that ucij ≤ C
k0−1
j , then

for k = k0 and any given i, ∀j such that eij exists, by Eq. 3:

C
k0
ij = tcij + pij ucij + (1 − pij)C

k0−1
j

≥ tcij + pij ucij + (1 − pij)ucij

≥ ucij

Therefore,

C
k0
i = min∀j, s.t. eij exists

{
C

k0
ij , βi

}

≥ ucij

This can be rewritten as ucij = ucji ≤ C
k0
j .

By induction, we can get the conclusion in the theorem.

The following lemma is necessary to prove Lemma 1:

Lemma 5 Let {ai}, {bi}, i = 1, 2, . . . , n be two real sequences with the same length n, then
∣
∣
∣
∣ min
1≤i≤n

{ai} − min
1≤i≤n

{bi}
∣
∣
∣
∣ ≤ max

1≤i≤n
{|ai − bi |}.

Proof

min
1≤i≤n

{ai} − min
1≤i≤n

{bi} = max
1≤i≤n

{

min
1≤j≤n

{aj } − bi

}

≤ max
1≤i≤n

{ai − bi}
≤ max

1≤i≤n
{|ai − bi |}.

min
1≤i≤n

{ai} − min
1≤i≤n

{bi} = min
1≤i≤n

{

ai − min
1≤j≤n

{bj }
}

≥ min
1≤i≤n

{ai − bi}
= − max

1≤i≤n
{−(ai − bi)}

≥ − max
1≤i≤n

{|ai − bi |}.
From these, we can get the inequality in the lemma.

Geoinformatica

Proof for Lemma 1 Firstly, we prove that ∀1 ≤ i ≤ n, |Ck+1
i − Ck′+1

i | ≤ γ ||Ck − Ck′ ||
using Lemma 5 and Eqs. 2 and 3′:

|Ck+1
i − Ck′+1

i |
=

∣
∣
∣
∣ min∀j, s.t. eij exists

{
tcij + pij ucij + (1 − pij)C

k
j , βi

}

− min∀j, s.t. eij exists

{
tcij + pij ucij + (1 − pij)C

k′
j , βi

}∣
∣
∣
∣

≤ max
∀j, s.t. eij exists

{∣
∣
∣(tcij + pij ucij + (1 − pij)C

k
j)

−(tcij + pij ucij + (1 − pij)C
k′
j)

∣
∣
∣ , 0

}

= max
∀j, s.t. eij exists

{
(1 − pij)

∣
∣
∣Ck

j − Ck′
j

∣
∣
∣
}

≤ max
∀j, s.t. eij exists

{
(1 − pmin)

∣
∣
∣Ck

j − Ck′
j

∣
∣
∣
}

≤ (1 − pmin) max
1≤j≤n

{∣
∣
∣Ck

j − Ck′
j

∣
∣
∣
}

= γ ||Ck − Ck′ ||.
Therefore,

||Ck+1 − Ck′+1||
= max

1≤i≤n

{∣
∣
∣Ck+1

i − Ck′+1
i

∣
∣
∣
}

≤ γ ||Ck − Ck′ ||.

Proof for Lemma 2 Note that because ∀i, j such that eij exists, ucij = ucji ≤ βi , by The-
orem 2, Eq. 1 only presents its first case. By expanding the recursion in Eq. 1, the expected
cost of this path is12

C{v0→v1→··· }

=
∞∑

k=1

⎛

⎝
(
tck−1,k + uck−1,k · pk−1,k

) k−1∏

j=1

(
1 − pj−1,j

)
⎞

⎠ + lim
k→∞

⎛

⎝βk

k∏

j=1

(
1 − pj−1,j

)
⎞

⎠

≤
∞∑

k=1

(
(tcmax + ucmax · pmax) (1 − pmin)

k−1
)

+ βmax lim
k→∞ (1 − pmin)

k

= tcmax + ucmax · pmax

pmin
.

12We let
∏0

j=1

(
1 − pj−1,j

) = 1 for the convenience of notation.

Geoinformatica

Proof for Lemma 4 Using Lemma 1 and the triangle inequality of max norm, we get

||Ck+1 − C||
≤ (1 − pmin)||Ck − C||
≤ (1 − pmin)||Ck+1 − Ck|| + (1 − pmin)||Ck+1 − C||
≤ ε0 pmin + (1 − pmin)||Ck+1 − C||,

which implies ||Ck+1 − C|| ≤ ε0.

References

1. Ayala D, Wolfson O, Xu B, DasGupta B, Lin J (2011) Parking slot assignment games. In: Proc. of the
19th Intl. conf. on advances in geographic information systems (ACM SIGSPATIAL GIS 2011). Chicago

2. Ayala D, Wolfson O, Xu B, DasGupta B, Lin J (2012) Parking in competitive settings: a gravitational
approach. In: Proc. of 13th Intl. conf. on mobile data management (MDM). Bengaluru

3. Ayala D, Wolfson O, Xu B, DasGupta B, Lin J (2012) Spatio-temporal matching algorithms for road
networks. In: 20th Int. conf. on advances in geografic information systems (ACM SIGSPATIAL GIS).
Redondo Beach

4. Boehlé J, Rothkrantz L, van Wezel M (2008) Cbprs: a city based parking and routing system. ERIM
Report Series Reference No. ERS-2008-029-LIS

5. Delot T, Ilarri S, Lecomte S, Cenerario N (2013) Sharing with caution: managing parking spaces in
vehicular networks. Mob Inf Syst 9:69–98

6. Geng Y, Cassandras CG (2011) A new “smart parking” system based on optimal resource allocation and
reservations. In: Proc. of 14th Intl. conf. on intelligent transportation systems (ITSC). Washington

7. Guo Q, Wolfson O (2015) Presents: probabilistic resource-search networks. In: Proceedings of the
23rd ACM SIGSPATIAL international conference on advances in geographic information systems,
SIGSPATIAL ’15. ACM

8. Guo Q, Wolfson O (2016) Finding geospatial resources using uncertain data. In: Proc. of 17th Intl. conf.
on mobile data management, MDM ’16

9. Guo Q, Wolfson O, Ayala D (2015) A framework on spatio-temporal resource search. In: 2015 11th
International wireless communications and mobile computing conference (IWCMC)

10. Jossé G, Schmid KA, Schubert M (2015) Probabilistic resource route queries with reappearance. In:
Proceedings of the 18th international conference on extending database technology, EDBT ’15, pp 445–
456

11. Jossé G, Schubert M, Kriegel H-P (2013) Probabilistic parking queries using aging functions. In: Proc. of
the 21st ACM SIGSPATIAL Int. conf. on advances in geographic information systems, SIGSPATIAL’13.
ACM, Orlando, pp 442–445

12. Kühne R (2003) Potential of remote sensing for traffic applications. In: Proceedings of IEEE intelligent
transportation systems

13. Ma S, Wolfson O, Xu B (2014) Updetector: sensing parking/unparking activities using smartphones. In:
Proc. of 7th Int. Workshop on computational transportation science (IWCTS)

14. Ma S, Zheng Y, Wolfson O (2013) T-share: a large-scale dynamic taxi ridesharing service. In:
Proceedings of the 29th IEEE int. conf. on data engineering (ICDE)

15. Mathur S, Jin T, Kasturirangan N, Chandrashekharan J, XueW, Gruteser M, TrappeW Parknet: drive-by
sensing of road-side parking statistics. In: MobiSys. San Francisco

16. Nawaz S, Efstratiou C, Mascolo C (2013) Parksense: a smartphone based sensing system for on-street
parking. In: Proc. of the 19th Annual int. conf. on mobile computing and networking (MobiCom). ACM,
pp 75–86

17. Panja B, Schneider B, Meharia P (2011) Wirelessly sensing open parking spaces: accounting and
management of parking facility. In: AMCIS 2011 Proceedings

18. Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice Hall
19. Safra E, Kanza Y, Dolev N, Sagiv Y, Doytsher Y (2007) Computing a k-route over uncertain geograph-

ical data. In: Papadias D, Zhang D, Kollios G (eds) Advances in spatial and temporal databases, volume
4605 of lecture notes in computer science. Springer, Berlin Heidelberg, pp 276–293

Geoinformatica

20. Verroios V, Efstathiou V, Delis A (2011) Reaching available public parking spaces in urban environ-
ments using ad-hoc networking. In: IEEE Intl. conf. on mobile data management (MDM)

21. Wolfson O, Xu B (2004) Opportunistic dissemination of spatio-temporal reseource information in mobile
peer-to-peer networks. In: Proc. of 1st Int. workshop on P2P data management, security and trust
(PDMST’04), DEXA Workshops 2004. Zaragoza, pp 954–958

22. Xu B, Wolfson O, Yang J, Stenneth L, Yu PS (2013) Real time street parking availability estimation. In:
Proc. of 14th Intl. conf. on mobile data management (MDM). Milan

23. Yoon JW, Pinelli F, Calabrese F (2012) Cityride: a predictive bike sharing journey advisor. In: Proc. of
13th Intl. conf. on mobile data management (MDM). Bengaluru

24. Yuan NJ, Zheng Y, Zhang L, Xie X (2013) T-finder: a recommender system for finding passengers and
vacant taxis. In: IEEE Transactions on knowledge and data engineering

Qing Guo is a PhD candidate in the Department of Computer Science at the University of Illinois at Chicago.
His current advisor is Prof. Ouri Wolfson. He received his Bachelor’s degree in Statistics at the University
of Science and Technology of China in 2008. His research interests include computational transportation
science and mobile computing.

OuriWolfson, Ph.D., is the Richard and Loan Hill Professor of Computer Science at the University of Illinois
at Chicago, and an Affiliate Professor in the Department of Computer Science at the University of Illinois at
Urbana Champaign. He is the founder of Mobitrac, a venturefunded high-tech startup that was acquired in
2006, and of Pirouette Software. Wolfson authored over 200 publications, and holds seven patents. He is a
Fellow of the ACM, AAAS, IEEE, and a University of Illinois Scholar. He co-authored four award winning
papers. Wolfson’s main research interests are in databases, distributed systems, mobile/pervasive computing,
and intelligent transportation.

	Probabilistic spatio-temporal resource search
	Abstract
	Introduction
	Related work
	Basic model
	Problem setup
	Expected general cost of a search-path
	Expected general cost minimization

	Adaptive probabilities
	Probability recovery function
	Expected cost minimization with recovery function*.5pt

	Unbounded search optimization
	Infinite path representation
	Complexity of UGCM
	Effect of penalty bold0mu mumu dotted

	Mean and variance as uncertainty metric
	Convert mean and variance to probability
	Combining historical data and real-time data

	Experiments
	Baseline algorithm
	Parking search
	Simulation setup
	Recovery function for the experiments
	Results

	Taxi-customer search

	Conclusions
	Acknowledgments
	Appendix 1 Proofs
	References

