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ABSTRACT
We consider a model in which there are spatially located
static resources on a road network, and a mobile agent. The
agent looks to obtain one of the resources, and has no knowl-
edge of exact availability of the resources; only probabilistic
information is available. We develop a novel and efficient
algorithm that guides the agent through a road network in
order to find the desired resource at minimal cost.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
Spatio-temporal databases, probabilistic data, routing

1. INTRODUCTION
In recent work, with the help of smartphones, a taxi driver

is able to locate passengers [2]; and with the help of wireless
embedded sensors, a vehicle is able to locate available on-
street parking spaces (e.g. http://sfpark.org/). In these
examples, the taxi driver and the vehicle are the agents,
and the passengers and parking spaces are resources that the
agents attempt to find. Other examples of resources include
Electric-Vehicles charging stations, rental bikes, share-bike
parking slots, and packages for pick-up and delivery.

The exact number of available resources per location is
usually unknown to the agent. Oftentimes, only uncertain
data is available. This situation is common for data collec-
tion using crowdsourcing methods, where only some of the
agents are used for crowdsourcing (see e.g. Xu et al. [4]).

In this work we assume that there is a graph representing
a road network, and that the resources are located on the
edges of the graph. Each edge is associated with a cost of
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traversing it (e.g. the travel time), and a probability of hav-
ing at least one available resource. We address the problem
of efficiently searching for a resource in the road network.
Specifically, the problem is to find an optimal search-path,1

and to do so by an efficient algorithm.
What is the meaning of an optimal search-path for a

resource? An approach introduced previously to answer
this question is the Probability Maximization (PM) algo-
rithm [5]. This algorithm computes the total probability of
finding a resource for any given path of length (cost) M or
less from a starting location. Then a path with the maxi-
mum probability is picked as the optimal path.

This approach has several drawbacks. First, every infi-
nite path has probability 1 of finding a resource.2 Thus, all
unbounded search-paths have identical probabilities. There-
fore, the PM approach does not work when the agent is will-
ing to search as long as it takes in order to find a resource
(e.g. a taxi cab searching for a customer at 9 am). Second,
consider the road network example in Figure 1. It consists
of a network of two parallel edges, each with probability 0.5.
One edge takes 15 minutes to traverse, and the other takes
5 minutes. If the bound on the search is 15 minutes, then
PM is indifferent between the two paths, and may choose
either, although the shorter path is clearly superior.

Thus, in this paper we introduce an alternative method,
the Minimum Expected Cost (MEC), to efficiently search
for a resource.3 It produces a path of minimum expected
cost. Consider again Figure 1. Observe that the shorter
path has a lower expected cost, thus it will be preferred by
MEC over the other. MEC produces such a path efficiently,
for bounded and unbounded (i.e. infinite) paths. And exper-
imental results with parking and taxi cab data indicate that
MEC is superior to PM in terms of resource search-time.

2. ASSUMPTIONS AND NOTATION
A road network is a directed graph; the vertices are the

intersections of the roads, and the edges are the road seg-
ments connecting the intersections. Assume that there are

1Observe that in a search an edge can be visited multiple
times, because an unavailable edge (i.e. an edge that does
not have an available resource) may become available later.
2Assume that the infinite path is {e0 → e1 → · · · }, then
the overall probability of getting at least one available re-
source along it, is p = 1−

∏∞
i=1(1− pi) = 1, where pi is the

probability of finding a resource on edge ei
3Our model with unbounded search is analogous to Markov
Decision Processes (MDPs) [3] in infinite time horizons with
discounted rewards. The difference is that the edge costs in
our model are not discounted over time.
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Figure 1: An example of comparing the algorithms.

n vertices in the road network, denoted by vi, where i =
1, 2, . . . , n, and let edge eij be the road segment between
vertices vi and vj . Let the travel cost from vi to vj , denoted
as cij , be the cost of eij . The cost may represent travel time
to traverse the edge, usage cost of a resource on this edge, or
a combination of both; e.g., in the case of parking, usage cost
is the time to walk from the edge to the final destination.

Let pij denote the probability of edge eij being available
(0 < pij < 1), i.e. the probability that at least one resource
is available at eij at arbitrary point in time during some
time interval, e.g. 5 pm to 6 pm. Consequently, 1 − pij
is the probability that no resource is available on eij . We
assume that pij is estimated from historical or partial data.

A search-path, is simply a path in the road network. It is
provided by MEC, PM, or other algorithms to the agent; it
may be bounded by a constant K representing the maximum
number of edges in the search, or it may be unbounded. An
unbounded search is requested by an agent willing to con-
tinuously traverse the network until obtaining a resource.

After receiving the search-path, the agent follows it. While
following a search-path, if the usage cost is 0, then the agent
will obtain the first resource that it finds. If the usage cost
is higher than 0, then when finding a resource r the agent
will compare its usage cost with the expected cost of the rest
of the path, and only obtain r if the former is lower.

The cost of the search depends on whether or not the
search is successful. If the search is successful, then the cost
of the search is the total cost of the edges traversed (i.e.
the prefix of the search-path), plus the usage cost of the ob-
tained resource, if any. For the rest of the paper, we assume
that the usage cost is 0. If the search is unsuccessful, assume
that it ends at vertex vi, the last vertex on the search-path.
Then the cost of the search is the total cost of the edges
on the path, plus some constant βi which denotes the addi-
tional penalty for not finding any resource after terminating
the search at node vi. For example, in the parking search
application, if no parking space is found, then βi is the cost
of traveling from vi to a private garage and parking there.
If the search represents a taxi driver cruising for customers,
βi represents the cost of returning home empty-handed.

3. EXPECTED COST OF A SEARCH
We define the expected cost of a search in a recursive

(stepwise) fashion. In this definition, the expected cost of a
search is defined by the cost of its first edge and the expected
cost of the sub-path without the first edge. This is for the
convenience of presenting the Bellman equation to compute
a path with the minimum expected cost (see Section 4).

Denote the expected cost of search-path {v0 → v1 →
· · · → vK} as C{v0→v1→···→vK}, then we have

C{v0→v1→···→vK}

=p01c01 + (1− p01)
(
c01 + C{v1→···→vK}

)
=c01 + (1− p01)C{v1→···→vK}.

(1)

The second line of Equation (1) has two terms. The first is
the cost of finding the resource on the first edge of the path,
and ending the search; the second is the cost of continuing
the search on the rest of the path. Similarly, C{v1→···→vK},
. . . , C{vK−1→vK} can be expanded recursively.

Observe that without the penalty βK , the minimum ex-
pected cost of a path is zero, given by a 0-length path.

4. BOUNDED SEARCH OPTIMIZATION
In this section we show how to find an optimal path of

length at most K, i.e. a path with an expected cost that is
minimum among all paths with length K or smaller.

Overall, the minimum expected cost of all paths with
length k ∈ {1, . . . ,K} from node vi, is computed based on
the minimum expected costs of all possible sub-paths with
length k−1 starting from vi’s possible successor nodes. This
computation relies on the recursive definition of the expected
cost of a path as in Equation (1).

For a natural number k ≤ K, let the k-step look-ahead
from node vi be the set of all paths starting from vi with
length k or less. Denote by Cki the minimum expected cost
of a path in the k-step look-ahead from node vi. Assume
that vj is an immediate successor of vi. Denote by Ckij the
expected cost of a path in the k-step look-ahead from node
vi, for which: 1) the first two vertices are vi and vj , and 2)
the expected cost of the remaining sub-path of length k− 1
or less is the minimum among all paths of length k− 1 from
vj . Now we indicate how to compute Cki and Ckij recursively:

Cki =

 min
1≤j≤n, s.t. eij exists

{
Ckij , βi

}
, if k > 0.

βi, if k = 0.
(2)

nextki =

 arg min
1≤j≤n, s.t. eij exists

{
Ckij

}
, if Cki 6= βi.

−1, if Cki = βi.
(3)

Ckij = cij + (1− pij)Ck−1
j . (4)

We call a pair of vi and k a decision point. The reason is that
at each pair (vi, k), the computation decides which direction
to choose next in order to minimize future costs. The above
equations are explained in detail as follows:

Equation (2): When the agent is at vi, and is allowed to
search for k more edges, then the agent should choose a next
node vj such that the expected cost of the remaining path
is minimum. If the penalty for terminating the search βi is
smaller than the expected cost of the remaining path, or if
k = 0, i.e. no further search is allowed, then the cost is βi
and the search is concluded.

Equation (3): The index of the next node vj that mini-
mizes the cost of a path from vi with k-step look-ahead is
recorded as nextki . If no further search is needed, then let
nextki = −1. We call nextki the optimal action for the agent
at decision point (vi, k). In other words, when the agent is
at node vi and has k more edges to search, then nextki is the
index of the next node that the agent should proceed to in
order to minimize the expected cost of the remaining path.

Equation (4): The expected cost for vi, given vj as the
next node, assuming that the agent will follow the sub-path
with minimum expected cost from vj . (See Equation (1)).

Here is how to extract the optimal path from the resulting
nextki of this computation. Let v0 be the starting node, and



l1 = nextK0 , l2 = nextK−1
l1

, . . . , until the first k0 such that

nextK−k0lk0
= −1. Then the path starting at v0 that always

minimizes future expected costs is {v0 → vl1 → · · · → vlk0
}.

Although Equations (2) and (4) define a recursive rela-
tionship, each Cki only needs to be computed once. In other
words, they can be regarded as the Bellman equation [3] in a
dynamic programming method for computing the minimum
expected cost of any path with length K or less. Thus,

Theorem 1. The expected cost CKi computed by Equa-
tions (2), (3), and (4) is the minimum among all paths with
length K or less, starting at vertex vi. Furthermore, CKi
can be computed in polynomial time O(ndK), where d is the
maximum degree of a node.

Proof Sketch. This can be easily proven by induction
on K. Specifically, the minimum expected cost Cki can be
computed in polynomial time given {Ck−1

j : j = 1, . . . , n}.
Therefore, one can compute {C1

i : i = 1, . . . , n}, and then
{C2

i : i = 1, . . . , n}, until {CKi : i = 1, . . . , n}.

As a result, the minimum expected cost from any node, with
any time-step look-ahead (up to K), is computed.

5. UNBOUNDED SEARCH OPTIMIZATION
In this section we provide an efficient algorithm to com-

pute the minimum expected cost of an unbounded search,
and find the path of such a search.

Analysis of the minimum expected cost of an unbounded
search is based on the concept of contraction [3], defined
as follows. Assume that {Uk : k = 1, 2, . . . } is a set of
vectors, and B is an operator (e.g. function). Assume that
B defines a sequence Uk+1 = BUk. If there exists 0 <
γ < 1, such that ∀k, k′ ∈ {0, 1, . . . }, ||Uk+1 − Uk′+1|| =
||BUk −BUk′ || ≤ γ||Uk −Uk′ ||, then B is a contraction.4

An important property of a contraction is that it has a single
fixpoint, and repeatedly applying the contraction will lead to
that fixpoint in the limit [3]. In the resource search problem,
consider the vector Ck = {Ck1 , . . . , Ckn} of the minimum
expected costs as the vector Uk, and Equations (2) and (4)
as the operator B. Then Lemma 1 indicates that B is a
contraction, and the resulting Theorem 2 indicates that the
minimum expected cost of an unbounded search converges:

Lemma 1. In Equations (2) and (4), ∀k, k′ ∈ {0, 1, . . . },
||Ck+1 −Ck′+1|| ≤ γ||Ck −Ck′

||, where γ = 1− pmin .

Proof Sketch. Observe that for any two real sequences
{ai : i = 1, . . . , n} and {bi : i = 1, . . . , n}:∣∣∣∣ min

1≤i≤n
{ai} − min

1≤i≤n
{bi}

∣∣∣∣ ≤ max
1≤i≤n

{|ai − bi|}.

Then, the inequality in the lemma can be proven by ap-
plying Equations (2) and (4) and the above inequality.

Theorem 2. The minimum expected costs Ck defined by
Equations (2) and (4) converge to a fixpoint when k →∞.

Algorithm 1 (MEC) computes the minimum expected costs
and optimal paths of unbounded searches. It builds the
minimum expected costs bottom-up by Equations (2), (3),

4The distance between vectors is measured by max norm.
The max norm of V = {V1, . . . , Vn} is ||V || = max

1≤i≤n
{|Vi|}.

Algorithm 1 Minimum Expected Cost (MEC) Algorithm

Input: Network 〈E, V 〉, {cij}, {βi}, {pij}, error bound ε
Output: {Cki }, {nextki }
1: for i = 1, 2, . . . , n do
2: C0

i ← βi
3: end for
4: error ← 1 + ε
5: k ← 1
6: while error > ε do
7: for i = 1, 2, . . . , n do
8: Cki ←∞
9: for all vj s.t. eij exists do

10: Ckij ← cij + (1− pij)Ck−1
j

11: if Ckij < Cki then

12: Cki ← Ckij
13: nextki ← j
14: end if
15: end for
16: if βi < Cki then
17: Cki ← βi
18: nextki ← −1
19: end if
20: end for
21: error ← ||Ck −Ck−1||
22: k ← k + 1
23: end while

and (4) using dynamic programming for increasing k, until
the error is bounded, i.e., until k is large enough so that the
minimum expected costs Cki and Ck−1

i are close enough for
every node vi. When implementing the algorithm, there is
no need to store the costs and indices for every k in each
iteration; only the vectors Ck and Ck−1 need to be stored.

Infinite Path Representation. Observe that MEC
computes the minimum expected costs, and the optimal un-
bounded search, which may be an infinite path. Now we ex-
plain how an infinite path is represented by finite notation.
The key is that whenever the agent arrives at the same node,
it takes the same action, i.e. proceed to the same successor,
or terminate the search. Intuitively, whenever the agent ar-
rives at this node, it considers all the unbounded paths, and
the set of unbounded paths from a given node is identical,
regardless of how many times the agent arrives at it. This
means that nextki stays the same for k → ∞. Denote that
next i = lim

k→∞
nextki . We call the vector {next i : i = 1, . . . , n}

an optimal policy in an unbounded search.
Note that, for a finite search with length K or less, the

above argument does not hold. That is, for k, k′ ≤ K (k 6=
k′), the optimal actions nextki and nextk

′
i may be different.

Complexity of MEC. The complexity of MEC is depen-
dent on the number of iterations in the while loop. Denote
this number by N . In turn, N depends on the given local
error bound ε via a global error bound ε0. The local er-
ror bound ε bounds the error between two iterations of the
while loop in MEC; the global error bound ε0 measures the
distance between the current value of Ck and its tight upper
bound (denoted by C = lim

k→∞
Ck).

To obtain the relationship between N and ε0, we first give
a bound on the expected cost of any unbounded search-path:

Lemma 2. The expected cost of unbounded path {v0 →



v1 → · · · } is bounded by the following:

C{v0→v1→··· } ≤
cmax

pmin
,

where cmax = max
all eij

{cij}, and pmin = min
all eij

{pij}.

Proof Sketch. By expanding the recursion in Eq. (1),

C{v0→v1→··· } = lim
K→∞

[
K∑
k=1

(
ck−1,k

k−1∏
j=1

(1− pj−1,j)

)

+βK

K∏
j=1

(1− pj−1,j)

]
≤ cmax

pmin
(5)

The last inequality results from the fact that in the limit the
second term becomes 0, and the first term is bounded by a
sum (of a geometric series) that tends to cmax/pmin .

Note that, the limit expression of Equation (5) is a (stan-
dard) non-recursive definition of the expected cost of a path.

The following lemma specifies the relationship between N
and ε0, and gives an idea of how fast the convergence is.

Lemma 3. Let N denote the number of iterations in the
while loop of MEC. For a given global error bound ε0, if N ≥(

log βmax+cmax/pmin
ε0

)
/
(

log 1
1−pmin

)
, then ||CN −C|| ≤ ε0.

Proof Sketch. By Lemma 2, the maximum initial er-
ror is ||C0 − C|| ≤ ||C0|| + ||C|| ≤ βmax + cmax/pmin .5

By Lemma 1 and the above inequlity, ||CN − C|| ≤ (1 −
pmin)||CN−1 − C|| ≤ · · · ≤ (1 − pmin)N ||C0 − C|| ≤ (1 −
pmin)N (βmax + cmax/pmin) ≤ ε0. Taking the logarithm for
both sides, we get the inequality in the lemma.

The following lemma specifies the relationship between
the local error bound ε and the global error bound ε0.

Lemma 4. Let ε0 = ε (1−pmin)/ pmin . If ||Ck+1−Ck|| ≤
ε , then ||Ck+1 −C|| ≤ ε0.

Proof Sketch. This lemma can be proven by applying
Lemma 1 and the triangle inequality of max norm.

Using Lemmas 3 and 4 , we can get the relationship be-
tween N and ε, and hence time complexity of MEC:

Theorem 3. Given the local error bound ε, the time com-
plexity of MEC is O(ndN), where d is the maximum degree

of a node and N =
(

log βmax+cmax/pmin
ε(1−pmin )/pmin

)
/
(

log 1
1−pmin

)
.

Note that, this complexity is derived under the assump-
tion that the network is represented by an adjacency list.
Also note that, fixing other parameters such as cmax and
pmin , this complexity is linear in the number of nodes n.
Also, taking advantage of being an offline algorithm (i.e. an
optimal policy can be computed before the agent starts the
actual resource search), if the probabilities for specific time
periods do not change very often, then the optimal policies
for different time periods (e.g. each hour on each weekday)
can be precomputed and stored.

Effect of Penalty β. Note that in an unbounded search,
the optimal solution is not always an infinite path. It is pos-
sible that for a certain node vi, the penalty βi for terminat-
ing the search at vi is smaller than the minimum expected

5It can be verified that for max norm, the triangle inequality
||U + V || ≤ ||U ||+ ||V || holds.

cost of continuing the unbounded search from vi (see Equa-
tion (2)). In this case, the optimal action for the unbounded
search is to terminate the search and take the penalty. For
example, consider the taxi-customer search scenario. At 11
pm, for a node vi that is very close to the driver’s home, the
driver might consider βi as a very small quantity, because
terminating the customer search at this point does not in-
cur a big loss in terms of income and gas consumption. (Al-
though we assume that the costs, probabilities, and penalties
are fixed during a resource search, they can be different for
different time intervals, e.g. hours of a day.) However, if βi
is larger than the cost of continuing an unbounded search, in
particular if βi > cmax/pmin (see Lemma 2), then requesting
an unbounded search will not produce a path ending at vi.

Accounting for Observations. Now observe that there
are two different variants of the resource-search problem. In
one variant the probabilities are unaffected by observations.
This implies that every time the agent traverses an edge e,
regardless of whether or not the agent traversed e previously,
e will have an available resource with the same probability.
This assumption represents real-world situations in appli-
cations such as taxis searching for customers. However, in
applications such as the parking search, since vehicles usu-
ally park for some period of time, the probability of a block
is not independent of observations. When the agent tra-
verses a block and does not find parking, it is very likely
that parking will be unavailable in the next minute, even if
the probability of the edge is high.

To capture this intuition, we introduce the notion of the
probability recovery function [1], which adapts the probabil-
ities according to observations. Specifically, when the agent
traverses an edge e and finds no desired resource, the prob-
ability of e drops to 0 and monotonically increases to its
prior value within the time required for the agent to tra-
verse at most h edges. Then we devise the Adaptive Mini-
mum Expected Cost (AMEC) algorithm, which is an adap-
tation of MEC to probabilities that behave according to a
recovery function. Specifically, using an adaptation of Equa-
tions (2), (3), and (4) to probabilities that behave according
to the recovery function, AMEC computes the minimum ex-
pected cost for each decision point and each finite sequence
of edges that may lead the agent to that decision point. The
complexity of AMEC for bounded searches is O(ndh+1K).
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