
A Framework on Spatio-Temporal Resource Search
Qing Guo, Ouri Wolfson, and Daniel Ayala

Department of Computer Science
University of Illinois at Chicago

qguo@cs.uic.edu, wolfson@cs.uic.edu, dayala@uic.edu

Abstract—In this paper, we establish a framework for the
spatio-temporal resource search problem. In a spatio-temporal
resource search problem, a mobile agent tries to find a desired
static resource in a network. The resources are statically located
in the network. The task is to guide the agent through the network
to find a resource with lowest possible cost. There are lots of
applications in urban transportation systems that fit in this kind
of setup. One example is a vehicle that searches for street parking
in a neighborhood of a city. Another example is a taxicab that
cruises in an area to find customers. In these examples, street
parking spaces and taxicab customers are the static resources
being searched. In this work, we develop two algorithms, namely
the Random Walk Algorithm and the Prophet Algorithm, that
serve as the lower and upper bounds on the performance of
any reasonable algorithm that assumes some kind of information
about the availability of the resources. Furthermore, when
assuming that the resource-availability probabilities for each
edge in the network are known to the agent, we develop the
Probabilistic Algorithm using these probabilities. We conducted
experiments for the three algorithms under different conditions,
and the results show that using the Probabilistic Algorithm, the
agent can perform much better than having no information at
all, and surprisingly close to the performance upper bound.

Keywords—spatial databases, probability.

I. INTRODUCTION

In this paper, we present a framework that deals with mobile
agents and statically located resources. Each resource can be
used by a single agent at a time. The agent searches for one of
the resources that are located in a network. During a search,
an available resource might become unavailable because it is
obtained by some other agent, and vice versa.

This framework is an abstraction of many real-world prob-
lems. For example, in the situation where a vehicle driver is
looking for a street parking space, the vehicle is the mobile
agent, and the parking spaces are the resources. Another
example is the situation in which a taxicab driver is cruising
to pick up potential passengers. In this example, the taxicab
is the mobile agent, and the passengers are the resources.

This framework has both spatial and temporal features, be-
cause the resources and the agent are restricted to a geographic
road network, and the availability of the resources change
over time. In fact, if the resource availability does not change
over time, and assuming that the agent has full access to
the availability information, then it becomes a trivial problem
because the agent can simply go to a resource with the lowest
cost and get it.

Our work is motivated by the increasing popularity of
mobile devices and increasing accessibility to location-based

services as a result. These developments make it possible to
obtain the availability information about the resources in a
spatio-temporal resource search. For example, in Ma et al. [1],
end-user smartphones are used to detect potential customers
for taxicab drivers; in a project called SFpark [2], wireless
embedded sensors are used to detect available street parking
spaces.

With the resource availability information, we are interested
in developing methods that minimize the cost for the agent
to find a resource. In the present work, the cost is merely
measured by travel time of the agent for convenience. It is
trivial to add other types of cost to the cost function, such as
the walking distance from the street parking block to the final
destination in the parking application.

In this work, we consider three levels of information about
the resource availability that the agent has access to: no
information at all, full current and future information, and
partial information in a probabilistic form. These correspond to
three algorithms we present in this paper. The Random Walk
Algorithm assumes no information about the availability of
the resources at all, and the agent can only depend on luck
and performs a random walk to search for a resource. This
corresponds to the way a search for a street parking space
is currently conducted by an uninformed driver. The Prophet
Algorithm, on the other hand, assumes that the agent knows
exactly how many available resources there are at each location
and at each point in time for now and in the future. This
is an unrealistic algorithm that knows the future, and serves
as a benchmark for the upper bound of performance.1 The
Probabilistic Algorithm, uses the probability that a location
has at least one available resource.

The probabilistic data, as a form of uncertain data, is
common in practice, and can be obtained from past data ap-
plying resource detection techniques that use crowdsourcing.
An example is Xu et al. [3] where a crowdsourcing method
is used to detect parking availability. Another example is in
Mathur et al. [4], where the authors used existing municipal
vehicles equipped with GPS receivers and ultrasonic range-
finders to detect street parking availability while driving by
curbside parking spaces.

In our work, we assume that the static resources are located
on the edges of a network, and the agent is able to travel
through the network in search of a resource. Each edge, as a
resource location, is associated with a probability of having at

1Performance is measured by the search-time until a resource is found.

978-1-4799-5344-8/15/$31.00 ©2015 IEEE 1043

least one available resource. We further assume that the agent
only makes decisions at the nodes. Also, by saying that an edge
is available, we mean that the edge has at least one available
resource. We use these two expressions interchangeably. The
cost for an edge d with respect to the current location s of an
agent, is defined as the shortest travel time from s to d.

Now we make an important comment concerning the Prob-
abilistic Algorithm. We noticed that, it is possible to simply
make the agent travel to an edge that is optimal in terms of
probability and cost, and make her wait on that edge if it is
unavailable when she arrives. This is the optimal strategy if the
resources on that edge are uniformly distributed over time, e.g.,
0.5 probability means that at each point in time, the chance
of encountering an available resource is one half. However, in
reality, even if an edge has a high probability, as soon as the
agent traverses it and finds out that it is unavailable, it is very
unlikely that the edge will become available immediately. For
example, in the parking search application, vehicles tend to
park for a certain period of time. To utilize this observation,
we introduce the concept of recovery function used by the
Probabilistic Algorithm. This means that when the agent
discovers that an edge is unavailable, the probability of that
edge drops to zero for a “recovery” period of time.

To test the resource search algorithms, we conduct experi-
ments using real-world data from SFpark [2]. The results, as
expected, show that the more information the agent has, the
faster the agent can find a resource. Moreover, the introduc-
tion of recovery function is very useful for the Probabilistic
Algorithm, making its performance improve dramatically. And
surprisingly, the performance of the Probabilistic Algorithm
is very close to the Prophet Algorithm. This means that
the probabilities, as a type of partial information, are highly
informative for the resource search problem, in the sense that
their performance is close to the performance upper bound.

Here is a summary of major contributions of this paper:
• We establish the upper bound (obtained by the Prophet

Algorithm) on the performance of any spatio-temporal
resource search algorithm that uses only past and current
resource-availability information (certain or uncertain).

• We compare different levels of information that an agent
may use for the spatio-temporal search problem, and find
that the probabilistic information is highly valuable in the
sense that it comes close to the performance upper bound.

• We introduce the probability recovery function, which
takes advantage of observations of the agent during a
search to adjust probabilities dynamically.

Note that this paper has significant cost implications. Our
results indicate that in terms of parking search effectiveness,
the fixed (in-pavement) solution that provides deterministic
information and the mobile sensor (ultrasonic on vehicles) so-
lution that provides probabilistic information, are comparable.

Now consider the costs of the two solutions in the Fisher-
man’s Wharf area. SFpark has 777 fixed sensors in the area,
each costing $300 to install and $170 annually to maintain [2].
So just the maintenance cost is $132 000 annually. In contrast,
by installing ultrasonic mobile sensors on existing municipal

and parking-enforcement vehicles, a probabilistic database of
parking availability can be obtained at a fraction of this cost.
Specifically, assume the sensor-cost of $400 per vehicle [4],
and assume that five vehicles are sufficient to provide hourly
data for each Fisherman’s Wharf block. Then the mobile
solution can be provided for $2 000.

The rest of the paper is organized as follows. In Section II,
we review related work. In Section III, the assumptions
and notation of the problem used throughout the paper are
presented. In Section IV, we present three algorithms for
the spatio-temporal resource search problem; each algorithm
uses a different level of knowledge of resource-availability
information. The experiments we conducted are presented in
Section V, and the conclusions are discussed in Section VI.

II. RELATED WORK

As location-based services become increasingly accessible,
it is possible to develop new approaches for sensing and
monitoring available spatial objects. For example, In Mathur
et al. [4], the authors equipped special vehicles with GPS
receivers and ultrasonic range-finders, and made them drive
through a road network. When driving by curbside parking
spaces, the sensors detect whether they are available or occu-
pied. At the end, a map of parking availability can be generated
using the data collected during the process.

Besides installing sensors, crowdsourcing methods using
end-user smartphones have appeared for the problem of
detecting the availability of parking spaces, because it is
easy to implement, and inexpensive for larger scale (such
as citywide) services. For example, by classifying mobility
patterns of smartphone users [5] or using Wi-Fi signature
matching [6], parking and unparking activities for individual
smartphone users and hence vehicles can be detected. Using
the information of users’ parking and unparking activities, it is
possible to estimate parking availability at block levels [3]. A
challenge that crowdsourcing methods face is that the data they
can get is usually uncertain. This is because not all vehicles
that are involved in parking activities subscribe to the service
that carries the crowdsourcing.

Because the parking problem is important and represen-
tative, there has been a line of research addressing it. We
categorize these efforts into two kinds. One is the parking
assignment algorithms. In this category, efforts are put on
assigning vehicles to available parking spaces, and the ob-
jective is to minimize the overall cost to society. Parking
space reservation systems fall into this category. Several such
systems have been developed [7], [8], [9]. These parking
assignment systems assume that users are socially responsible
and willing to sacrifice their own interests in order to achieve
common good. This is because in an optimal solution that
minimizes the overall cost, some users may be able to deviate
from that solution to achieve lower costs for themselves [10].

Therefore, the other method of addressing the parking
problem, the parking search algorithms were developed. These
systems assume that users are selfish and they compete
for parking spaces. This approach is more realistic because

1044

current parking systems are mostly competitive rather than
reservation-based. Ayala et al. [11], [12], [13] developed an
approach that copes with the parking problem in a competitive
setting. Assuming that the agents are selfish and only care
about their own individual interests, the parking problem was
explored in a centralized modal and a distributed model. The
above work assumes that the agent is informed in real time of
the availability of resources at each location. However, as dis-
cussed earlier in this section, the more powerful crowdsourcing
methods will most likely generate uncertain data.

There has been some research that uses uncertain data to
conduct resource searches [14], [15], [16], [17]. For example,
Safra et al. [15] considered the probability of a spatial object as
the confidence value of some query, e.g., whether a restaurant
is good according to the user’s preference. Therefore, for a
specific user, the truth value of each spatial object does not
change over time.

Verroios et al. [16] and Jossé et al. [17] assumed that
the agent can get the accurate and deterministic availability
information of the resources in the beginning of a search (our
Probabilistic Algorithm does not make this assumption). Then
they assumed some probability decaying functions modeling
the probability that a known available resource stays available
after some time. Note that the notion of probability decay over
time in these papers is different than the notion of probability
recovery function in our work. In our work, we do not assume
that the agent knows the exact availability of the resources a
priori. The probability of a resource only changes when the
agent visits it and finds that it is unavailable.

Safra et al. [15], Verroios et al. [16], and Jossé et al. [17]
all used extensions of the traveling salesman problem as the
solution concept, which is known to be NP-hard. Therefore,
they proposed different techniques to produce approximate
solutions. One disadvantage of modeling the resource search
problem using the traveling salesman problem is that a Hamil-
tonian path does not revisit the same resource, although it may
become available before the agent finds a resource elsewhere.

Yuan et al. [14] considered the accumulated probability
of finding a resource for any given route from a starting
location to a specific destination. Their algorithm can be
used in our model, but it would require adaptation, resulting
in a more complicated algorithm than our Probabilistic one.
Furthermore, they did not position the performance of their
probabilistic algorithm within upper and lower bounds, and did
not vary the probabilities dynamically, based on observations,
as our recovery function does.

III. ASSUMPTIONS AND NOTATION

We define a road network graph as follows. The n nodes
in the graph {si : i = 1, 2, . . . , n}, represent the intersec-
tions of the road network. The directed edges in the graph
{dij : i, j = 1, 2, . . . , n}, represent the road segments between
intersections. Each edge has a cost. We take the travel time
of traversing the edge as a measure of its cost. It is easy to
combine the travel-time with other measures, such as walking
distance between the parking block and the final destination

in the parking application, but this extension is beyond the
scope of this paper. Using the Dijkstra algorithm [18] and
its variants, it is possible to compute the minimum cost path
between any two points in the network. We use costs,dij

to
denote the minimum cost path from a node s to the midpoint
of an edge dij . Observe that for all pairs (node, edge), costs,dij

can be computed a priori and stored in the map.

IV. SPATIO-TEMPORAL SEARCH ALGORITHMS

A. Random Walk Algorithm

Positioned in an unknown environment without access to
any resource-availability information, a common strategy to
find a spatial resource is to search through the space randomly.
We propose a Random Walk Algorithm that resembles this
situation in a spatio-temporal search. Each time the agent
reaches a node, she just randomly chooses a new direction
with equal probability, and proceeds to that direction; the set
of possible directions excludes the reverse, i.e. one returning to
the node from which she just came. This process is repeated
at the next node, and so on, until she finds a resource on
some edge. This is a reasonable algorithm given that there
is no information on the availability of resources, and indeed
represents the way drivers currently search for parking.

B. Prophet Algorithm

We are also interested in the other end of the spectrum: how
well an algorithm can perform given full information about the
resource availability? To answer this question, we take it to
the extreme, and assume that full information means the agent
knows the exact number of available resources on each edge
of the network, at each point in time, from the time when
the agent starts a search. In particular, it means that the agent
knows the availability on each edge at each future time point.

Observe that such an algorithm will not send an agent to the
closest available edge, if it knows that the availability will be
zero by the time the agent reaches the edge. In other words,
such an algorithm does not simply pursue a greedy approach
that pursues the closest available resource.

We develop a Prophet Algorithm that computes the least
possible cost for the agent to find an available resource,
given the “prophet” information mentioned above. The Prophet
Algorithm knows for each edge dij the resource-availability
atij at any point in time t (even if t is later than the resource-
search starting time); atij represents the number of available
resources on the edge dij at time t.

The Prophet Algorithm works as follows. For edge dij , find
the minimum cost from the agent’s current location to dij , and
assume that the agent will travel to dij with the corresponding
cost (represented by travel time). Compute a priori (i.e. before
the agent starts her movement) the time when the agent arrives
at dij’s midpoint, and check whether at that time there are any
available resources on dij . If so, then record this minimum
cost as the prophet time for dij . If not, add to this minimum
cost the time that the agent has to wait at dij until there is
at least one available resource on dij ; and record this sum as
the prophet time for dij . After computing the prophet times

1045

for all edges in the network, and before starting the agent’s
movement, pick an edge with the minimum prophet time. This
edge is the edge that the agent chooses as her destination at
start-time. The prophet time for this edge is the minimum
possible cost for the agent to get an available resource from her
initial location. We summarize this observation as a theorem
and provide a sketch of proof as follows.

Theorem. Assume that atij is given for every edge and for
every time point t. Let s0 be a starting location and t0 a
starting time. Then the Prophet Algorithm has minimum cost
among all algorithms that can be used by an agent that starts
the resource search at s0 and t0.

Sketch of proof: According to the Prophet Algorithm,
for each edge dij , if it is available when the agent arrives at
it using the shortest path, then the prophet time for dij is the
travel time of this shortest path. This is the shortest possible
time to reach dij , and therefore the time to find a resource
on dij cannot be lower than this time. Similarly, for the cases
where an edge dij is not available when the agent arrives at
it using the shortest path, but becomes available some time
after the arrival, any other path will result in a longer time
to find a resource on dij . Therefore, for each individual edge,
the prophet time computed by the Prophet Algorithm is the
shortest possible time to find a resource on that edge. Choosing
an edge whose prophet time is the smallest of all edges will
guarantee that the resulting time is the shortest from s0.

C. The Probabilistic Algorithm

Given probabilistic information about the availability of
resources, it is possible for an agent to find a resource faster
than the Random Walk Algorithm. Specifically, assume that
for each edge dij , the information known to an agent is the
probability pij that dij has at least one available resource.

In order to find a resource as soon as possible, two factors
should be considered by the agent: the probability and the cost
of an edge. A higher probability of an edge having at least one
available resource means a higher likelihood that the agent will
find a resource on that edge. A lower cost of an edge means
that the agent can arrive at the edge faster. Therefore, consider
the following formula:

Qs,dij
=

pij
costs,dij

.

Intuitively, Qs,dij represents the ratio between the probabil-
ity and the cost of an edge; the higher the better. In the Prob-
abilistic Algorithm, the agent could just compute the above Q
value for each block, and then proceed to a block with the
highest Q value. This would be an extension to probabilistic
information of the following naı̈ve, greedy, deterministic one:
Go to the closest edge that has deterministic availability. In
other words, this naı̈ve deterministic algorithm is simply our
Probabilistic Algorithm with all nonzero probabilities being 1.

However, in practice, we found that by merely doing this,
the actual average cost for the agent to find parking is very
high. This is because the probabilities are usually computed

from historical or partial data. Therefore, sometimes such an
edge with the highest Q value is actually not available for a
long time on the actual day and time of the search. Intuitively,
once the agent traverses an edge and finds no available
resource, it means an immediate decrease of its probability.
To capture this intuition and take advantage of observations
that the agent makes during a search, we introduce the notion
of recovery functions for probabilities.

Definition. A recovery function for the probability of avail-
ability of an edge, p′ij = Recovery(pij , tij), is a function of
time tij that is valued at zero when the agent traverses this
edge and finds no available resource, and is monotonically
non-decreasing until the first of the following two events
occurs: 1) its initial probability pij is reached, or 2) a new
traversal of that edge occurs.

Intuitively, a recovery function discounts the probability of
an edge after observing that there is no available resource on
that edge, and makes it recover gradually to the prior value.
Note that in order to update the recovery function, the history
of the agent’s movement, including times and locations, needs
to be tracked.

Therefore, incorporating the recovery function, at node
s the agent updates the probabilities according to her past
observations, and computes Qs,dij

for all edges in the network
with pij replaced by p′ij . Then, an edge with the highest Qs,dij

would result in a higher probability and lower cost, and is
chosen as the destination. However, we do not make the agent
travel all the way to the edge with highest Qs,dij . The reason
is that as soon as the agent reaches the next node s′ from s, the
probability of the edge that agent just traversed has changed
according to the recovery function. Furthermore, the cost for
each edge from the new location of the agent has changed as
well. Therefore, as soon as the agent has traversed an edge,
we recompute Qs′,dij , and then choose a new edge to aim for.
The Probabilistic Algorithm repeats this process at each node,
until the agent finds an available resource on some edge.

In this paper we assume that the number of blocks that are
reasonable to traverse on any search is relatively small (e.g. a
parking search will not go beyond a radius of 20 blocks), and
therefore the computation at each node is simply a limited
breadth-first search, followed by finding the minimum in a
small set of numbers. Thus, in this case, the computational
complexity of the Probabilistic Algorithm is negligible.

V. EXPERIMENTS

A. Simulation Environment

We conducted experiments testing the algorithms for spatio-
temporal resource search on a real dataset. The dataset is
from a project by San Francisco Municipal Transportation
Agency (SFMTA), named SFpark [2]. In this project, in
the Fishermen’s Wharf area, the municipal authority buried
sensors in the pavement of each parking space to detect
whether or not there is a vehicle parked in that space.

The information about parking availability is published on a
block level in real time. This includes the number of available

1046

parking spaces on each block at each point in time. Specif-
ically, the database has the schema 〈blockId , availability ,
operational , timestamp〉, where timestamp denotes the time
when a record was generated, availability denotes the num-
ber of available parking spaces on a block (blockId), and
operational denotes the total number of operational parking
spaces on that block. Each time the number of available
parking spaces changes for any parking block, a new record
is added to the database to reflect the change.

Using this database, it is possible to query the number of
available parking spaces for any block at any point in time.
One just needs to search the latest record for that block before
the queried time; availability in that record is the number of
available parking spaces for the queried block at queried time.

In urban transportation systems, SFpark is a rare case
where real-time and accurate information is available to spatio-
temporal resource search agents. The cost of this project is
prohibitive for most other municipalities. Therefore, using
SFpark database as a testbed makes it possible to test proba-
bilistic algorithms that do not assume real-time deterministic
and accurate information.

To test the algorithms proposed in this paper, we used the
SFpark data from Fisherman’s Wharf area in San Francisco.
The network in Fisherman’s Wharf consists of 40 nodes and 63
edges. The size of this network is reasonable for applications
like parking search. In order to find an available street parking
space, one usually is only willing to search in a limited area, so
that the vehicle can park not too far from the final destination.

For the Probabilistic Algorithm, we computed the probabil-
ities of each block having at least one available parking space
in the following way. For each hour in a day, we scanned the
previous 20 weekdays and on each day chose a random time
point during that hour. We recorded the availability of each
block for those days at these random time points. And then,
for each block, we computed the proportion of days on which
it is available. We used this proportion as the probability of the
blocks. This method resembles a process for hourly collecting
historical data using a detecting vehicle with ultrasonic sen-
sors [4]. Depending on the budget, a municipality may scan
the parking blocks more or less frequently. Intuitively, more
frequent scans should result in more accurate data. However,
we did experiments with different lengths of time intervals
ranging from 10 minutes to 3 hours, as the granularity of
the probability computation, and the results did not show
significant differences.

We are interested in the performance of the algorithms
for different congestion levels, i.e. different levels of parking
availability. As a way of increasing the congestion level, we
artificially removed some proportion of parking spaces in the
network. Obviously, a higher percentage of parking spaces
removed means a higher level of congestion.

In our experiments, the simulations were conducted on a
weekday. For each parameter combination, we repeated the
simulations 10 000 times. In each simulation, the search starts
at a uniformly random time between 20:00 and 21:00, and the
initial location of the agent is chosen uniformly at random

0 2 4 6 8

2

4

6

τ (min.)

A
ve
ra
ge

ti
m
e
to

p
ar
k
(m

in
.)

Random
Probabilistic

Prophet

Fig. 1. Average time to park for different choices of τ in the recovery function.
In this experiment, 20% of all parking spaces are removed.

in the network. For comparison among the algorithms, we
assumed that the agent travels in the road network at a constant
speed, i.e. 5 miles per hour. Then the average time to traverse
a block in this network is about 59 seconds.

B. Recovery Function for the Experiments

We use the following step function as the recovery function:

p′ij = Recovery(pij , tij) =

{
0, if tij < τ.

pij , otherwise.

In this definition, the time difference between the current time
and the agent’s last visit of block dij is denoted as tij , and τ is
used as the threshold when the probability recovers. Threshold
τ is estimated from experiments, as discussed next.

C. Results

We tested the algorithms for different choices of τ in the
recovery function as shown in Fig. 1. In this experiment, 20%
parking spaces are removed. Note that, obviously, the Random
Walk Algorithm and the Prophet Algorithm are independent
of τ , because they do not use the recovery function.

For the Probabilistic Algorithm, this experiment shows the
necessity for the recovery function. Note that when τ is zero, it
is equivalent to the recovery function not being used. Without
considering the recovery function, the Probabilistic Algorithm
indeed shows a very high average time to park. From Fig. 1,
it is clear that when τ is zero, the Probabilistic Algorithm
performs even worse than the Random Walk Algorithm. When
τ is greater than 1 minute, the Probabilistic Algorithm shows
much better performance than the Random Walk Algorithm,
close to that of the Prophet Algorithm.

We also compared the algorithms when different proportions
of parking spaces are removed, to reflect different congestion
levels. The results are shown in Fig. 2. From this figure, it
is clear that the higher the congestion level is, the longer it
takes on average to find parking, which confirms the intuition.
Moreover, the average time to park increases much faster for
the Random Walk Algorithm than the other two, as the con-
gestion level increases. That means that for lower congestion

1047

0% 10% 20% 30% 40%

2

4

6

8

10

12

Percentage of parking spaces removed

A
ve
ra
ge

ti
m
e
to

p
ar
k
(m

in
.)

Random
Probabilistic

Prophet

Fig. 2. Average time to park for different percentages of parking spaces
removed. For the recovery function, τ = 4 minutes.

levels, looking for parking without any information works
reasonably well. However, as the congestion level increases,
some information can reduce the search time dramatically. For
example, for 30% of the spaces removed, the Random Walk
Algorithm searches, on average, for over 8 minutes, whereas
the Prophet and Probabilistic search on average for less than
3 minutes. Given that the average traversal time for an edge
is 59 seconds, this search time of 3 minutes represents the
traversal of approximately 3 blocks, instead of 8 blocks for
the Random Walk Algorithm.

Another finding is that the Probabilistic Algorithm, when in-
corporating recovery function, works surprisingly well, show-
ing performance that is almost as good as that of the Prophet
Algorithm (the lower bound for the average cost).

VI. CONCLUSIONS

In this paper we proposed a model for spatio-temporal
resource search. This framework abstracts many real-world
problems, such as street parking and EV charging station
search, and taxicabs searching for passengers. We considered
three algorithms that assume different levels of knowledge for
the agent about the availability of the resources. These are the
Random Walk Algorithm that assumes no information at all,
the Prophet Algorithm that assumes perfect current and future
information, and the Probabilistic Algorithm that assumes
partial information. For the Probabilistic Algorithm, in order
to take advantage of the observations made by the agent
during a search, we introduced a way of adapting probabilities
dynamically via the notion of a recovery function.

To evaluate the algorithms we conducted experiments using
real-world data from SFpark, with different congestion levels,
and different parameter choices for the recovery function. The
results, as expected, showed that the more information the
agent has, the faster she is able to find a parking space.
The experiments also showed that the introduction of the
recovery function significantly improved the results of the
searches for the Probabilistic Algorithm. And surprisingly,
the performance of the Probabilistic Algorithm was almost as
good as the Prophet Algorithm, which means that the historical

information about the resource availability in a probabilistic
form is highly valuable for the purpose of resource search.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under grants
DGE-0549489, IIS-1213013 and CCF-1216096, and by the US
Department of Transportation National University Rail Center
(NURAIL).

REFERENCES

[1] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in Proceedings of the 29th IEEE Int. Conf. on Data
Engineering (ICDE), 2013.

[2] SFpark, http://sfpark.org/, accessed: May 2015.
[3] B. Xu, O. Wolfson, J. Yang, L. Stenneth, and P. S. Yu, “Real time street

parking availability estimation,” in Proc. of 14th Intl. Conf. on Mobile
Data Management (MDM), Milan, Italy, June 3-6, 2013.

[4] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrashekharan, W. Xue,
M. Gruteser, and W. Trappe, “Parknet: Drive-by sensing of road-side
parking statistics,” in MobiSys, San Francisco, CA, June 2010.

[5] S. Ma, O. Wolfson, and B. Xu, “Updetector: Sensing parking/unparking
activities using smartphones,” in Proc. of 7th Int. Workshop on Compu-
tational Transportation Science (IWCTS), 2014.

[6] S. Nawaz, C. Efstratiou, and C. Mascolo, “Parksense: a smartphone
based sensing system for on-street parking,” in Proc. of the 19th Annual
Int. Conf. on Mobile Computing and Networking (MobiCom). ACM,
2013, pp. 75–86.

[7] J. Boehlé, L. Rothkrantz, and M. van Wezel, “Cbprs: A city based
parking and routing system,” ERIM Report Series Reference No. ERS-
2008-029-LIS, May 2008.

[8] T. Delot, S. Ilarri, S. Lecomte, and N. Cenerario, “Sharing with caution:
Managing parking spaces in vehicular networks,” Mobile Information
Systems, vol. 9, pp. 69–98, 2013.

[9] Y. Geng and C. G. Cassandras, “A new “smart parking” system based
on optimal resource allocation and reservations,” in Proc. of 14th Intl.
Conf. on Intelligent Transportation Systems (ITSC), Washington, DC,
USA, October 5-7 2011.

[10] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, “Pricing of
parking for congestion reduction,” in 20th Int. Conf. on Advances
in Geografic Information Systems (ACM SIGSPATIAL GIS), Redondo
Beach, CA, November 6-9 2012.

[11] ——, “Parking slot assignment games,” in Proc. of the 19th Intl. Conf.
on Advances in Geographic Information Systems (ACM SIGSPATIAL
GIS 2011), Chicago, IL, November 2011.

[12] ——, “Parking in competitive settings: A gravitational approach,” in
Proc. of 13th Intl. Conf. on Mobile Data Management (MDM), Ben-
galuru, India, July 23-26 2012.

[13] ——, “Spatio-temporal matching algorithms for road networks,” in
20th Int. Conf. on Advances in Geografic Information Systems (ACM
SIGSPATIAL GIS), Redondo Beach, CA, November 6-9 2012.

[14] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie, “T-finder: A recommender
system for finding passengers and vacant taxis,” IEEE Transactions on
Knowledge and Data Engineering, 2013.

[15] E. Safra, Y. Kanza, N. Dolev, Y. Sagiv, and Y. Doytsher, “Computing
a k-route over uncertain geographical data,” in Advances in Spatial
and Temporal Databases, ser. Lecture Notes in Computer Science,
D. Papadias, D. Zhang, and G. Kollios, Eds. Springer Berlin Heidelberg,
2007, vol. 4605, pp. 276–293.

[16] V. Verroios, V. Efstathiou, and A. Delis, “Reaching available public
parking spaces in urban environments using ad-hoc networking,” in IEEE
Intl. Conf. on Mobile Data Management (MDM), 2011.

[17] G. Jossé, M. Schubert, and H.-P. Kriegel, “Probabilistic parking queries
using aging functions,” in Proc. of the 21st ACM SIGSPATIAL Int. Conf.
on Advances in Geographic Information Systems, ser. SIGSPATIAL’13.
Orlando, FL, USA: ACM, 2013, pp. 442–445.

[18] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

1048

