

 Abstract

This paper develops a client-side context-aware search
application which is built on the context-aware infrastructure.
A context-aware architecture is designed to collect the mobile
user’s context information, derive mobile user’s current
context, distribute user context among context-aware
applications, and support the context-aware applications. The
context acquisition is centralized at the context server to ensure
the reusability of context information among mobile devices,
while context reasoning remains at the application level.
Algorithms are proposed to consider the user context profiles.
By promoting feedback on the dynamics of the system, prior
user selection is now saved for further analysis expediting a
subsequent search. A software-based proxy is set up at the
client side which includes the context reasoning component.
Implementation of such a proxy supports that the context
applications are able to derive the user context profiles. To meet
the practical demands required of a testing environment, a
software simulation using Yahoo search API is provided as a
means to evaluate the effectiveness of the design approach in a
realistic way. The integration of user context into Yahoo search
engines proves how context-aware searches can meet user
demands for tailored services and products in and around the
user’s environment.

Keywords
Context Awareness, Context Server, Mobile Search,
Personalized Search, User Profile.

I. INTRODUCTION
A decade ago, pioneer Mark Weiser envisioned that a

human would live in an environment surrounded by hundreds
of invisible computers connected with wireless networks [1].
Chen and Kots stated “Context is the set of environmental
states and settings that either determines an applications’
behavior or in which an application event occurs which is
interesting to the user” [2]. In ubiquitous computing, “context”
should reflect the mobile user’s current state including physical
and psychological behavior, mobile applications based on the
explicit and implicit input, artifacts, social interaction, surround
events, and environment.

To support such “context aware utility” anytime and
everywhere, a context-aware architecture is required to actively
acquire, analyze, and adapt to mobile user’s given contexts,
such as physical environment, social activities, and other
dynamic characteristics at different levels without consuming
much of the user’s attention. Harry Chen proposed a
context-aware architecture that separated the context
acquisition completely from the resource-constrained mobile
devices [3].

Unlike most existing context architectures, this paper tries to
strike a balance of responsibilities between the context server
and mobile devices. The context server undertakes the context
data collection from various sources including wireless sensor
network and the mobile devices. In addition, the context server
allows third-party vendors or service providers to register their
services and products. Context server distributes the user
context among networks, user devices, and applications.

The mobile applications become increasingly important
source for user data. The ability of acquiring user data at client
side should not be taken lightly. The mobile devices should
play a role in collecting user context data given the increasingly
capable applications.
 Because of the variable and unstable nature of user context,
the difficulty in context awareness at client side lies in the
extraction of useful feature/context from changeable user
situations. It is therefore important to design new algorithms at
the client side to undertake the preliminary context analysis of
user situation. Algorithms and a proxy at client side are
proposed to relieve the networks (i.e., servers) of the computing
burden and reduce the need for uplink bandwidth [4]. Such
proxy manages the user context profiles to 1) filter out
irrelevant user information and describe the user’s current
context; 2) update server with current user context; 3) assist in
predicting user intention at both server and client sides.

For mobile users, one of the challenges in the information
retrieval is the establishment of a context sensitive retrieval
process. Furthermore, the mobile search for information on
portable devices should match the web searches. Currently,
most web search algorithms are limited solutions for context
sensitive retrieval and mobile search. This is so because most
existing algorithms do not take into account mobile user
context inputs, such as surrounding environment. For this
reason, a context-aware search scheme at server side (i.e.,

A Client-Server Architecture for Context-Aware Search Application

Feng Gui, Magno Guillen, Naphtali Rishe, Armando Barreto, Jean Andrian, Malek Adjouadi
Center for Advanced Technology and Education

College of Engineering and Computing
Florida International University

gui_feng@yahoo.com, Magno.Guillen@fiu.edu, rishen@cs.fiu.edu,
Armando.Barreto@fiu.edu, Jean.Andrian@fiu.edu, adjouadi@fiu.edu

2009 International Conference on Network-Based Information Systems

978-0-7695-3767-2/09 $25.00 © 2009 IEEE

DOI 10.1109/NBiS.2009.75

539

carrier’s network) is devised to provide content based on the
compiled context profiles.

In PC-based web search, researchers have explored
personalized search to improve topical relevance of the result
documents. Shen et al. [5] studied user’s immediate and
short-term search context to expand the current query. Qiu and
Cho [6] learned user interest from the click history and
developed a ranking mechanism based on the user interest.
Chirita et al. [7] proposed personalized search and
summarization algorithms which assist search keywords
expansion based on extracted information from local desktop.
Duo et al. [8] and Teevan et al. [9] investigated the personalized
search strategies and stated that personalization improves the
search accuracy on ambiguous queries.

So far, the personalization is studied only for PC-based web
search. Most of such personalization strategies are limited to
the user search history, returned search results, and documents
stored in PC. We extend this line of work into mobile search
and derive user context based on profiles which adapt to user
location, activities, interaction history, and preferences. Unlike
stationary PC, user can access the mobile web anytime and
anywhere. The user context varies, i.e., people, activities, and
settings. We further predict that the increased usage of
location-based applications and services will lead mobile users
to search for local services and information.

Mobile search has come to researchers’ attention. Liu and
Birnbaum [10] developed "LoalSavvy" which is a system that
aggregates local views associated with news events or topics.
Vadrevu et al. [11] pointed out the importance of identifying
the regional sensitive queries. Hence, the mobile search must
cope with local search query.

The aim of this paper is to introduce a client-server
architecture for context aware search, assuming that the data
collection hardware infrastructure required is available and
properly deployed in site. The software components of the
architecture are described and implemented. To validate the
performance of the proposed architecture a simulation
environment was utilized integrating a Yahoo search API as a
means to evaluate the effectiveness of the design approach in a
most realistic way.

II. CONTEXT-AWARE SEARCH ARCHITECTURE

The proposed architecture consists of the modules depicted
in Fig, 1. These modules are: the context interpreter, service
registry, context manager, request interpreter, policy registry,
and context-aware search manager.

These relevant components are now described; emphasis is
placed on elucidating the different functions they serve in this
study.

A. Context Interpreter
The context interpreter is responsible for interacting with

low-level sensor networks, collecting context information,
modeling user context, resolving context inconsistency, and
updating context entities to help greatly to solve possible
ambiguous query terms. This component includes code
libraries of procedures for acquiring contextual information
from heterogeneous sensor networks. In addition, context

interpreter interacts with mobile devices to receive the user
context profiles compiled from the client side. The purpose of
the context server is to distribute user context to context-aware
applications.

B. Service Registry

The service registry interacts with third-party service
providers to register services which will be available to mobile
users. Service providers usually provide services and products
that might serve mobile user's interests given the current
situation. For example, if mobile users are shopping in the local
grocery store, then vendors and companies in food industries
would like to promote similar products to users. Another
example would be business in the local neighborhood try to get
visitors' attention when they go by their areas. Context server
distributes service providers’ information to mobile user
according to the user’s current context. In a sense, the server
acts like a broker who matches services to user’s need which is
derived from the user context. In this perspective, figure 2
illustrates the service mechanism among server, service
providers, and mobile users. Service providers describe
services to the service registry with the following format:

• Service type
• Service scope
• Network service and security policy
• Context inputs
• Context change reminder type
• Service description

 Fig. 2 Context Service Model

Sensors

RFID

IR

BT

Motion

Temp.
C

ontext Interpreter Context Manager

Request Interpreter

Mobile
Device 1

Mobile
Device 2

Mobile
Device 3

Mobile
Device n

……….

Yahoo
Search
Engine

Context-Aware
Search Manager

Policy
Registry

S
ervice R

egistry

Service
Provider1

Service
Provider2

Service
Providern

..…
.

Mobile
Devices

Database

Fig. 1 Context-Aware Server Architecture

540

C. Service Interpreter
Service interpreter interacts with mobile devices to receive

and interpret application requests. It formats the query or
request. The formatted requests are passed to the service
manager for service matching.
D. Context Manager

The context manager processes the formatted application
requests. If the application requests can be solved with the
registered service providers, then the context manager fetches
the related information from the database and sends service
provider’s information to the mobile devices. However, if a
user sends search requests that cannot be solved by the context
manager, then the user’s requests are forwarded to the
context-aware search manager.
E. Policy Registry

The emerging trends of IP convergence and the
convergence of heterogeneous networks make the management
of Next Generation Networks (NGN) a priority. The context
aware architecture must cope with the heterogeneous networks
which might be WLAN, GSM, CDMA 2000, WCDMA, or
TD-SCDMA. Policy registry stores the management policies
the architecture enforces. These policies are important to make
services adapt to the underlying network characteristics. In
addition, the service provider has policies such as terms,
conditions, fee schedules, and user management applied
services. Moreover, mobile users have their preferences
regarding the personal information sharing among the service
providers. Therefore, the policy registry interacts with network
management applications, service providers, and user privacy
profiles.
F. Context-Aware Search Manager

Mobile search means user submits query to search engine
on mobile devices. Mobile search stems from PC-based web
search, but differs from PC-based web search due to constraint
factors such as small LCD display, tiny keyboard, and network
limitation. Mobile search is the second most used application
only after social networking in wireless internet [12]. Search
engines, such as Google or Yahoo, appear in top three of the
most visited web sites in terms of wireless internet usage.

Most mobile search queries are kept short due to the
hardware limitations afore mentioned. Early studies [13]
attempted to provide solutions to mitigate the hardware
limitations of the wireless devices. The top 100 mobile queries
at AT&T [14] reveal that a great number of search queries are
navigational in nature [15]. The navigational searches, for
example “Google”, usually steer mobile users to specific web
sites conveniently. Unlike navigational queries, words like
“images” and “free” which are informational and transactional
are ambiguous to search engine. A housewife and an iPhone
user interpret “apple” differently in search context. A
housewife is likely to know the apple variety and prices at the
local grocery stores, while an iPhone user is interested in
service or products related to iPhone. Researchers studied
methods and models to determine the query ambiguity. Clarity
score [16] was proposed to evaluate the relative entropy
between the query language model and the collection language
model. A large click entropy indicates that user clicks more

web pages to solve the query, thus the query is ambiguous. A
small click entropy means mobile users have common
understanding for a search query. Song [17] developed
classifier to automatically identify three types of queries,
ambiguous, broad, or clear query. We believe these methods
and algorithms work equally well to identify the query
ambiguity in the mobile search.

G. Client-Server Solution for Context-Aware Search

Fig. 3 Context-Aware Search Design

The flow chart provided in Fig. 3 describes logical steps of

how the context-aware search application solves the mobile
user’s query.

III. REQUIRED CLIENT SIDE ARCHITECTURE
The traditional client/server paradigm fits well into the

context-awareness applications. The carrier’s network
functions as the server providing data and voice services to
subscribers. Mobile devices request services from the network.
What makes this approach different to other models is that the
mobile devices play an extensive role in collecting, analyzing,
and extracting context entities. Context profiles compiled at
client side greatly reduce computing burden at network/server
side.

541

Fig. 4 demonstrates the structure of the paradigm for the
client-side solution. The user inputs (voice or digital data) and
surrounding environment inputs (i.e. temperature, position,
altitude, etc.,) are collected by the hardware logic or the
applications such as the operating system. The context-aware
proxy further inspects inputs and extracts context entities from
the inputs. Finally, the proxy compiles the context profile and
sends it to the network/server. The network/server learns the
user situation using the context profile. Server application
provides services and data to client based on the learning of the
user situation.

A. Client Side Requirements for Context-Aware Solutions

The client proxy, running in the user devices, monitors and
collects mobile user information through sensors and
applications. In addition, the proxy further compiles the context
profiles which adapt to and reflect mobile user’s changing
situation. Virtual frame and reference frame are thus proposed
to improve the efficiency of the proxy’s operation at the client
side.

 The context profile is a collection of context entities
extracted from the on-board sensors, client applications, user
activities, and so on. Proxy on mobile devices frequently
updates context profiles and uploads them to the network for
reference if necessary. Due to the limited uplink bandwidth, the
context profiles should be concise. As user changes
activities/context, context entities are added to or dropped from
the profiles. Whenever an addition or deletion of context
entities occurs, the proxy notifies the network of the changes.
There are four context profiles managed by the client proxy: 1)
user profile; 2) device profile; 3) environment profile; and 4)
data profile.

In this paper the concept of virtual frame is introduced. The
idea of virtual frame comes from the movie industry. The
virtual frame expresses the meanings of the mobile user’s
context by featuring weights that are most significant at a
particular moment. In other words, the virtual frame does not
store any graphical components but weights of the context
entities that capture the context of the mobile user at specific

time frames. Fig. 5 illustrates this concept. For example, virtual
frame f1 consists of weights that are recorded to capture the
context of the mobile user at time t(1). Likewise, virtual frame
fn contains all meaningful weights that describe the mobile user
characteristics and environment at time tn. Time plays a great
role in predicting the mobile user’s context or intention.
Intuitively, the user’s context is likely to remain unchanged or
consistent over a short time interval in most scenarios.

With the virtual frame defined, the notion of reference frame
can be introduced. The reference frame includes data weights
as virtual frames. However, a reference frame is not like a
virtual frame where the reference frame is a moving average of
the virtual frames. The reference frame averages the
most-recent N virtual frames, as shown in Fig. 6, depending on
the configuration of individual mobile devices.

Fig. 5 Structure of the Virtual frame

Fig. 6 Structure of the reference frame

Weights included in the reference frame are calculated as

shown in Eq. (1):

∑
=

=
N

f
fkNk WW

1

1

 (1)
Where f indicates the virtual frame number as f = 1, 2, 3, 4,

…, N; while k refers to all individual weights contained in N
virtual frames as k = 1, 2, 3, 4, …

It is likely that a specific weight, Wk, might not be captured
in every virtual frame, fi, as mobile user’s context changes over
the time. Clearly, weights that appear most frequently in virtual
frames would be the dominating weights, so they appear in the
reference frame as well. Thus, the reference frame is a much
more balanced frame that describes the current mobile user’s
context with respect to both present and past. Definitely, there
would be a tradeoff between the history context and the current
context. As N increases, more virtual frames in the past would
be included for consideration. So the latest virtual frame has
less bearing on the reference frame. Therefore, the reference

Fig. 4 Client-Side Architecture

542

frame derived from a large set of virtual frames would account
for more consistent context for mobile users. On the other hand,
if N decreases, then the most recent virtual frame weighs more
on the reference frame, which better fits mobile users changing
their context dramatically in a short period of time.

Obviously, it is desirable to make N adaptive to the context
change. If the client proxy figures out that the mobile user’s
context remains relatively consistent meaning no new context
entities are brought into the most recent virtual frame, then N is
incremented up to the total virtual frames in memory as in Eq.
(2):

1+= previousNN
 (2)

where Nprevious refers to the total number of virtual frames used
to derive the reference frame in the last iteration. By increasing
N, the reference frame would take more historical virtual
frames into consideration than those considered if the context
changes were less.

If the client proxy detects that the most recent virtual frame
will bring in new weights, considering they do not exist in the
current reference frame, then N changes according to Eq. (3):

ceilingnewreference

new
previous wkwk

wkNN
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡

+
−=]

)()(
)(1[

 (3)
where counts new weights that do not exist in the last
reference frame; sums the number of total
weights recorded in the last reference frame. Next, the proxy
rounds N by taking the ceiling value. As N decreases, the last
virtual frame could weigh more in the new reference frame.
Thus, the cache system adapts much faster to the mobile user’s
context which changes dramatically over a short time.

B. Implementation of an Artificial Neural Network (ANN) for
Deriving the Weights of the Context Entities

An ANN was implemented to derive the weights for the
context entities. For the implemented ANN, the learning rule is
based on the following general equation:

)().()(tytxtW iiij =Δ (4)

In this case, xi(t) is defined as a function of the context changes
(ΔC) and frequency count (ΔF) of the context entities in the
context cache, which is managed by the client proxy between
the current epoch and the previous epoch. In addition, yi(t) is
defined as the weight values, Wreference, in the current reference
frame.

Thus, the derived equation of weight change for our
approach at epoch t is given by Eq. (5):

)(F(t)C(t) (t)W ,k tW referencekk
Δ+Δ=Δ μ (5)

Where C(t)Δ is calculated as the ratio given by:

)1(
)1()(

)(
−

−−
=Δ

tC
tCtC

tC (6)

C(t) in this case is the current context value, and C(t-1) is
the previous context value. If C(t)Δ is zero, then this same
entity is recomputed as the following absolute difference:

 averageCtCtC −−=Δ)()(
 (7)

The Caverage value in this case represents the mean of the

elements C(1) through C(t-1). The term ΔF(t) is the difference
between the virtual frame at current epoch and the virtual frame
from previous epoch based on frequency counter for context
entity, ΔF(t) = F(t) – F(t-1). μ is a coefficient that is machine
specific.

Finally, the weights for context entity k at epoch t are
updated as

)()1()(tWtWtWk kk Δ+−= (8)
If the virtual frame brings in new context weights that do not

exist in the current reference frame, then the initial value of
Wk(t) is set to 1.

IV. EVALUATION OF CONTEXT AWARE DESIGN

A. Software Platform
Java platform is selected to implement components on both

client and server sides. Java 2 Micro Edition (J2ME) is a
programming language for writing the applications on the
mobile devices. Sun Java Wireless Toolkit 2.5.2 is used to run
the J2ME applications.

The database management software deployed is MySQL
5.1.30 which includes features like stored procedure, trigger,
and query caching. Like Java, MySQL can run on multiple
operating systems such as Windows and Linux. MySQL server
is available to individual developers as free software under
GNU General Public Licenses.

Yahoo Search API is utilized to integrate the search
function into the simulation. Yahoo search site takes the query
as input and returns the documents in XML. An XML parser is
required to interpret the search results. The search manager
ranks these documents and reorders them based on how
relevant they are within the current user context.

B. Evaluation Strategy
The ideal prototype requires significant resources in order

to build the wireless sensor networks. It is also needed the
infrastructure for Piconet, WLAN to provide services, and
carrier’s network in order to independently evaluate the merits
of the proposed design strategy. Obviously, the cost to set up all
the required testing environment is not permissible. Therefore,
the software simulation using a Yahoo API service is provided
as a means to evaluate the effectiveness of the design approach
in a most realistic way. At the same time, this simulation
alleviates the prohibitive cost and time demands of the eventual
deployment of the hardware requirements.

 Client proxy is programmed to analyze the user context
data collected on the mobile devices. An ANN-based algorithm
is implemented to calculate the context weights. Context
profiles are compiled to reflect user’s current situation. Context
search engine is simulated to take advantage of user’s context

)(newwk
)(referencewk

543

profiles. The context search engine combines searching
algorithms with context profiles.

In general, a mobile user who is roaming sends a query
from a mobile device to the server. Server works on the user
query and forwards it to the Yahoo search engine. Yahoo search
engine returns the document sets back to the server. The server
processes the document sets and sends them back to the mobile
device.

C. Evaluation Methods
One user scenario is provided to evaluate the context-aware

designs at both server and client sides. This scenario is close to
the daily activities of mobile users. The value of μ, the machine
specific coefficient in Eq. (5), is set between 0.0008 and 0.005
in the simulation process. To simplify the context computing, it
is necessary to quantify some context entities into digital
format. For example, weather: sunny = 1, cloudy = 2, raining =
3; Location is expressed by (x, y) such as (1, 1), (2, 2), …, (m,
n); numbers are assigned arbitrarily to store type: department
store 10, Woman Cloth = 20, foot wear = 30; Wendy’s has a
type 61, Subway is set to 63, Gold Gym = 42, Bank = 75, …

Scenario: Roaming off the main campus of Florida
International University

In this scenario, a mobile user goes off the main campus of
Florida International University. The Google Earth screen shot
of this travel route is as shown in Fig. 7.

Fig. 7 Google Earth Screen Shot of Travel Route for the Scenario

The user in this scenario walks east bound. We describe user
activities through the following steps.
- User is walking off the main campus and crossing the 107th

Avenue. The location coordinate (6, 6) at the speed of 2
mile/hr while the noise level is at 60 db.

- User is still walking at the same speed passing Wendy’s
restaurant and location coordinate (4, 7). The noise level rises
to 63 db.

- The noise level remains the same. User walks by Subway,
location (4, 8), and at the speed of 1 mile/hr.

- User walks at 0.5 mile/hr and passes Gold’s Gym. The noise
level continues to rise to 77 db. Gold’s Gym has location
coordinate (2, 6).

- User walks by Terry Bank at 0.2 mile/hr. The noise level is at
67 db at this regional bank with coordinate (2, 5).

- User arrives at Little Caesars. User walks by at this
restaurant whose location coordinator is (2, 4) with a noise
level of 67db.

- User reaches Publix supermarket (2, 3) and starts using his
mobile device to search information. Noise level rises to 67
db.

The above 7 steps are summarized in Table 1.

Table 1 Context entities of the scenario
Step Speed Place Noise x y
S(1) 2mile/h 59 60 6 6
S(2) 2mile/h 61 63 4 7
S(3) 1mile/h 62 63 4 8
S(4) 0.5mile/h 82 77 2 6
S(5) 0.2mile/h 75 67 2 5
S(6) 0.2mile/h 67 67 2 4
S(7) 0mile/h 68 67 2 3

The simulation results are listed in Tables 2 and 3 for the

virtual and reference frames.

Table 2 Virtual frames of the scenario
Frame Speed Place Noise X y

f(1) 1.000 1.000 1.000 1.000 1.000
f(2) 1.005 1.038 1.055 1.338 1.172
f(3) 1.512 1.078 0.005 0.452 1.345
f(4) 2.276 1.408 0.006 0.681 1.687
f(5) 3.653 1.536 0.007 -0.405 1.977
f(6) 0.809 1.707 0.001 0.133 2.383
f(7) 1.624 1.742 0.000 -0.018 2.991

Table 3 Reference frames of the scenario

Frame Speed Place Noise X y
f(1) 1.003 1.019 1.027 1.169 1.086
f(2) 1.172 1.039 0.686 0.930 1.172
f(3) 1.448 1.131 0.516 0.868 1.301
f(4) 1.889 1.212 0.414 0.613 1.436
f(5) 1.710 1.295 0.346 0.533 1.594
f(6) 1.697 1.359 0.297 0.454 1.794

In this scenario, the context weights in the virtual frames
capture the context changes detected. As the context entities
change is less obvious, the context weights decrease. The
weight of location changes significantly as user goes by
different places. The location is an important context entity for
this user. When it comes down to the ambiguous query, the
context entities help the search engine to identify the user
intention.

The user reference frame, generated at step 7, is listed as
follows:

Frame Speed Place Noise X y
f(6) 1.697 1.359 0.297 0.454 1.794

544

The user reference frame contains location information and
store information that will help the search engine to optimize
the search results. Suppose that the user enters the key word
“apple”. The interesting fact about “apple” is that this word is
frequently associated with the high-tech company Apple Inc.
which sells hot gadgets such as iPods and iPhones. In general,
most search engines including Google will consider that the
user was searching for products from Apple Inc. On the other
hand, apple is a fruit which is a type of food. Fig. 8 shows the
returned documents based on the user profile only.

Because the context file records that the mobile user is near
the restaurant and grocery store, so the search word “apple” is
more likely related to food. The search engine returns
information about grocery stores and restaurants. On the other
hand, the context search manager also considers the possibility
that the search key word is related to products from Apple Inc.
However, user needs to scroll down to see documents related to
apple products.

In comparison, the Yahoo search engine, in general, is not
aware of the user context. If the user submits the query “apple”
to the search engine, the search engine returns the result
documents that are mostly related to the Apple INC. This is due
to the popularity of the Apple products such as IPhone and
IPod. Clearly the mobile user benefits from the context-aware
search approach.

Fig. 8 Returned Search Result for the Scenario

Fig. 9 Yahoo Search Results without User Context

Context search manager implicitly processes the user
selection as the feedback. The essence of the user’s feedback is
that it beats any search algorithm so far. The feedback
mechanism provides the semantic meaning of the searched
keyword. Should the user decide to review with more detail the
listed documents, the user selection contributes more votes for
the selected documents. In turn, more votes improve the chance
to move up in the listing order for future searches. Fig. 10
shows the user selection of one document.

The left screen shot in Fig. 10 shows that mobile user
selects the document titled “Ipod near Miami, FL at
TheFindLocal.com – Find products and stores nearby” from the
list of documents. The right screen shot in Fig. 10 shows the
description of the document. The feed back mechanism records
the user selection and relates the selected document as the high
ranking document to solve the future user query. Fig. 11 shows
the new order of the search documents. The display order of the
selected document is precedent.

Fig. 10 Returned Search Result Augmented with User Feed Back

Fig. 11 Effect of a User Vote on the Listing Order

V. CONCLUSIONS
The main motivation on this paper is to propose algorithms

and methods which enable mobile applications to learn user’s
current situation, considering that context reusability will result
in making low level context acquisition transparent to
application developers.

545

The major contribution of this paper is proposing a context
aware design methodology that allows a context aware
application developer to focus more on the context-aware
application itself rather than dealing with the low-level
hardware used to acquire the context data. Context awareness
within this design concept defines the user context in a
changing environment under different situations, and provides
solutions for useful applications.

Context data acquisition using current technology is highly
feasible if performed in a cost-effective way. The focus in this
paper is placed on the search application with all its support
algorithms. The context aware architecture at the server side
provides a platform to share the user context among
context-aware applications. Since context reusability release
application developers from details of context acquisition, the
application design is simplified. The required architecture is
envisioned to accommodate third-party service providers.
Service provider could register their services and products with
the designed architecture. The architecture provides user with
services and products based on the user’s current situation. A
context search manager is developed to provide search function
based on the current user situation. A user feedback mechanism
augments this new search engine.

Virtual frame and reference frame are introduced to reflect
the mobile user’s activities and surrounding environment. A
proxy is added as a consequence to process user profiles and
context frames.

Furthermore, this paper points out the importance of
designing new algorithms at the client side to undertake the
preliminary context analysis of the user situation. The client
proxy should then relieve the networks (i.e., servers) of the
computing burden.

Since Client proxy interacts with context server via API,
Yahoo search API is integrated to evaluate the effectiveness of
the proposed design structure in a most realistic way. The
simulation results show that the overall design is highly
effective, providing new features and enriching the mobile
user’s experience through a broad scope of potential
applications.

REFERENCES

[1] M. Weiser, “The Computer for the Twenty-First Century,”

Scientific American, vol. 265, no. 3, pp. 94-104, 1991.
[2] G. Chen, and D. Kotz, "A Survey of Context-Aware

Mobile Computing Research." Technical Report TR2000-
381, Dartmouth College, 2000.

[3] H. Chen, "An Intelligent Broker Architecture for Pervasive
Context-Aware Systems." vol. PhD thesis Baltimore
County: University of Maryland, 2004.

[4] I. Chlamtaca and J. Redi, "Mobile Computing: Challenges
and Potential " in Encyclopedia of Computer Science, 4th
ed: International Thomson Publishing, 1998.

[5] X. H. Shen, B. Tan, and C. X. Zhai, “Implicit User
Modeling for Personalized Search”, Conference on
Information and Knowledge Management, Bremen,
Germany, 2005.

[6] F. Qiu and J. H. Cho, “Automatic Identification of User
Interest for Personalized Search”, The International World
Wide Web Conference, Edinburgh, UK, May 22-26, 2006.

[7] P. A. Chirita, C. S. Firan, and W. Nejdl, “Summarizing
Local Context to Personalize Global Web Serach”,
Information and Knowledge Management, Arlington,
Virginia, November 5-11, 2006.

[8] Z. C. Dou, R. H. Song, and J. R. Wen, “A Large-scale
Evaluation and Analysis of Personalized Search
Strategies”, International World Wide Web Conference,
Banff, Canada, May 8-12, 2007.

[9] J. Teevan, S. T. Dumais, and D. J. Liebling, “To
Personalize or Not to Personalize: Modeling Queries with
Variation in User Intent”, ACM SIGIR Conference,
Singapore, July 20-24, 2008.

[10] J. Liu, and L. Birnbaum, “What do they think?
Aggregating Local Views about News Events and Topics”,
International World Wide Web Conference, Beijing,
China, April 21-25, 2008.

[11] S. Vadrevu, Y. Zhang, B. Tseng, G. Sun, and X. Li,
“Identifying Regional Sensitive Queries in Web Search”,
The International World Wide Web Conference, Beijing,
China, April 21-25, 2008.

[12] Opera Software, “State of the Mobile Web Report: First
Quarter”, May 20, 2008. http://www.opera.com/smw/

[13] A. Soffer, Y. Maarek, and B.W. Chang, “WWW2002
Workshop on Mobile Search”, Mobile Search, Honolulu,
Hawaii, May, 2002.

[14] B Meunier, “Characteristics of the Top 100 Mobile Search
Queries at AT&T”, Jan, 2008.

[15] B. J. Jansen, D. L. Booth, and A. Spink, “Determining the
User Intent of Web Search Engine Queries”, The
International World Wide Web Conference, Banff,
Canada, May 8-12, 2007.

[16] S. C. Townsend and W. B. Croft, “Quantifying Query
Ambiguity”, Proceedings of the Conference on Human
Language Technology, San Diego , pp. 94–98,2002.

[17] R Song, Z. X. Luo, J. R. Wen, and H. W. Hon, “Identifying
Ambiguous Queries in Web Search”, The International
World World Wide Web Conference, Banff, Canada, May
8-12, 2007.

546

