
Comparison of XPath Containment Algorithms

Jorge Guerra1, Luis Useche1, Miguel Rivero1, Imtiaz Syed1, Hussein Orelus1, Malek Adjouadi1,
Armando Barreto1, Bradley Stoute2, Scott Graham1, Naphtali Rishe1

Florida International University of Illinois at
 University 1 Chicago2

Abstract

The complexity of implementing a sound, complete and
efficient algorithm to detect containment (and by extension
equivalence) in XPath fragments has frustrated previous
attempts by computer scientists. Some algorithms have
been developed to deal with these problems but these have
lacked either in completeness, efficiency, or soundness,
working only when restrictions in the type of XPath
fragments are enforced.

In this paper we will attempt to evaluate a prominent
algorithm in terms of time for different inputs. These
inputs try to explore different behaviors of the algorithm
such as: the most influential construct for the running
time, the behavior of the algorithm in common cases. And
the response time of the algorithm for the worst case,
which covers the whole tree. We present experiments that
allow us to determine the behavior of the algorithm and
evaluate it via each of the above questions.

1. Introduction

XPath is ubiquitous in today’s computing environment.
Technologies such as XSLT, XQuery, XPointer, XLink
and others are based on XPath, which may be
implemented differently in these technologies but
essentially always do the same task: given an input tree (in
XML), a context (a point of reference) and an expression
(the selection criteria), XPath will return one, many, or
zero nodes from the XML input tree.

What are the characteristics of an ideal algorithm?
First, we expect it to be sound; that is, in the case of the
nodes returned by an XPath expression, the nodes should
indeed be part of the expected result set. There should not
be erroneous nodes included in the result set. Second, the
algorithm should be complete; that is, it should not return
false negatives. In other words, the result set of the nodes
returned by an XPath expression should include each and
all nodes that are expected to be included. Lastly, the
algorithm should be efficient, both in its use of space

(memory) and in the time it takes to execute. An ideally
efficient algorithm would execute with logarithmic
growth, which would make the algorithm insensitive to the
size of the input tree (XML) and the complexity of the
XPath expression after certain threshold. This is the
inverse of exponential execution (EXPTIME), the worst
case scenario, where after an initial small threshold, every
increment in the size of the input tree results in dramatic
increases of both space and time requirements.

The subset of XPath fragments that have proved elusive
are defined as XP {[],*,//} , where [] means branching, *
means wildcards and // means descendants. Efficient
algorithms have been found for fragments that include any
two of the three constructs, but finding and algorithm to
detect containment in fragments with all three constructs
has proven to be coNP-Complete.

Why is the containment problem important? Every time
XPath is used to select a set of nodes from an XML
document (input tree) the processor implements an
algorithm to traverse the input tree and identifies the nodes
that must be returned. So far all implementations are
considered to be inefficient in that the time and memory it
requires XPath to do its work is exponential with respect
to the size of the input tree. Finding an efficient algorithm
will optimize the speed and memory requirements for
applications manipulating XML documents. Also, when
two XPath expressions are found to be equivalent, one can
be substituted for the other resulting in optimization.

2. Fundamentals

There are some notions that must be understood in
order to understand how and why the proposed algorithms
are implemented. Some of the terms that must be fully
understood are “tree patterns”, “arity”, “embedding”,
“boolean patterns”, "canonical models",
“homomorphism”, and “FTA”.

2007 International Conference on Enterprise Information Systems and Web Technologies (EISWT-07)

21

2.1. Tree Patterns

Although we usually refer to XPath expressions using a
notation such as a//*[b//d][c], this expression can be
converted to a tree pattern. In fact, as stated in [4], “Every

expression in XP {[],*,//} can be translated into a tree
pattern of arity one with the same semantics, and,
conversely, each pattern of arity one can be translated into

an XP {[],*,//} expression.” By converting two XPath
expressions into two tree patterns, it becomes easier to
visualize the containment problem, which is trying to
identify if a tree pattern is contained in the other one.
Likewise, existing algorithms designed to detect
containment work on tree structures, not expressions, thus
the conversion from expressions to tree patterns becomes
necessary.

2.2. Arity

In mathematics, arity refers to number of arguments in
the domain of a function. Although in real life
programmers typically create functions with many
arguments, it is rare in mathematics and sciences to see
functions with arity greater than 3, and seldom with more
than 1. With tree patterns, arity refers to the number of
tuples returned by an expression.

2.3. Boolean Patterns

Boolean patterns are important because they are used in
the construction of models and canonical models that
would help us identify containment. Boolean patterns are
tree patterns with arity 0; in other words, a Boolean
pattern only returns a true or false answer; even if the
answer is true, it still does not return any tuples (for false
it returns the empty set and for true it returns the empty
tuple). More importantly, it has been proposed in [4]
Proposition 1 that any tree pattern, of any arity, can be
translated to an equivalent Boolean pattern, and that
proving containment for two Boolean patterns also prove
containment for the original tree patterns.

2.4. Canonical Models

First we must define what a model is. Model refers to
all variations of possible trees based on the infinite
alphabet Σ that evaluate to true when a given Boolean
pattern is applied to them [1]. The models of Boolean
pattern p are all trees that would return true when
compared against p. Models of Boolean pattern p are
identified as Mod(p).

Canonical models of p are the subset of Mod(p) for
trees that have the same shape as p. They are identified as
m(p). There is a translation that takes place in the resulting
m(p) where all wildcards * are replaced by symbols from
Σ, but this would make m(p) infinite since each * can be
replaced by an infinite number of symbols from the
infinite alphabet Σ. Thus, to have a working model with a
finite set of trees, a constraint is introduced. First, it
becomes necessary to identify a symbol z from Σ that is
not in either tree patterns (remember, we are trying to
determine if one tree pattern is contained by another).
Then all the * in m(p) are then replaced by that one
character z. The resulting canonical models are identified
by mz

n(p).

3.Algorithm CheckContainment II

The CheckContainment II is the algorithm evaluated in
this paper. It was proposed by Miklau and Suciu [4]. It is
sound and complete, but is not efficient unless some
bounds are imposed on the wildcards, the descendant
edges or branching. However, further improvements will
consist of approximations or heuristics, as the previous
work has proven the problem of checking XPath
containment to be in EXPTIME, if no bounds are enforced
on the number any particular operand. This algorithm
works by dealing with the containment problem of regular
tree languages because the containment problem of tree
patterns can be reduced to it.

The steps of the algorithm are as follows [4]:
1. Construct the DFTA A accepting RegΩp

2. Construct the AFTA A’ accepting Up
-1(Mod(p’))

3. Compute the AFTA B = A X A’ (the product automaton)
4. Compute the DFTA C = det(B)
5. If lang(A) is a proper subset lang(C) then return true, else

return false.

It is rather simple to determine if a regular tree language is
contained within another regular tree language. However,
the original input to the algorithm is in a tree pattern
format, not a regular tree language, and thus the
complexity in this algorithm lies in converting tree
patterns into regular tree languages. More specifically, tree
patterns are unranked, unordered trees, whereas the tree
automata needed to determine if a language is a subset of
another works on ordered, ranked trees. “Ranked trees
have the property that every node which is not a leaf has
the same number of children … On the other hand, in
unranked trees different nodes can have different number
of children” [3] page 129.

RegΩp is a regular tree language, which in this case
will be accepted by a DFTA (explained below). RegΩp is

2007 International Conference on Enterprise Information Systems and Web Technologies (EISWT-07)

22

also the resulting ranked and ordered alphabet derived
from the infinite alphabet Σ used in the original tree
pattern. As part of the algorithm, we must find canonical
models based on boolean pattern p. For further
information refer to Miklau and Suciu [4].

4. Experimental Evaluation

We now evaluate the proposed algorithms using the
implementation made by Haj-Yahya [3] on Java. Given
that the original algorithm only tested containment in one
direction and we required the algorithm to be more
verbose, we added the test on the missing direction.
Hence each test we report consist of two checks, given p
and p' the program will verify if p' is a subset of p and if p
is a subset of p'. However, this does not affect the
algorithm's running time order because each test is
disjoint, thus the algorithm remains in the same
complexity class.

4.1. Experimental Setup

 Our testbed is composed of two machines. In the first
machine has a Pentium 4 2.00 GHz processor and 1GB of
RAM memory running Linux 2.6.17, here we ran the
worst case test, that two equal expressions therefore all
there space tree has to be explored in order to find a
solution. The second machine has a Pentium M 1.60GHz
processor with 512MB of RAM and also runs Linux
2.6.17 and was used for the random XPath expressions
experiments.

4.2.Covering all the Pattern Tree (worst case)

The first evaluation is to calculate the time taken by the
algorithm in the worst case, that is examining all the tree
pattern. To ensure that the algorithm explores all the tree
pattern, we introduce the same XPath expression in both
parameters, p and q. Note that the XPath expressions used
in each of these experiments are generated randomly given
a number of descendants, wild-cards and branches. For
this experiments we ran the algorithm 36 times, each with
200 wild-cards and 200 branches. The number of
descendants was varied from 0 to 370 making increments
of 10 in each run. Figure 1 shows the results for this
experiment. The x-axis corresponds to the number of
descendants in each expression introduced to the
algorithm. On the other hand, the y-axis corresponds to the
running time measured in seconds of the algorithm. We
can see the big impact that the number of descendants has
in the running time of the algorithm. Based in this
experiment, it is clear that the running time of the pattern
tree containment algorithm, in the worst case, increases
exponentially with the number of descendants in the
XPath expressions. This backs the formal prove presented
in [1] that the CheckContainment II algorithm is
EXPTIME given an arbitrary number of descendants.

4.3.Running time for different wildcards and
descendants

Another interesting evaluation for this algorithm is to
measure the difference between the impact of the
operands, wild-card and descendant. For this experiments
we start from the same expressions to get the time for a
base case. Then we increment the corresponding operand,
wild-card or descendant, and log the running times in
seconds. After plotting the values we obtained the graph in
the Figure 2. The x-axis corresponds to the number of the
execution in each case and the y-axis is the time in the
seconds of the corresponding instance. For each execution
we increment the number of the operands by one that were
being evaluated. We can see in the graph the big influence
that the descendant operands have in the running time of
the algorithm. Thus, the highest impact in the running time
is directly related to the number of descendants in the
evaluated expressions.

Figure 1: Behavior of the CheckContainment II
algorithm in worst case.

2007 International Conference on Enterprise Information Systems and Web Technologies (EISWT-07)

23

4.4. Evaluation of random Xpath expressions

The second evaluation of the tree pattern algorithm
tests how well it behaves with random expressions as
parameter, in other words, how good the performance is
without forcing it to cover all the tree. Given that the
operand with most influence in the execution time is the
descendant, in this case, we introduce random XPath
expressions with different number of this operand in both
parameters. For this experiment, we ran the algorithm 600
times. For each instance, in the first parameter, we
introduce a random XPath expression with 200 wild-cards,
200 branches and descendants starting from 200 until
6200 incrementing each time 10 units; the second
parameter was a similar random expression. The above
graph shows the result in this experiment. The x-
axis represents the number of descendants in the
expression and the y-axis corresponds to the running time

in seconds of the algorithm. We can see that for random
expressions, the algorithm has a polynomial running time
even varying the the most relevant operand in the
parameters. Thus, this experiment shows that the
algorithm in most of the cases is capable to response in a
polynomial time and the need of explore the complete tree
is not the common case, if we consider this to be the
average case for applications checking XPath containment
or equivalence.

5. Related Work

Containment for P{[],//} was shown in PTIME. The
contaiment can be effectively decided for a large XPATH
expression that includes Union, Intersection, path
composition, together with all XPATH axes, branching
and wild cards[7]. Containment for conjunctive queries is
NP complete. In a graph-based data model, it has been
showed that a restricted language without wildcard, the
containment is NP-Complete.

6. Conclusions

In this paper we presented a simplified version of the
XPath containment and equivalence checker proposed by
Miklay and Suciu [4,5,6]. We also present three
experiments which evaluate different behaviors in the
CheckContainment II algorithm. Just measuring the
running time of different inputs, we were able to obtain
what is the most influence component in the running time
algorithm that, based in our experiments result, was the
descendant operand. Additionally, this practical
experiments corroborate the Theorems 4 and 5 in the
Miklau and Sucius paper [4]. However, it also demonstrate
that for most of the cases the algorithm has a polynomial
time response with the increasing of the descendant
operands. Finally, we demostrate that just in the worst
cases, where the algorithm needs to cover all the tree, the
algorithm has a exponential increase in the running time.

7. Acknowledgements

This research was supported in part by NSF grants
HRD-0317692, CNS-0220562, CNS-0320956, and CNS-
0426125, and NATO grant SST.NR.CLG:G980822.

8. References

[1] Diez, F. J. and Druzdel, Marek J. 2001. Fundamentals
of Canonical Models. In Ponencia Congreso: IX
Conferencia de la Asociacion Espanola para la
Inteligencia Artificial (CAEPIA-TTIA 2001).

Figure 2: Comparison of CheckContainment II
algorithm varying the number of descendants (+)

and of wildcards (x).

2007 International Conference on Enterprise Information Systems and Web Technologies (EISWT-07)

24

[2] Haj-Yahya, Khaled . Das Teilmengenproblem fur eine
Untermenge von XPath. Universitat zu Lubeck. Bachelor
Thesis. 2005.

[3] Libkin, L. 2004. Elements of Finite Model Theory
(Texts in Theoretical Computer Science. an Eatcs Series).
SpringerVerlag.

[4] Miklau, G. and Suciu, D. 2002. Containment and
equivalence for an XPath fragment. In Proceedings of the
Twenty-First ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (Madison,
Wisconsin, June 03 - 05, 2002). PODS '02. ACM Press,
New York, NY, 65-76.

[5] Miklau, G. and Suciu, D. 2003. Containment and
equivalence of Tree Patterns. University of Washington
Technical Report TR 02-02-03.

[6] Miklau, G. and Suciu, D. 2004. Containment and
equivalence for a fragment of XPath. J. ACM 51, 1 (Jan.
2004), 2-45.

[7] Pierre Genevès and Nabil Layaïda. 2007. Deciding
XPath Containment with MSO. To appear in Data and
Knowledge Engineering (DKE), Elsevier.

2007 International Conference on Enterprise Information Systems and Web Technologies (EISWT-07)

25

	2.1. Tree Patterns
	2.2. Arity
	2.3. Boolean Patterns
	2.4. Canonical Models

