INTELLIGENT

DISTRIBUTED

PROCESSING

Ft. Lauderdale, Florida
December 13-15, 1989

EDITOR: R. Ammar

A Publication of
The International Society for
Mini and Microcomputers - ISMM

ISBN 0-88986-138-2

ACTA PRESS

ANAHEIM * CALGARY * ZURICH

®

Proceedings of the ISMM International Conference, Intelligent Distributed Processing, held in Fort Lauder-
dale, Florida, U.S.A. December 13-15, 1989.

SPONSOR
The International Society for Mini and Microcomputers — ISMM
Technical Committee on Computers

INTERNATIONAL PROGRAM COMMITTEE

N.A. Alexandridis U.S.A. B. Furht U.S.A. L. Miller U.S.A.
R. Ammar U.S.A. L. Furin U.S.A. A. Osorio-Sainz France
E. Fernandez U.S.A. E. Luque Spain C.L. Wu U.S.A.

Editor: R. Ammar

Copyright © ISMM

ACTA PRESS ACTA PRESS ACTA PRESS
P.O. Box 2481 P.O. Box 3243, Stn. “'B” P.O. Box 354
Anaheim, CA Calgary, Alberta CH-8053 Zurich
U.S.A. 92814 Canada T2M 4L8 Switzerland

ACTA PRESS CODE: 152

100

An Implementation of Conservative Two-Phase-Locking
for Parallel Semantic Database Machines *

Scott C. Graham

Naphtali Rishe

School of Computer Science
Florida International University
University Park
Miami, FL 33199

Abstract

Massively paralle]l database machines achieve a high transaction
throughput by allowing many transactions to access the database at one
time. Concurrency control algorithms are used to insure that each of these
parallel transactions works on a consistent database. This paper proposes
an algorithm that adopts conservative two-phase-locking, a pessimistic
concurrency control algorithm, to parallel semantic database machines.
The conservative two-phase-locking algorithm actively avoids deadlocks,
so no deadlock detection and recovery mechanisms are necessary.

The proposed algorithm is intended to yun on & semantic database
machine. The Linear-throughput Semantic Database Machine (LSDM)
is an example of such a machine. The algorithm takes advantage of the
L.SDM’s massive parallelism, easy expandability, high fault tolerance, and
dynamic load belancing among processors without having to abort and
restart transactions and without the overhead of deadlock detection and
recovery.

The LSDM is optimized to store data using the Semantic Binary Model
(SBM) of databases. The data is stored as elementary facts. These facts
are ordered and replicated in & way that insures that almost all elementary
queries of the database will require only one disk access. The proposed
concurrency control algorithm will control access to the database by lock-
ing ranges of these facts; each range corresponds to an elementary query,

Keywords: concurrency control, database machines, umntk databases,
parallel processing

1 Introduction

Massively parallel database machines achieve a high transaction
throughput by allowing many transactions to access the database at one
time. Concurrency control algorithms are used to insure that each of these
parallel transactions works on a consistent database. Today, there are two
schools of thought in concurrency control: optimism and pessimism. Each
school has its advantages and disadvantages. Optimistic concurrency con-
trol algorithms allow each transaction to proceed under the assumption
that few conflicts will occur. When a conflict does occur, one of the
transactions must be aborted and restarted to allow the other to proceed.
Pessimistic concurrency control algorithms lock some part of the database
to prevent conflict. Since there are no conflicts, transaction aborts are not
required. In most pessimistic concurrency control algorithms, however,
deadlocks can occur. Optimistic concurrency- control algorithms do not
have deadlocks. This paper proposes an algorithm that adapts conses-
vative two-phase-locking, a pessimistic concurrency control algorithm, to
a paralle] semantic database machine. Conservative two-phase-locking is
deadlock free. No two transactions can be waiting for locks that the other
holds, a requirement for deadlock, because the algorithm requires that all
of a transaction’s locks be available before any of its locks will be granted.
The algorithm actively avoids deadlocks, so no deadlock detection and re-
covery mechanisms are necessary., When two t tions are g for
the same lock, the first transaction that was submitted to the system will
be given the first opportunity to hold the lock when it becomes available.

No part of a transaction is run until all of the transaction’s locks have
been granted.

*This work has been supported in part by & grant from the Florida High Technology
and Industry Council.

152-011

" compatible locks.

98

The proposed algorithm ls intended to runm on a semantic database
machine. The Linear-throughput Semantic Database Machine (LSDM)
{7) is an example of such a machine. The LSDM is a recent database ma-
chine model that offers massive parallelism, easy expandability, high fault
tolerance, and dynamic load balancing among processors. The proposed
algorithm will take advantage of the LSDM’s features without having to
abort and restart transactions and without the overhead of deadlock de-
tection and recovery.

The LSDM is optimized to store dats using the Semantic Binary Model
(SBM) (3,4] of databases. The data is stored as elementary facts. These
facts are ordered and replicated in a way that insures that almost all ele-
mentary queries of the database will require only one disk access [5). The
storage structure is partitioned bet ween the storage units of the processors
of the database machine (7]. The proposed concurrency control algorithm
will control access to the database by locking ranges of these facts; each
range corresponds to an elementary query.

Section 2 of this paper presents a brief introduction to concurrency
control, a description of conservative two-phase-locking and a method for
locking data in the semantic binary model. Section 3 proposes a pes-

simistic concurrency control algorithm and a description of how it can be
used to implement comcurrency control.

2 Concurrency Control

Concurrency control is used to make sure that each transaction in a
database system operates on a consistent database for its entire life. It can
perform this task by limiting access to data that is being used by another
transaction or by aborting a transaction that has been caught working
on an inconsistent database. In a parallel database machine, concurrency
control requires a transaction to see the data contained at each node at
one logical time. The data that has been read from a node can not be
changed before we use that data to perform an update to the database,
or inconsistencies may occur. The concurrency control algorithms for a
parallel database can be kept at one central site or they can be distributed
throughout the parallel database.

There are currently two main methods used for the eoncurrency con-
trol of distributed and parallel databases. Optimistic concurrency control
{6) allows a transaction to have free access to all of the data contained
in a database. When two transactions conflict over access to some datas,
one of the transactions must be aborted and restarted. Pessimistic con-
currency control (usually implemented by two-phase-locking (2PL) [2])
requires locks to be placed on data. The locks usually come in two dif-
ferent flavors: shared locks (also known as read locks) which allow many
transactions to access the locked data at once, and exclusive (or write)
locks which allow only one transaction to access the locked data. Two
locks that can be placed on the same data at the same time are called
Read locks are compatible with other read locks; a
write lock is not compatible with any other lock. The use of both read
and write locks allows several read operations to work on the same part
of the database at the same time while disallowing updates on this same
data. If many read operations come into the system for some popular
piece of data, they may starve transactions requesting write locks on the
same data. This problem can be solved, with a loss of concunency. by
making all of the locks exclusive locks.

2.1 The Locking Model

The concurrency control protocol proposed in this paper is based on a
variation of 2PL called conservative 2PL [1]. This protocol forces a trans-
action to obtain all of its required locks before it performs any operations
on the database. This causes more complexity for the database program-
mer, because the transaction's read and write sets must be declared before
the transaction begins. A transaction can not hold any locks if it ean not
hold all of the locks that it has requested. .

The advantage gained from pre-declaring our read nnd write sets is &
deadlock free locking protocol. From the definition of conservative 2PL it
is obvious that if a transaction T; is waiting for a lock held by transaction
Tj, then T; is holding no locks. This means that no other transaction Ty
can be waiting for a lock that T; holds. Therefore, there are no edges
Ty — T; in the wait-for graph (WFG) of the system. Since there are
no such edges, T; can not be in 8 WFG eycle, and thus can not be in &
deadlock.

Conservative 2PL is a very pculmhtlc concurrency control scheme. It
requires a transaction to maintain locks on its data the whole time that
the transaction is executing. There can be no conflicts over data that
can cause aborts, 5o each transaction will complete if it does not violate
the database’s integrity constraints. When a t tion ls pleted, it
releases all of its locks, so mo transaction will have to wait indefinitely to
gain its locks. The implementation of consegvative 2PL presented in this
paper uses both read and write locks in order to increase concurrency.

2.2 The Locking Method

To maintain locks on data stored using the semantic binary model, we must
decide exactly what kind of data we want to control and the method that
we will use to control the access to this data. The database is composed
of individual facts which are grouped by the data that they represent. All
of the facts directly pertaining to a particular object are kept in one area
of the database. Inverted facts are kept for each elementary fact. To place
a lock on some data, we store the range of facts that is to be locked. Each
range of facts corresponds to one elementary query. In order to place a
write lock on data, the affected elementary and inverted facts must both
be locked. If a requested lock's range intersects with some currently locked
range, then the lock types must be compatible in order for the request to
be granted.

Facts in the storage model [5] are rep ted by tuples representing
relationships between the objects of the database. The locking ranges are
represented by a starting tuple and an ending tuple. The tuple may be
either an entire fact or some part of a fact. If the tuples S, and S, are the
starting and ending tuples, respectively, of a lock range then any facts F;
in the database that satisfy §, < F; < S, are locked by that lock range. If
a lock range spans two (or more) nodes of the system, the range should be
broken into two or more smaller lock ranges that each fall onto one node.

Each node in the LSDM will maintain & list of the currently locked
ranges of its data. This list will enable the node to determine whether a
lock can be granted. The algorithm for the Lock Manager at each node is
presented in Section 3.3.

The transaction does not access the data in any way until all of the
locks that it needs have been granted. The algorithm that is used to gain
the necessary locks is presented in Section 3.4.

3 An Algorithm to Implement Conservative 2PL
3.1 The Time Stamp / Transaction Id

Each transaction has a time stamp associated with it that acts as its
transaction identifier (id). This time stamp is unique for each transaction.
Each time stamp / id also represents the order that the transaction was
submitted to the system. By examining two transactions’ time stamps we
can determine which transaction was submitted first; a priority can then
be assigned to each transaction's lock request. A global system clock can
be used to implement this time-stamping. A unique transaction-id can be
formed by concatenating the global clock value with the site identifier of
the transactions’s site, One possible algorithm for maintaining the global
clock is to synchronize adjacent sites periodically. Each site can send its
current clock value to all sites which are connected directly to it. When a
site receives a synchronisation message, it will update its own clock value

to the new time if it finds that ite clock is slow. This will keep all of the
sites’ clocks advancing at the same rate and will prevent any site from
gaining an advantage over the others by having a slow running clock.
The terms transaction-id and time-stamp will be used interchangeably
throughout this paper.

3.2 The Messages

In order to coordinate the locking and unlocking of data, several message
types are defined. From the Lock Requester's viewpoint there are two gen-
eral types of messages: those that it sends to the Lock Manager (outgoing
messages) and those that it receives from the Lock Manager (incoming
messages). Each of these types can be broken down as shown below. The
messages all contain the message type, the lock range, the lock type, and
the transaction id that the message pertains to.

There are two types of incoming messages.

e A LocMuMe message is received when a requested lock is avail-
able.

o A WillCall message means that the requested lock is currently un
avallable, but the Lock Manager will send a LockAvailable message
when it becomes available

There are four types of outgoing messages.

® A LockReguest message is sent when a transaction wants to lock a
data range.

o An Uninterested message is sent to a Lock Manager when a trans
action is not ready to lock a data range because it can not gain all
of its locks.

° A R«-inlemaléd message is sent to a Lock Manager when a transac
tion believes that all of its locks should be available. It reactivates
the lock request, .

® An UnlockRequest message unlocks some data range that a transac.
tion has locked.

3.3 The Lock Manager

Each node has a Lock Manager that maintains a list of the lncks that
have already been granted so that it can determine whether a lock request
can be granted. If a lock request can not currently be granted, the Lock
Manager must remember the request until it can be granted. The data
structures and the algorithm for doing this are presented in Sections 3.3.1
and 3.3.2.

3.3.1 The Lock Manager’s Data Structures

There are two major data structures kept at each node of the Lock Man
ager. One keeps track of the locks that have been granted, while the other
holds requested locks that are currently ilable and requested locks
that transactions are not ready to impose.

The LockList is a list of the locks that have been granted. This list is
kept in the order of the lock ranges in order to make it very easy tn
compare a new request’s lock range to those ranges that are already
locked. It contains:

1. the range that is locked

2. the time stamp / id of the transaction
3. the type of the lock

o The RequestList is a list of the locks that have been requested but
not granted, as well as the locks that have been rejected, for the
time being, by the requesting transaction. This list is ordered by
the transactions’ time stamps so that we can search through the
list in the order that the transactions were generated whenever it is
possible that a new lock may be granted. It contains:

1. the range that has been requested
2. the time stamp / id of the transaction
3. the type of lock that was requested

929

4. a Boolean value, interested; if interested = TRUE, the locking
transaction will be notified when the lock becomes available

3.3.2 The Lock Manager's Algorithm

The Lock Manager's algorithm is best described by listing the responses
that it makes to each type of message that it receives.

o LockRequest — We should check to see whether the lock can be
granted and respond accordingly.

/* check to see if the requested lock has
already been given */
Locked := (Is any part of the range already
in the LockList?)
LockCompatible := (Are all intersecting locks compa-
tible with the requested lock?)
if Locked then
if LockCompatible then
/* already locked but lock type is compatible */
place the request on the LockList
return a LockAvailable message
else
/* the requested lock is incompatible */
place the request on the RequestList
with interested = TRUE
return WillCall message
else /* not locked */
place the request on the LockList
return & LockAvailable message

Uninterested — We should put the lock request on the RequestList,
marked so that we are not notified if its availability changes, and
check to see if any entries in the RequestList can be granted.

remove the entry from the LockList

place the entry in the RequestList with
interested = FALSE

treat each entry in the RequestList for which
interested = TRUE and whose range intersects
with the range just removed from the LockList
as 8 LockRequeat, but do not return a WillCall
message if the lock is unavailable

Re-interested — We should mark the lock request so that we will
be notified when it becomes available and return the lock request’s
current status.

remove the entry from the RequestList and treat
it as a LockRequest

UnlockRequest — We should remove the lock from the LockList and
check to see if any locks in the ReguestList can be granted.

remove the entry from the LockList

treat each entry in the ReguestList for which
interested = TRUE and whose range intersects
with the range just removed from the LockList
as 8 LockRequest, but do not return a WillCall
message if the lock is unavallable

3.4 The Lock Requester

Fach transaction must place locks on all of the dats that it will-access.
The data structures and the algorithm that are used for requesting locks

are presented below.

3.4.1 The Lock Requester’'s Data Structures

There are two data structures that are used while requesting a transac-
tion’s locks. The first holds information about the transaction’s locks.

The second data item holds the transaction’s time stamp / id.

o Locks s an array of the locks that the transaction needs, along with
a status flag for each lock. Each array element contains:
1. the lock range
2. the lock type
3. the lock status; it is TRUE if the lock is known to be available

o A time stamp / transaction id for the transaction; it should adhere
to the guidelines set up in Section 3.1.

3.4.2 The Lock Requester’s Algorithm
This is the algorithm that a transaction uses to get its Jocks.

NumWillCall := 0

NumLockAvailable := 0

NumLocks := the number of locks we are requesting
send out a LockReguest message for each lock range
for each lock that was requested do

receive a message back from a Lock Manager

if message = LockAvailable then
NumLockAvailable ;= NumLockAvailable 1
mark the lock status as available

else /* message = WillCall */
NumWillCall := NumWillCall + 1
mark the lock status as unavailable

end for loop

while NumWillCall > 0 do
for each lock that was requested do
if lock status = available then
send Uninterested message
mark the lock status as unavailable
end for loop
do the following NumWillCall times
receive a message from a Lock Manager
reply with an Uninterested message
end do loop
for each lock that was requested do
send Re-interesicd message
end for loop
NumWillCall := 0
NumLockAvailable := 0
for each lock that was requested
receive a message from a Lock Manager
if message = LockAvailable then
NumLockAvailable := NumLockAvailable + 1
mark the lock status as available
else /* message = WillCall ¢/
NumWillCall := NumWillCall + 1
mark the lock status as unavailable
end for loop
end while loop

/* the while loop has terminated; all of the lock requests
are available and have already been granted...*/

3.6 Use of the algorithm

When a transaction comes into the system, the following algorithm ls used
to process it: .

1. Determine the read and write sets; we can make the transaction’s

programmer declare them, or determine them from the data that
was requested.

2. Run the Lock Requester algorithm.

3. At this point, all of the locks that were requested have been granted.

* Accumulate the sets to be inserted and deleted by the transaction as
we normally would in the semantic binary model. The nodes do not
have to check that locks have been granted, because a transaction

will not attempt to accumulate the sets unless it has all of the locks
that it needs. "

100

4. Check the integrity traints. If the ¢ tion does not pase the
Integrity check, retusrn an error message to the user and skip to step

' .
6. Perform the aceumulated transaction.

6. Unlock all of the data ranges by sending an UnlockReguest message
for each range. : .

4 Conclusion

Massively parallel database machines are eapable of performing typical
dotabase operations with 8 high degree of concurrency, thus Increasing
the number of transactions that can be performed per unit time by the
users of the database. This paper has presented a pessimiitic method of
conc y control (vative two-phase-locking) for @ massively par-
allel database machine, namely the LSDM (Linear-throughput Semantic
Database Machine). The algorithm is general enough to work on other
parallel database machines, and on other semantic database models and
their storage structures by changing the locking mechanism to one that
would be appropriate for that semantic model and Its storage structure.

Unlike other two-phase-locking (2PL) protocols, conservative 2PL for-
ces the read and write sets of a transaction to be defined before the trans-
action can begin. Some implementations of optimistic models (6] allow
query transactions to be performed while waiting for an update transac-
tion to commit; conservative 2PL makes these queries wait for the updates
to complete. The conservative two-phase-locking protocol offers advan-
tages over other two-phase-locking protocols because it is deadlock free,
and over optimistic concurrency control methods because it avoids aborts
and roll-backs. The time gained by avoiding these aborts and roli-backs
should make up for the slight loss of concurrency that oceurs because the
queries can not be made during an update transaction.

Conservative 2PL, the semantic binary database model, and the LSDM
all combine to form an effective implementation of a massively parallel
database machine. This database machine will exhibit a large degree of
concurrency and a high total throughput of transactions.

References

[1] P.A. Bernstein. Concurrency Control and Recovery in Database Sys-
tems, Addison-Wesley, 1087,

[2) K.P. Eswaran, J.N. Gray, R.A. Lorie, LL. Traiger, “The Notions of
Consistency and Predicate Locks in Data Base Systems,” Communi-
cations of the ACM, v. 17.7, pp. 403-412.

[3] N. Rishe. Dalabase Design Fundamentals: A Structured Introduction
to Databases and a Structured Dalabase Design Methodology. Prentice-
Hall. Englewood Cliffs, NJ. 1988.

{4) N. Rishe. “Semantic Database Management: from microcomputers to
massively parallel database machines.” Keynote Paper, Proceedings of
The Sizth Symposium on Micr puter and Microprocessor Applica-
tions, Budapest, October 17-19, 1989, pp. 1-12.

|6} N. Rishe. “Efficient Organization of Semantic Datahases,” Foundations
of Data Organization and Algorithms. Eds. W. Litwin, and H.J. Schek.
Springer-Verlag Lecture Notes in Computer Science, Vol. 367, pp. 114-
127, 1989,

8] N. Rishe, D. Tal, and E. Gudes, “Concurrency Control Algorithms
for Distributed Storage Semantic Database Machines,” FIU SCS TR
80-003.

{7] N. Rishe, D. Tal, and Q. Li, “Architecture for & Massively Parallel
Database Machine,” Microprocessing and Microprogramming (the Eu-
romicro journal), 25 (1989), pp. 33-38.

101

