
INTELLIGENT
DISTRIBUTED
PROCESSING

Ft. Lauderdale, Florida
December 13-15, 1989

EDITOR: R. Ammar

A Publication of

C(o-Jc..

ISMM

The International Society for
Mini and Microcomputers - ISMM

ISBN 0-88986-138-2

ACTA PRESS
ANAHEIM * CALGARY * ZURICH

• ISMM

Proceedings of the ISMM International Conference, Intelligent Distributed Processing, held in Fort lauder­
dale, Florida, U.S.A. December 13-15, 1989.

SPONSOR
The International Society for Mini and Microcomputers -ISMM
Technical Committee on Computers

INTERNATIONAL PROGRAM COMMITTEE
N.A. Alexandridis U.S.A. B. Furht
R. Ammar U.S.A. l. Furin
E. Fernandez U.S.A. E. Luque

Editor: R. Ammar

Copyright © ISMM

ACTA PRESS
P.O. Box 2481
Anaheim, CA
U.S.A. 92814

ACTA PRESS CODE: 152

ACTA PRESS
P.O. Box 3243, Stn . " B"
Calgary, Alberta
Canada T2M 4l8

U.S.A.
U.S.A.
Spain

l. Miller
A. Osorio-Sainz
C.l. Wu

ACTA PRESS
P.O. Box 354
CH-8053 Zurich
Switzerland

U.S.A.
France
U.S.A.

100

An Implementation of Conservative Two-Phase-Locking
for Parallel Semantic Database Machines •

ScoU C. Groham

ScAool of Computer Science
FlorUIG lnlcrn•lional Uniuer~ilr

Uniuer~iCr Pari
Mi11mi, FL IIIII

Abl&rad

Mau ively parallel databue machine• achiewe a hlP truuactioa
t hruughput by allowing many truaeactlon1 to acceu the clatabaM at one
1 ime. Concurrency control alsorithml areueed to inewe that each of theee
paraUel transaction• work• on a coneilleDt llatabue. Tbll paper propotea
an algorit hm that adopta conaenatlve two-phaae-locldns. a peulmlltlc
runcurnncy control aJsorithm, to parallel aemantic datuaM machln••·
The conaervative two-phue-lockiD& alsorlthm actl¥tl)' a¥olda deadlockl,
•o no deadlock detection and recovery mechanlema are neceuary.

The propoaed algorithm II Intended to run on a eemantlc databaee
machine. The Llnear-throushput Semant ic DatabaM Machine (LSDM)
io an example of such a mac!Une. The algorithm takea advantase of the
I.SDM 't mauive paralleliem, eaay expandabllity, hish fault tolerance, and
dynamic load balanclns among proceuort without havln& to uort ud
rutart transaction• and without the overhead of deadlock detection and
u•ro very.

The LSDM it optimized to atore dat a ualns the Semutlc Binary Model
(SBM) of databuee. The data i1 etored u elementary facti. TheM facu
.. ,. ordered and replicated In a wa7 that lnawe1 that almoll aU elementary
qu~riu of the databue wiU require only one dlak acceaa. The propoeed
roncu rrency control algorithm will control acceaa to the databue by lock­
ing range• of theu fach; each ruse correoponda to Ul elementary query.
Keyword a: concurrency control, databue machinea, eemantlc databaaee,
parallel procuoln&

l Introduction

Mauively parallel databue machinet achieve a hl&h tranaacllon
throughput by allowins many truaactioa• to accete the databue at one
t im~ . Concurrency control alsorlthma are uaed to In awe that each of theM
paraUel transaction• wod:a on a coDiletent datab ... Today, there are two
oc hools of thought In concunency control: optlmlem and peulmlam. Each
ochool hu ito advantasee and dlaadvantasea. Optlmletlc concunency con·
t rol algorithrna allow each traneac&lon to proceed Wider the ueumptloa
that r~w confticta wiU occur. When a conlllct doee occur, 011e of the
transaction• mutt be aborted and restarted to allow the other to proceed.
P~uimlotic concurrency control alaorithrna lock 10m1 part or the datuaae
to pre vent conflict. Since there are no conftlcte, traneacllon abort• are not
required. In molt penimlatic concunency control aJsorlth1111, however,
dradlocko can occur. Optlmlttlc concunenc7· control alaorlthme do Rot
have d~ad loc ka. Thla paper propoeeo an alsorlthm that adapta collier·
va tive twi>- phue-lockins, a peaaimlatic concurrencJ coatrol aiFrilhm, to
a parallel oemantic databa1e machine. Connrvatlve twO-phue-locklna II
d~adl •> c k free . No two tranaacUone can be waltlns for locka that the other
ltnlda, a requirement for deadlock, because the alaorlthm requlru that aU
of a t ranoact ion'• locko be available before any of ltelocka wiU be cranted.
Tlo~ aiJ!"rithm actively avoido deadlocka, ao no deadlock •etectlon andre­
co>ery mechanism• are neceuary. When two traneactlone are waltlns for
th• same lork, the first traneaction that wu aubrnltted to the eyatem wiU
be given the fiu t opportunity to hold .the. lock when It becomee available.
No part of a tranaactioo Ia fUll WltU all ol the truaacti011'1 locka haft
bun granted.

• Thio •ark hoo bun aupporlool ia patl br a croal fiom lila FlorWa Hlcll Ttc.noJou
and lndut&ry Coupe~ .

152-011

The propoae4 aJcoritlam t. latllldM &e ru oa a 11111Aatlc clatabaee
machlua. The Lln•ar·thrOillhput SeiDUitlc DatabaM Machine (LSDM)
17)1• an example olncb a machine. The LSDM la a rec•t datu ... ma·
chine model that ofl'ertlll<ln paraJWiem, ... , upUlclabllltr, blah fault
tolerUice, and dynamlc load balanclq arnOIIC proce11ora. The propoeell
alaorlthm wW take advUlt .. of the LSDM'a featura ·wltbout having to
abort and reatart truuact10111 a~~d without &1M overhead ol deadlock de­
tection and recoYetJ.

The LSDM b optlrn11ed to etore data u•lnl the Semantic Blur)' Model
(SBM) (3,4) of databuu. The data Ia etored aa elementary lacte. Thete
fact• are ordered and npUcated In a waJ that lneuree that almoet aU ele­
mentary queriea of the databue will nqt~ln only one dlak accet1 (li). The
atoraa• atructure II partltloaed bet ween the etorep unite of the proct~~ore
of the databaoe machine (7). The propoeed concurrency control alsorlthm
will control ac~aa to the databaae by &ockins r&~~&el of theae facte; each
rue• correeponda to an elementary query.

Section 2 of thi• paper preaent1 a brlel Introduction to c011currency
control, a dee~rlptloo ol conaervatlft two-plaaae-lockln& and a method for
lockln& data In tbe aemuatlc binary model. SectloD J propoaee a pel·
almlatk concurr~MJ caatrol aJsorltbm and a •uqlptloa of how I& can be
uaed to Implement coacvrencr control.

2 Concurrency Control

C011currenci coatrol It ~~~ed ·to make aure that each tranaactlon Ia a
utuue eyetem operate• on a conaletent databue lor ka entire ure. It can
perform thia tuk bJilmitlnc acca1 to llata that I• beJna uaed by aaother
&ranaactlon or by abortins a trUla&ctlon &laat hu been caqht worklec
on an lnconailtent databue. Ia • parallel databaae maclline, concurreac)'
control require• a trU~MCtlon ·to- the uta coatalned at each nolle at
one lo&ical time. The data that hu been read from a aode can not be
changed before we uae that data to perform an update to the clatabue,
or lnconeielenclee Ill&)' occw. The concwrency control alaorltbme for a
parallel clatabaae can be kept at one centrllllite or they can be dlatrlbuted
throu&hout the parallel datuaae. .

There are cwrently two a.ln methode ued for the concurrency con­
trol of diltrlbuted ancl parallel databaMt. Optlmlatlc concurrenc)' control
(4) aUowe a trUlaactloa to have &M ace- to eD of the data coDtalned
ID a databue. When two tranaadlona colllld over accne to IOlM data,
ooe of the tr-ctlone mull be uorted anll nllarted. Peulrnlatlc con­
currency control (ueually Implemented b7 twc.-phaae-lockln& (2PL) (21)
requlrea locka to be placed on data. The locke ueually come In two dif­
ferent ftavore: ehared locke (lll10 knOWAu read loeb) whicla allow man1
tranaactiOGa to acceu the locked data at ooce, lllld exclualve (or write)
locka which allow only 011e tranoactl011 to acceoa the locked .tala. Two
locka that cUI be placed on the aarne data at the aarne time are called
compatible locke. Read locka are compatible with other read loeb; a
write lock Ia not compatible with Ul)' other loclt. The - of both read
ancl write locke aUowa aeveral read operatloaa to work oa the &U1M part
of the databue at the tame tiDM while 4laallowlnaupclatea on thil aarne
data. U many read operation• come Into the 171lem for aome popular
piece or data, they may etarve tra~~aactlone requeltln& write loeb oA the
tame data. Tbla pmblem can be aolvecl, with a lo• of coDcunencr, by
maldn& all of the locke uclualve loclt1.

98

2.1 The Locklna Model

The concurrency control protocol propooed In thl1 paper Ia bued on a
variation of 2PL called conaerwatlve 2PL [1). Thll protocol forcea a &ran•·
action to obtain aU of Ita required lockl before It perfol'llll any operation•
on the databue. Thlt cauoe~ more complexity Cor the databaM program­
mer, becauae the tranaactlon'• read and write Hh mull be declared before
the tranaactlon begina. A trauaadlon can not hold an)' locka If It can not
hold aU of the locka that It hu requeated.

The advantage gained from pre-declarin& our read and write aeta Ia a
deadlock Cree locking protocol. From the definition of conaervatlwe 2PL It
It obvioua that !Ia truaactlon 7j Ia waltina Cor a lock held by tranaactloa
T1, then T; Ia holdlna no locka. Thla meana that no other tranaadlon T•
can be waiting for a lock &bat T, holda. Thenfore, there are no edgu
T• -. T; In the walt-for grapt. (WFG) of &be ayatem. Since there ara
no auch edgea, 7j can not be In a WFG cycle, aad thaa caa aot ba In a
deadlock. .

Conaervatlve 2PL Ia a very peulmhtlc concurrency control acheme. It
require• a tranaactlon to maintain lockl oa lh data the whole time &bat
the tranaactlon • axecutlna. There can be DO confllcta over data that
can r.auae aborta, 10 each tranaaction wiU complete if It doea not •lolate
the databMe'• Integrity coaatralnta. Whea a tranaactlon Ia completed, It
releaaea all of ita locka, 10 ao tranaactlon will have to walt Indefinitely to
gain Ita locka. The Implementation of conaervatlve 2PL preaented In thia
paper aaea both read and write locka In order to lncreua concurrency.

2.2 The Locklns Method

To maintAin locka on data atored ualng the aemantic binary model, we mull
decide exactly what kind ol data we want to control and the method that
we will uae to control the acceu to thla data. The databue Ia compoaed
of Individual facta wltich are grouped by the data that they repreaent. AU
of the facta directly pertaining to a particular object are kept In one area
of the databue. Inverted facta are kept for each elementar)' fad. To place
a lock on aome data, we ltore the ranp of facta that Ia to be locked. Eadl
range of facta coneaponcla to one elernentar)' •uery. In order to place a
write lock on data, the all'ected elementary and lnYerted facta muat both
be locked. If a requeated lock '• ranse lriteraeda with aome cunentlr locked
range, then the lock typea muat be compatible In order for the requeat to
be granted.

Facta ill the atorage model (5) are repreaented by tupk1 repreaentlns
relatlonohlpa between tht objecta of the databue. The lockins ransea are
rtpreaented by a atartlns tuple and an endln1 tuple. The tuplt may be
either an entire fact or aome part of a fact . I(the tuplea S, and s. are the
atarting and endin1 tuplea, reapectlvely, of a lock ranp then any facta F;
In the databaae that aatltfy S, $ F, $ 50 are locke4 b)' that lock range. If
a lock range apano two (or more) nodea of the tyatem, the ranee ahould be
broken into two or more arnaller lock ranaea that each fall onto one node.

Each node in the LSDM will maintain a llat of the currently locked
range• of Ita data. Thla U.t will enable the node to determine whether a
lnck can be granted. The alcorlthm Cor the Lock Manager at each node Ia
preaented In Sectloa 3.3.

The tranaaction doea not acceu the data In an)' way until all of the
locko that it needo have been sranted. The algorithm that Ia uaed to gain
I he nece11ary lorh h preaented In Section 3.4.

3 An Algorithm to Implement Conservative 2PL

3.1 The Time Stamp / TranaacUon ld

Eact. tranaaction baa a time otamp uaoclated with It that acta u ita
t ranaactionldentiller (ld). Thla time atamp Ia wnlque for e~h tranoactlon.
Each time •tamp / id alao repreaenta the order that the tranaaction wu
tubmitted to the ayatem. By examining two tranaactlona' time atamp1 we
ran determine which tranaac~lon waa aubmitted lint; a prlorit)' can then
be ualgned to each tranaactlon'a lock requea&. A global oyatem clock can
be uaed to Implement thla tlme-atamplns. A unique trantactlon-ld can be
Conned by concatenating the global clock •alue with the alte Identifier of
the tranoactlon1'• aite , One poulblt algorithm for maintaining the slobal
dock Ia to •rnchroniM adjacent altea perlodlcaUy. EMh aile can tend Ita
current clock value to aU oltH whkh are connected directly to lt. When a
oite recelwea a aynchroniaallon me11aae, It wiU update Ita own clock •alue

to the new tl.rne If It: finch tha& lte dock I• llow. Thh wW lceep all or the
altea' c!oclca ad•ancing at the tame rate and wiU prennt any aite fwm
aalnlng an aclvantaae over the othera by havlns a alow running d ork.
The Ierma tranaactlon-ld and tlme-atamp wiU be uoed interchanseably
throushout th11 paper.

3.:1 The Mea•asea

In order to coordinate the locking and unlocking of data, aeveral meauge
typea are defined. f'tom the Lock Requester'• Yiewpoiat there are two g•n­
eral typea of mea~a~ea: those that It aenda to the Lock Manager (outg, ins
meaaapa) and thoae that It recelvea from the Lock Manager (incominK
meaaagea). Each of theae type• can be broken down aa ahown below. 1 he
meuagea all contain the meuaga type, the lock range, the lodt type, and
the tranaactlon ld that the meuage pertalna to.

Thera are two typee' of lncomlns meaaageo.

• A Loc.,hoila61e rneuap Ia received whea a requuled lock ia a•·ail -
able. ·

• A WillCall rneu~se meant that the requeoted loclc ia rurr~ntl y un ·
avallablt, but the Lock Man.aer wW aend a £oclrAt~4il4bl~ m•uage
when It become• available

There are four typea of outgoing rneuagea.

• A LoclcR"''n•t me11ase Ia .. nt when a tranaactlon wanh ln lo<k a
d11ta range.

• An UninteretleJ me11aae Ia aent to a Lock Manager when a tran•
action Ia not read)' to lock a data ranse becaua~ it can not 11ain all
or ill locka.

e A Re-interett~4 measage ia aent to a Lock Manastr wh~n a tran•a< ·
tion beUev" that all of Ita loeb ahould be availabl~. It r~arth· atrs
the lock requeat.

• An UnloclcR~qae•t me11ap unlock• 1ome data range that a tranaar ·
tion haa locked.

a.a The Lock Manager

Eacb node hat a Lock Manaser that maintaina a list of the lnrks that
have alreadr been granted ao that It can determine whether a lock roqu••t
can be granted. tr a lork requeat can not currenlly be grant•d , th~ l.ur k
Manaser must remember the rtqueat until It can be granted. 1 ;,,. · I~• a

atructurea and the algorithm Cor doing thl1 are preaented In Sections 3 3.1
and 3.3.2.

3.3.1 The Lock Manager'• Data Structure•

There are two major data ttructurea ltept at each node of tho Lock Man
ager. One keepa track ofthe loeb that have been granttd, whil• th• otlo• r
holda requeated locka that are currently unavailable and requestrtl lurk •
tb&t tranaactlona are not ready to lmpote.

99

• The LodtLiot i1 a liat of the loch that h&Ye been granted. This li•t ia
kept In the order of the lock rangta in order tomah it vr.ry ~as v '"
compare a new rrqueat 'a lock range to thoae range• th&t are ll)reath
locked. It contains:

1. the range that Ia locked

2. the time atamp 1 ld or the transaction

3. the type of the lock

• The RequeiiLilf is a liat of th~ locka that have been request«! lou t
not granted, u weU aa the locka that have been rejected, for th~
time being, by the requeatlns tranaaction. Thia Uot ia ordered by
the tranaactiona' time llamp• ao that we can oearrh through th~
tlal In the order that the tranaactiona were generated wh•Mvtr it ia
poaalbl~ that a new lock may be sranted. It c~ntalna:

1. the range that hu been requested

2. the tim~ atamp I id of the tranaactlon

3. the type or lock that wu requetted

·.

4. a Boolean value, inln-e•led; if inlerrlfetl = TRUE, the locklns
t ranu.ction will be notified when the lock become. available

3.3 .2 The Lock Manager'• Algorithm

Tloe Lock Manager'• algorithm is but described by listing the reoponno
that it makeo to each type of menage that It recelvea.

o /.<XkHtqvut - We ahould chock to aee whether the lock can be
gra.nted and reopond accordingly.

1 • check to oee if the requested lock hu
already been giveo '/

Locked := (It any part of the range already
in the LockLi1l?)

Lock Compatible := (Are all lnteroectinglockt compa­
tible with the requeated lock!)

if Locked then
if Lock Compatible then

1 • already locked but lock type ia compatible '/
place the request on the LoclLuC
return a LocA:A~GilGble menace

else
J• the requeated lock Ia incompatible 0

/

place the requeat 011 the Reqse.CLul
with interc•led = TRUE

return WiliCGII menage
eloe I • not locked • /

place the requeat on the £odc£ul
ret urn a LoclcA 114ilable mea•ase

Unanleruted - We ahould put the lock requell on the Repe•ILial,
marked ao that we are not notllled II itt avallabWtJ chanse., ancl
check to aee if any entrlet in the Reqve•ILi.C can be aruted.

remove the entry from the Lod:Lill
place the entry in the RequeaiLill with

tnltruled = FALSE
treat each entry In the Reqvc•ILilf for which

inle,..,•led = TRUE and whooe ranse lnteraecte
with the ranse juat removed from the LocUill
aa a LoclcRcqvclf, but do not return a WiiiCIIII
menage I! the lock Ia unav.ilable

1 Re-inlerulcd - We ahould mark the lock requut 10 that we will
be notified whe11 it become• available and ret.un the loclr. requeat'•
rurrent otatua,

remove the entry from the Repe•ILill ud treat
It u a LociReqnal

• UnlocA:Requclf- We ahould remove the lock &om the £oc11Li1l and
check to aee if any locka in the RequeaiLill can be srutecl.

remove the entry from the LocA:Li•l
treat each entry In the Reqvt1ILi11 for which

inlert~led = TRUE and whose ran&• lntenecte
with the range juat removed from the LoclcLua
u a Loclc&qvul, but do not return a WiliCIIII
menace ilthe loclr. It UDaYallable

3.4 The Lock Requeder

f.ach truuaction muot place Iacko on aU of the data that It wlU•ac:cell.
The data 1tructuree and the algorithm that are uaed Cor requntlnsloclt:t
are preeented below.

3.4 .1 The Lock Requeeter'e Data StructUI'el

There are two data atructureo that are. uted while reqttetllnl a tranaac·
tiun'• Iacko. The firat holda information about tht trueactlon'• locka.
The ••cond data Item hold• the tranaac:tioo'• time atarnp /ld.

e Lod• le an arraJ of the loeb that the truaacUaa aeecla, alon1 with
a tlatua ftas for each lock. Each array element <OIItaiqa:

I. the lock range

2. the lock type

3. the lock atatua; It I• TRUE if &he loclr. I• knowa to he awallable

e A time etarnp / tranaactlon ld for the tranaac&loa; I& ehould adhere
to the suldellnee oet up In Section 3.1.

1.4.2 The Lock llequee&er'a Alaorl&bm

Thll I• tbe algorithm that a tranaactlon uaea te pt lttloclr.e,

NumWIUCall := 0
NumLockAvallable := 0
NumLocka := the number of locke we are reqHt&lns
eencl out a LociReqve•l me...,. (or each lock ruse
for each lock that wu requeated do

receive a me•aaa• baclr. &om a Lock Muacer
If meaaaae = £ocU110ii&We thea

NumLockAvallable : .. NumLotk.\vallablt + l
mark the lock elatua u available

el11 f• meuap = WiliC.U */
NumWIUCall := NumWiliCall + l
mark the lock 1tatu1 u Ullavailable

end for loop
while NumWiiiC.U > 0 clo

for each lock that wu requeeted clo
if lock a&atue = available then

aend Uni,derulell meeaaae
mark the lock etatue u unavaii.W.

entl for loop
do the foUowlns NumWIUCall times

receive a muaaae from a Loclr. Mu~~~et
reply with an Umnterelkof mnaaa•

ec~d do loop
Cor each ...U tha& waa req-te4 clo

aend Rc-inleretlelmeuap
end for loop
NumWIIICall := I
NumLockAvallable := 0
for each' lock that wu requeete4

receive a ~·"P from a Lock Muqtr
If meaaap = LocUVGild;le &hm

NumLockAwallable := NumLockAwallable t l
mark the lock etalul u awallable

el11 /* meeaap = WiUCall•f
NumWillCall := NumWiliCall + 1
mark the JocJr. I& at Ul &a UllawailabJe

end for loop
end while loop

f• the while loop 'bu terminated; aU oC the lock reqllllh
are available and ban already b1111 pulecl ••• *I

S.& Uae of the algorithm

When a trar11actlon comeelll&o the ay1tem, the foiJowlnaalaorltbm Ia uae4
to procen It :

l. Determln~ &he read an4 write aeta; we caa make the lraneactlaa't
prosrammer declare them, or determine lllem from the data that
wu requeated.

2. R.UII &he Lock Requeeter algorithm;

I. A& &hla point, all ol the locka &hal were requeete41aan b- pa~~&ecl.
Accumulate the 1et1 to be Inserted and lleletecl bJ the &ra111adloa u
we normally would Ia the Hlll&lltlc binarJ' modeL The nodet tlo llol
have to checlr. that loclr.e llave bet~~ puled, b-• a traruactloa
will not attempt to accumulate &he lett ualeae It baa all ol the loeb
that It needa.

100

4. Chedr the latepltr conetnlab. U the huuaacU... doet not pan the
b•tqrlt7 check, retura an error ma.aa• to the uter 1111!1 tklp &o etep

••
5. Perrorm tile accum~&lated truuactlon •

.. Unlock all of tiM data ran~t~ by tmdbis • UllloeiRefll~•• -aace
for .. ch ran,..

4 Conclusion

M••lvelr parallel databue rnachlne1 are capable of performln& tJplcal
databue operation• wltlll a hll!l dtlfll t:l cCIIIcurtesiCJo thua lacreulna
tllle number of trutactiOftl thal CUI be perfomwd 11ft ualt Uma b7 the
UHrl or "" databue. Till• paper ""' prtMattd • ..-lmUtlc -thocl ol
cot~cul'ftllcJ coatrol (coftlenath• two-phaae·locklnl) for a m&Mivelr par·
allel databaae machine, namel7 tile LSDM (Lhwar·throuaJtput Semantic
Databue Machlae). The aJaorltbm llamera! enoup to work oo other
paraUel databue machine•, and on other ••mantle databue model• and
their etorege ttructllftl b7 chanaJna the lockln& rnechanbm to one that
would be appropriate Cor that eemantlc model and k• 1torege ttructure.

Unlllle other &wo-phue·locklna (2PL) protocol•, conttnathe 2PL for.
cet the read ancl write tell ole tranaactlon to be defined before the trant·
action can bealn. Some lmplementatlont of optlml•tlc model• [81 aUow
querr tranaactlo01 &o be performed while waltlna for an update trantK·
tloa to commit; conaenatlve 2PL mutt &heae querlet will& for the updatet
to complete. The con~etvetlve two-pbate-locklna protocol olfen advan·
''~~" over other two-phue·locklna protocoh becauM It 'It deadlock fret,
end over optlmlatlc concurrencr control methodl beceute It a..Xdt abort•
and roll-baclto. The time aalntd bJ avoldlq thett abort• 1111d roU-bacl11
ehould make up for the tUpt lon t:l concurtencr that occur• becautt the
querl• can not be made durin& an update truuactlon. .

Coneenatlve 2PL, the ~tic blnarr databue model, and the LSDM
all cnmblue to Corm an elfectlve Implementation t:l a ma11l•ely parallel
del.-.. machine. Thlt Utabue machine wW ealtlblt a larp clqree ot
concunency and a blah &otal throupput of trantectlona.

References

[II P.A. Bemateln. ConcarftftCJ Conlrolaft4 Rtcovny iR Doldcaec S111•
ktlu, Addlton-We•ler, 1987.

(21 K.P. Etwaran, J .N. Gray, R..A. Lorle, I.t. Trelaer, "The Notion• ot
Contlateft7 and Predicate Loclke In Data Bue SJ•teme," Communi·
cetlona of the ACM, "· 17.7, pp. 40a-412.

(31 N. Riebe. Dalca&.ee De.ip Flln4alllmtalt: A Slraclamf 1t~tro4tldi0ft
1o Dolc&ur~ end a Slnlclarc4 Dota6aec Detip AleiAo4oloeJ1. Prentlc•
Hall. EnaJewoocl CU1f11 NJ. 11188.

(41 N. llhhe. "Semantic Databue Menasement: from mlcrocomputen to
maulvelr parallel datebue machlnet." Kernel• Paper, Proceedlnp ol
1le Sidlt Srm1o•i•m on AliaocomJ"IIet' and Mit:roprocettor A1plice·
li<>M, Budapetl, Odolter 17· 111, 1989, pp. 1·12.

1&1 N. Risht!. "F.ffirlent Organisation ofSemantk Oatahaaea," Foundation•
ofO,.ta Oraanl~etlonud Alaorlthrm. Edt. W. Litwin, and H.J. Schelk.
Sprin~~t4"r· Verl"' Ledure Notn In Computer Science, Vol. :167, pp. 114·
127, 1989.

l61 N. Rl•he, D. Tel, end E. Gudeo, "Co11cu"encr Control Alaorlthm•
r.,. Dlalrlloule4 Slor ... Semantic Datai>Ma MaciWiet," FlU SCS Til
89·003.

171 N. R.hhe, D. Tel, an4 Q. Ll, "Architecture for a Muil•elr Parallel
Oatabue Ma.:hlne," Microproceui"f au Microprogrammitlf (the Eu·
romlcro journal), IS (1919), PP• Ja-31.

101

