






conceptual schema modeling of the static structures in SBDM is oemanlic 
nets. Petri-nels are used for modeling dynamic behaviors in the concep
tual schema. The Petri-nets approach of modeling dynamic aspects is ll6J 
defined by four-tuple 

M = (P, T, !, 0), where 

P: the set of places (stales), each is depicted by a circle . 
T: the set of transitions (event), each io depicted by a bar. 
I: the input function for each transition lj, defines the set 

of places which input to it, depicted by the set of arrows 
from place• coming to the transition, l(tj) = P;. 

0: the output function for each transition lj, defines the set 
of arrows from the transition going to the places, 

O(t,) = P •. 

Attached to each tra.nsition is a pair of dynamic constraints one pre· 
condition and one postcondition, which are specified as predicate logic 
sentences and are repre5ented a.s arcs to the transition and to an output, 

place respectively. The precondition specifies the requirement upon the 
input variables of the tranaition to occur. The postcondition apecifies the 
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runsequences of the event in terms of the description of the attribute vaJ. 
ues of the output variables . A transition is enabled if each of its place• 
contains a token (simple entity ). A tramition can fire (trigger) whenever 
il is enabled and its preconditions are t rue . After firing of a tranaition a 
token is remove>d (consumed} from each of its input places and a token i5 
plart"d into each of its output places, and its postconditions become true . 
The firing of a transition corresponds th e occurrence of an event. Figure 
2 sho ws an txample of using Petri-nels. 

On the other hand, predicate logic is used to assist in describing the dy· 
namir bcbavior of the entities in the data manipulation laguage . Predicate 
log•< provides more precise specifications to represent knowledge for the 
situat ions that occurs in the real world. A formal specification overcome• 
the ambiguities that arise when using natural languages or the graphical 
languages . An example of describing dynamic behavior in a business sys· 
tern is the situation of htre and fire an employee. This situation can be 
described with predicate logic as follow : 
S, (z E Per>on /, (z !"Employee) l htred(r )) -
Employee) 

S, + I I= (z E 

S, (z E Employee II f•r e( z) ) - - S, + I II (z If Employee) 

S : state I= : is true - - : if. then . 

4-1 Description of dynamic features 

Dynamic aspects in the SBDM are modeled by situation-action rules, dy. 
namic constraints and a control mechartism for efficient triggering rules. 
Attached to each rule is a pair of dynamic constraints: precondition( s) 
and postcondition(s), which are specified as predicate logic expreniono. 
A rule can fire whenever it is enabled and its preconditions are true. After 
firing a rule , an action will be executed and the postcandition will become 
true . An action may cause other rules to fire and can lead to a chain of 
events / actions in a specified hierarchy. 

In order to describe the dynamic feature• of a UoD in the SBDM, the 
notions of event, action and tranoaction should be defined. 

An event is a situation that occurs either during a database operation, 
a triggering action (of a certain rule), or an otherwise transaction 
operation (to be defined latter). This specifies when to check for 
a certain rule precondition(•) to be satisfied. Often more than one 
process is used to determine the occurrence of such a.n event, and 
more than one process may wait for its occurrence . Occurrence 
of an event type produces specific effects on related objects in the 
environment. Events can be internal or external. An internal event 
is a consequence of a previous event and io analogous to a derived 
event in jlOJ. On the other hand, external event is that occurs or 
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is caused by something oullide the scope of the UoD . An event 
hierarchy is specified when an event triggered by a user invocation 
of a single event. 

An action is a behavioral property of an object and can be invoked to 
produce a otate transition for an object. This specifies how to aatisfy 
a certain rule condition. An action is composed of database primi · 
tives operations applied on an object. They are the only means to 
alter an object, which ensures the oemantic integrity of entities . An 
action can also be viewed as a user's logical step applied on an entity. 
An object can have more than one action. Actions can be 
into: 

• Insert a fact: thio adds a new fart to an existing object . It also 
creates a nf'w object if it doet not exist and then relates it to 
the inserted fact and al5ociates it with the opecified relation . 

• Delete a fact: this action delde& the lipecified fact, and if the 

associated object is not asoociated with another fact , it is alsu 
deleted . 

• Replace a fact : this action is not elementary, since it io corn 
posed of both actions mentioned above . This type of actions is 
considered as a tran&achon. 

A transaction is composed of a group of actions and produce• a col 
lection of logicaUy related events on one or more objects. Transac 
tiom do not interact directly with database primitive operations and 
have a larger acope t han actions do. A class of event& io designed 
by modeling a transaction. From the conceptual view, a tranoac · 
tion is atomic in the sense that it io performed in an indivioible 
operationji5J. 

A function is a mechanism to describe all possible execution histories 
that an entity can go through! !J. A function is basicaUy an exten 
sion of Petri · net s. Each node in the function represents a &late, and 
each tran1ilion represent!! a transaction that can changt the states 
of processes being represent ed. Functions are intended to model 
long·term events in the Uo D. The main objective is to have such 
abstraction as a generalized process which requires communication 
and synchronization mechanisms of the system designer . In order to 
enable communication between different functions, message passing 
mechanisms are uaed which are based on the primitive operators of 
the communicating sequential processes (CSP) !7J. Functions arc 
useful in enforcing dynam..ic integrity constraints on transaction call 
sequences (a student can not receive grades until he / she has enrolled 
in a course) and in defining the format and protocol of interactions 
with usen . Functions provide a natural place for exception -handling , 
including execution arising due to time delays . Functions may be as
oociated with different attributes which control protection and pri· 
ority. 

A rule fire• only if the event occurs and the precondition evaluation 
is true (t.ypicaUy through a query functions on the fact base or on envi 
ronment parameters). When a rule fire•, its action will be tnggered, and 
its postcondition is evaluated (to guarantee the database consistency) . As 
a result, the action may cause the generation of new events that conse
quently cause other rules to fire . These cascading rule firings produce con· 
sequent asser tions of additional information through the succession of rule 
activation in forward chairting expansion. Both actions and transactions 
are forms of procedural abstractions that causes appropriate invocation 
context. Before such invocations, certain preconditions must be fulfilled 
and actions on other entities may be nece .. ary. 

4.2 Control abstractions definition 

In order to provide dyn&II\ic specifications, the SBDM is extended to sup
port control abstractions. For high -level composite operations ( actiom, 
transactions) control abstractions are used to relate operations on object&. 
The three forms of control abstractions are : 

• Aggregation of operations that can be executed either in sequence or 
in parallel on an object. 

• Generalization of an operation on a generic is composed of a choice of 
operations, one for each subcategory ( ca•e io used for nonoverlapping 
subcategories, and sequences or parallel if-then control structures are 
used for overlapping subcategories). 
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• A•.ociation of an aggregate object is expressed as a repetition oper-

ation on all members of that aggregate (do-while or for-each control 
structures are used in the framework ofeither sequence or parallel 
control structures) - An operation on a Set is composed of an oper
ation that is applied in sequence or parallel to each member of the 
Set. 

The operational hierarchy of transaction / action supports the operation 
modularity. Elementary action is regarded as the smallest unit of opera
tions which change one fact. Actions can occur simultaneously and do not 
violate any integrity constraints of the conceptual schema. A transaction 
is a minimal set of actions and can be executed either in sequence or in 
parallel [15J. 

4.3 The Time Notion 

The time concept (time axis) is a fundamental entity for any method at
tempting to model dynamic information and to express the proper behav
ior of activities [llJ. In many applications the dynamics of the system can 
be modeled by the notion of causality {sequence of events caused by the 
invocation of a single event). In some information systems it is relatively 
important to express the occurrence of some events relative to another 1 

but if the time axis is being represented as an entity, it can be useful in 
the conceptual schema design and is not considered at the internal level. 
Also in defining time axis, the DBMS needs to supp ort the following: 

Valid !tme: the clock time that the event occurred in the real world, 
independent of the reco rding in database . 

Tran,actlon time: concerns wlth the storage of information in the 
DB . Transaction time of an event is t he t ransaction sequence number 
(an integer ) of the trans actions that already sto red . 

Uur defined tame: it is provided by the use r or application program. 

Another point of view of in troducing the time axis is t he question of time 
being absolute or relative to some events. 

5 AN ILLUSTRATIVE EXAMPLE 

As an ill ustrative example, the University Schema (Figure 4) is considered 
[12 J. Events are represented by a bar and arrows ramming from precon· 
ditions and going to postconditions . An important mec hanism that can 
be implement ed is the time stamping introduced in T Ht-.1. Each event of 
CltEATE NEW as a basic construct in SB 01\1 i I:;, 12 [ is augmented by 
~ time > as an o pti o n part\meter . The same can he pe- rformed whilf'" rela· 
tionships are es tablished amon~ nhjects by RELATE . C ATEG ORIZE or 
IJECATEGORIZE ronstructs. 

Two ba.ic actions a re presented Take.Course and Drop.Course . Each 
action is sp~ci fied by a set o f parameters set of preconditions and a 5et 
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of postcondition& that specified t)le dynamic constraints. The actions 
Take_Course and Drop_Course are described as follow: 

Action Take_Course ( s : STUDENT, c : COURSE ) ; 
precondition: 

c ia offered? ; 
limit not reached? , 
c is not taken before by s? 

then: 
insert c to the list tak ing course of s ; 
insert s to the enrollment list of c; 
increment the size of c; 

postcondition: 
s is inc enrollment list?; 
c is in a course list?; 

end...ac:tion Take_Course ; 
Action Drop_Course ( s : STUDENT , c : COURSE ); 
precondition: 

s is taking course c? ; 
then: 

delete c from the list taking course of s; 
delete s from the enrollment list of c ; 

postcondition: 
end...action Drop_Course; 

The transaction Transfer..From_Course is composed of two actions, namely 
Take.Course and Drop.Course. 

[n representing the function EnrollJn_Course as a long teem trans
action it is important to specify all the states and transi tions inside the 
fun ction body. 

Function EruollJn_Course (d : DEPARTMENT ); 
Local Parameters: 

States: 

s: STUDENT; 
c: COUR SE; 
grade: {0 .. 100} ; 

tn1ttal: initiaLstate ; 

final : fi naL.state ; 
other.: state _! , state..2, state_3; 

Transit ions: 
Obtam mformatwn : 

from initiaLstate ; 

to state . l i 
Condstaon: none ; 

Actton: get c , s from use r ; 
EnroUment: 

from state _l ; 

to atate ...2 ; 

name 
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Fig 4 Activity representation in the university database schema 
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Condition: none j 

Action: Take_Course(s,c); 

Drop couru: 

Grade: 

from state _2 ; 
to state _3 ; 
Condtit on: none j 

Action: Drop _Course(s ,c) ; 

from state_2 ; 
to finaL.state ; 
Condttion:none; 
Achon: Send "drop-grade" m~nag~ ; 

Drop_ Grade: 
from state_3 ; 
to final...state ; 
Condt! ton:none ; 
A chon: Send grade ; 

e nd EnroUJn _Couue; 

CONCLUSION 

In thi s paper , we integrated the Semantic Binary Database Model (SBDM) 
as a fa ct- o rientt-d model with dynamic activity reprefientations in order to 

have a system that meet& all of the requirements for a knowledge bue 
system. Dynamic aspects in the SBDM are modeled by situation-action 
rules , d:vnamic constraints and a control mechanism for efficient trigger · 
ing rules . Attached to each rule is a pair of dynamic constraints: one 
precondition and one postcondition , which are specified as predicate logic 
expressions . A rule fires whenever it is enabled and its preconditiona are 
true . After firing a rule, an action will be executed and the postcondi · 
t ion wiU become true to establish integrity and consistency in the Fact 
Base . An action may cause other rules to fire and can lead to a chain of 
rvPnl s 'art ions in a specified hierarchy. Triggers and const raints gua.ra.ntee 

int egrit;· and consistency of facts in the knowledge base . The enhanced 
model is a romhination of production rules and stru ctured objects kn ow). 

('(i~ e re presrntation scheme5. 
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