

conceptual schema modeling of the static structures in SBDM is oemanlic
nets. Petri-nels are used for modeling dynamic behaviors in the concep
tual schema. The Petri-nets approach of modeling dynamic aspects is ll6J
defined by four-tuple

M = (P, T, !, 0), where

P: the set of places (stales), each is depicted by a circle .
T: the set of transitions (event), each io depicted by a bar.
I: the input function for each transition lj, defines the set

of places which input to it, depicted by the set of arrows
from place• coming to the transition, l(tj) = P;.

0: the output function for each transition lj, defines the set
of arrows from the transition going to the places,

O(t,) = P •.

Attached to each tra.nsition is a pair of dynamic constraints one pre·
condition and one postcondition, which are specified as predicate logic
sentences and are repre5ented a.s arcs to the transition and to an output,

place respectively. The precondition specifies the requirement upon the
input variables of the tranaition to occur. The postcondition apecifies the

True 110<>
aK user 10 True->

Wicrn i.ty 1 and c: cnrollmc:nc(s.c) ;

Puamc:ters of Petn · nt:t
d do:panncnt .

locals vanables
s: Qudcnt,
c: counc:

True-=>
tend "drop Jrodc-

Ftg 2 Fwtetion Enroll _ln_Course

runsequences of the event in terms of the description of the attribute vaJ.
ues of the output variables . A transition is enabled if each of its place•
contains a token (simple entity). A tramition can fire (trigger) whenever
il is enabled and its preconditions are t rue . After firing of a tranaition a
token is remove>d (consumed} from each of its input places and a token i5
plart"d into each of its output places, and its postconditions become true .
The firing of a transition corresponds th e occurrence of an event. Figure
2 sho ws an txample of using Petri-nels.

On the other hand, predicate logic is used to assist in describing the dy·
namir bcbavior of the entities in the data manipulation laguage . Predicate
log•< provides more precise specifications to represent knowledge for the
situat ions that occurs in the real world. A formal specification overcome•
the ambiguities that arise when using natural languages or the graphical
languages . An example of describing dynamic behavior in a business sys·
tern is the situation of htre and fire an employee. This situation can be
described with predicate logic as follow :
S, (z E Per>on /, (z !"Employee) l htred(r)) -
Employee)

S, + I I= (z E

S, (z E Employee II f•r e(z)) - - S, + I II (z If Employee)

S : state I= : is true - - : if. then .

4-1 Description of dynamic features

Dynamic aspects in the SBDM are modeled by situation-action rules, dy.
namic constraints and a control mechartism for efficient triggering rules.
Attached to each rule is a pair of dynamic constraints: precondition(s)
and postcondition(s), which are specified as predicate logic expreniono.
A rule can fire whenever it is enabled and its preconditions are true. After
firing a rule , an action will be executed and the postcandition will become
true . An action may cause other rules to fire and can lead to a chain of
events / actions in a specified hierarchy.

In order to describe the dynamic feature• of a UoD in the SBDM, the
notions of event, action and tranoaction should be defined.

An event is a situation that occurs either during a database operation,
a triggering action (of a certain rule), or an otherwise transaction
operation (to be defined latter). This specifies when to check for
a certain rule precondition(•) to be satisfied. Often more than one
process is used to determine the occurrence of such a.n event, and
more than one process may wait for its occurrence . Occurrence
of an event type produces specific effects on related objects in the
environment. Events can be internal or external. An internal event
is a consequence of a previous event and io analogous to a derived
event in jlOJ. On the other hand, external event is that occurs or

82

is caused by something oullide the scope of the UoD . An event
hierarchy is specified when an event triggered by a user invocation
of a single event.

An action is a behavioral property of an object and can be invoked to
produce a otate transition for an object. This specifies how to aatisfy
a certain rule condition. An action is composed of database primi ·
tives operations applied on an object. They are the only means to
alter an object, which ensures the oemantic integrity of entities . An
action can also be viewed as a user's logical step applied on an entity.
An object can have more than one action. Actions can be
into:

• Insert a fact: thio adds a new fart to an existing object . It also
creates a nf'w object if it doet not exist and then relates it to
the inserted fact and al5ociates it with the opecified relation .

• Delete a fact: this action delde& the lipecified fact, and if the

associated object is not asoociated with another fact , it is alsu
deleted .

• Replace a fact : this action is not elementary, since it io corn
posed of both actions mentioned above . This type of actions is
considered as a tran&achon.

A transaction is composed of a group of actions and produce• a col
lection of logicaUy related events on one or more objects. Transac
tiom do not interact directly with database primitive operations and
have a larger acope t han actions do. A class of event& io designed
by modeling a transaction. From the conceptual view, a tranoac ·
tion is atomic in the sense that it io performed in an indivioible
operationji5J.

A function is a mechanism to describe all possible execution histories
that an entity can go through! !J. A function is basicaUy an exten
sion of Petri · net s. Each node in the function represents a &late, and
each tran1ilion represent!! a transaction that can changt the states
of processes being represent ed. Functions are intended to model
long·term events in the Uo D. The main objective is to have such
abstraction as a generalized process which requires communication
and synchronization mechanisms of the system designer . In order to
enable communication between different functions, message passing
mechanisms are uaed which are based on the primitive operators of
the communicating sequential processes (CSP) !7J. Functions arc
useful in enforcing dynam..ic integrity constraints on transaction call
sequences (a student can not receive grades until he / she has enrolled
in a course) and in defining the format and protocol of interactions
with usen . Functions provide a natural place for exception -handling ,
including execution arising due to time delays . Functions may be as
oociated with different attributes which control protection and pri·
ority.

A rule fire• only if the event occurs and the precondition evaluation
is true (t.ypicaUy through a query functions on the fact base or on envi
ronment parameters). When a rule fire•, its action will be tnggered, and
its postcondition is evaluated (to guarantee the database consistency) . As
a result, the action may cause the generation of new events that conse
quently cause other rules to fire . These cascading rule firings produce con·
sequent asser tions of additional information through the succession of rule
activation in forward chairting expansion. Both actions and transactions
are forms of procedural abstractions that causes appropriate invocation
context. Before such invocations, certain preconditions must be fulfilled
and actions on other entities may be nece .. ary.

4.2 Control abstractions definition

In order to provide dyn&II\ic specifications, the SBDM is extended to sup
port control abstractions. For high -level composite operations (actiom,
transactions) control abstractions are used to relate operations on object&.
The three forms of control abstractions are :

• Aggregation of operations that can be executed either in sequence or
in parallel on an object.

• Generalization of an operation on a generic is composed of a choice of
operations, one for each subcategory (ca•e io used for nonoverlapping
subcategories, and sequences or parallel if-then control structures are
used for overlapping subcategories).

\
• A•.ociation of an aggregate object is expressed as a repetition oper-

ation on all members of that aggregate (do-while or for-each control
structures are used in the framework ofeither sequence or parallel
control structures) - An operation on a Set is composed of an oper
ation that is applied in sequence or parallel to each member of the
Set.

The operational hierarchy of transaction / action supports the operation
modularity. Elementary action is regarded as the smallest unit of opera
tions which change one fact. Actions can occur simultaneously and do not
violate any integrity constraints of the conceptual schema. A transaction
is a minimal set of actions and can be executed either in sequence or in
parallel [15J.

4.3 The Time Notion

The time concept (time axis) is a fundamental entity for any method at
tempting to model dynamic information and to express the proper behav
ior of activities [llJ. In many applications the dynamics of the system can
be modeled by the notion of causality {sequence of events caused by the
invocation of a single event). In some information systems it is relatively
important to express the occurrence of some events relative to another 1

but if the time axis is being represented as an entity, it can be useful in
the conceptual schema design and is not considered at the internal level.
Also in defining time axis, the DBMS needs to supp ort the following:

Valid !tme: the clock time that the event occurred in the real world,
independent of the reco rding in database .

Tran,actlon time: concerns wlth the storage of information in the
DB . Transaction time of an event is t he t ransaction sequence number
(an integer) of the trans actions that already sto red .

Uur defined tame: it is provided by the use r or application program.

Another point of view of in troducing the time axis is t he question of time
being absolute or relative to some events.

5 AN ILLUSTRATIVE EXAMPLE

As an ill ustrative example, the University Schema (Figure 4) is considered
[12 J. Events are represented by a bar and arrows ramming from precon·
ditions and going to postconditions . An important mec hanism that can
be implement ed is the time stamping introduced in T Ht-.1. Each event of
CltEATE NEW as a basic construct in SB 01\1 i I:;, 12 [is augmented by
~ time > as an o pti o n part\meter . The same can he pe- rformed whilf'" rela·
tionships are es tablished amon~ nhjects by RELATE . C ATEG ORIZE or
IJECATEGORIZE ronstructs.

Two ba.ic actions a re presented Take.Course and Drop.Course . Each
action is sp~ci fied by a set o f parameters set of preconditions and a 5et

FUNCTlON
(scrip<)

PROCESS
(Tra.n.<KUOO)

ACTlON

SIMPLE
OPERATION

PHYSICAL
OPERATION

Fig 3 Operational hiaarchy

Funcuon
requmt-.ent

Concepcua.l

Logical

83

of postcondition& that specified t)le dynamic constraints. The actions
Take_Course and Drop_Course are described as follow:

Action Take_Course (s : STUDENT, c : COURSE) ;
precondition:

c ia offered? ;
limit not reached? ,
c is not taken before by s?

then:
insert c to the list tak ing course of s ;
insert s to the enrollment list of c;
increment the size of c;

postcondition:
s is inc enrollment list?;
c is in a course list?;

end...ac:tion Take_Course ;
Action Drop_Course (s : STUDENT , c : COURSE);
precondition:

s is taking course c? ;
then:

delete c from the list taking course of s;
delete s from the enrollment list of c ;

postcondition:
end...action Drop_Course;

The transaction Transfer..From_Course is composed of two actions, namely
Take.Course and Drop.Course.

[n representing the function EnrollJn_Course as a long teem trans
action it is important to specify all the states and transi tions inside the
fun ction body.

Function EruollJn_Course (d : DEPARTMENT);
Local Parameters:

States:

s: STUDENT;
c: COUR SE;
grade: {0 .. 100} ;

tn1ttal: initiaLstate ;

final : fi naL.state ;
other.: state _! , state..2, state_3;

Transit ions:
Obtam mformatwn :

from initiaLstate ;

to state . l i
Condstaon: none ;

Actton: get c , s from use r ;
EnroUment:

from state _l ;

to atate ...2 ;

name
binhe:Ycar homc.Addr

starus ~univ.Addr otdld PEASON --
(ft .p<l -------- - - --- . --

S'T1JDI!J'(l' -

·.. hu_a

· · ~-. enrou
(s.cl .

0

is_a
relationship
abstract object

0
event
token
dataflow

Fig 4 Activity representation in the university database schema

·:r'- ' ' . '

;/ ~ - " ' ' - - .

6

Condition: none j

Action: Take_Course(s,c);

Drop couru:

Grade:

from state _2 ;
to state _3 ;
Condtit on: none j

Action: Drop _Course(s ,c) ;

from state_2 ;
to finaL.state ;
Condttion:none;
Achon: Send "drop-grade" m~nag~ ;

Drop_ Grade:
from state_3 ;
to final...state ;
Condt! ton:none ;
A chon: Send grade ;

e nd EnroUJn _Couue;

CONCLUSION

In thi s paper , we integrated the Semantic Binary Database Model (SBDM)
as a fa ct- o rientt-d model with dynamic activity reprefientations in order to

have a system that meet& all of the requirements for a knowledge bue
system. Dynamic aspects in the SBDM are modeled by situation-action
rules , d:vnamic constraints and a control mechanism for efficient trigger ·
ing rules . Attached to each rule is a pair of dynamic constraints: one
precondition and one postcondition , which are specified as predicate logic
expressions . A rule fires whenever it is enabled and its preconditiona are
true . After firing a rule, an action will be executed and the postcondi ·
t ion wiU become true to establish integrity and consistency in the Fact
Base . An action may cause other rules to fire and can lead to a chain of
rvPnl s 'art ions in a specified hierarchy. Triggers and const raints gua.ra.ntee

int egrit;· and consistency of facts in the knowledge base . The enhanced
model is a romhination of production rules and stru ctured objects kn ow).

('(i~ e re presrntation scheme5.

References

(I J A. Borgida, J . M;·lopoulos , and H.K.T. Wang. Generalization 1 Spe ·
cialization as a Basis for Software Specification . In 1\l.L . Brodie,
editor . On Conceptual Modeltng, Spring-\ "erlag , 1984 .

12" ~!.L. Brodie. On the Development of Data Models . In M.L . Brodie ,
editor, On Conceptual Modeltng, Spring-Verlag , 1984 .

j3j M.L. Brodie and D. Ridjanovic. On the Design and Specification
of Database Transactions. In M.L. Brodie, editor, On Conceptual
Afodeltng, Spring-Verlag , N.Y., 1984 .

I4J CODASYL Data Description Language Committee. CODASYL Data
De"nphon Language Language Journal of Development. NBS Hand
book 113, June 1973.

j5j K.P . Eswaran . Specification, implementations, and Interactions of a
Trigger Subsystem in an Integrated Data Base System. IBM Re.earch
Report RJ1820, August 1976.

j6J A.L. Furtado and R.J. Neuhold. Formal Techingues for Data Ba•e
Design. Spriny-Verlay, Berlin, 1986.

j7j C.A .R Hoare. Communicating Sequential Processes. CACM,
21(8):666-677, August 1978.

j8j R. Hull and R. King. Semantic Database Modeling: Survey, Applica
tions and Research Issues. A CM Computing Sun~eys, 19(3), Septem
ber 1987.

!9] L. Kerchberg (Editor). Expert Database Systems. The Ben-
jamin/ Cummings Publishing Co. Inc., 1986.

j10j R. King and D. Mcleol. Semantic Data Models. In S.B. Yao, editor,
Princ1pal of Datab<ue Design, pages 115-146, Prentice Hall, 1986.

j11 j N. Prabhakaran and E. Falltenberg. Representation of Dynamic Fea
tures in a Conceptual Schema. In The Au•tralian Computer Journ<Jl,
pages 98- 104, August 1988.

I12J N. Rishe. Databat< De11gn Fvndamental1 : a St,-,ctured /ntroductoon
to Databa1e1 and a Structured Databaoe De11gn Methodology. Prell
tice Hall, Englewood Cliff•, NJ, 1988.

IJ3j N. Riahe . Databa•e De11gn: The Semanhc Modelmg Approach.
Prentice-Hall , Englewood Cliffs , NJ, to appear in 1990.

I14 J N. Rishe. Semantic Database Management: from Microcomputen
to Mauively Parallel Database Machines . Keynote Paper, Proce~d
ings of The Sixth Symposium on Microcomputer and Microproceuor
Applications , Budapest, October 1989 .

psJ N. Rishe. Tta.naaction -man&gement Syst~m in a Fourth CcnrrRtion
Language for Semantic Databases. In H.H. llamza, editor, Afrn>
and M•cro Computer.: From M•cro to Supercomputer. . (Proc. of lh <
ISM M /nt 'l Con f. on Mm• and M•rrocomputer5) , pages 92 95, Acta
Preu, 1988.

j16j A. Solvberg and C.H . Kung. On Conceptual and Beha.-ioral Mod .
eling of Reality. In T.B . Steel Jr., editor, Database Semantlo (VS-
1), page• 205- 221, Elonier Science Publishers B.V. (North HoUaud),
1986.

j1 7j S.Y.W. Su, \' . Krishnarnurthy, and H. Lam. An Object -Oriented
Semantic Association Model (OSAM •). In S. Kumara, editor , AI
m /ndu•tnal Engmeermg and Manufactunng : Theore ti cal /Hue. and
Appl•catlons, American Institute of Industrial Eugineen , 1988.

84

\

