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ABSTRACT
An important task in Location based Social Network applications is
to predict mobility – specifically, user’s next point-of-interest (POI)
– challenging due to the implicit feedback of footprints, sparsity of
generated check-ins, and the joint impact of historical periodicity
and recent check-ins. Motivated by recent success of deep varia-
tional inference, we propose VANext (Variational Attention based
Next) POI prediction: a latent variable model for inferring user’s
next footprint, with historical mobility attention. The variational
encoding captures latent features of recent mobility, followed by
searching the similar historical trajectories for periodical patterns.
A trajectory convolutional network is then used to learn histori-
cal mobility, significantly improving the efficiency over often used
recurrent networks. A novel variational attention mechanism is
proposed to exploit the periodicity of historical mobility patterns,
combined with recent check-in preference to predict next POIs. We
also implement a semi-supervised variant – VANext-S, which relies
on variational encoding for pre-training all current trajectories in
an unsupervised manner, and uses the latent variables to initialize
the current trajectory learning. Experiments conducted on real-
world datasets demonstrate that VANext and VANext-S outperform
the state-of-the-art human mobility prediction models.
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1 INTRODUCTION
Many users of Location-Based Social Networks (LBSNs) such as
Foursquare and Twitter leave and/or share their footprints with
friends. This has enabled new research in learning human mobility
and using it in various settings – e.g., social relation inference [1],
friendship prediction [24], trajectory-user linking [11, 34], etc. A
critical task in understanding human mobility patterns is the next
Point-of-Interest (POI) prediction – extensively studied in recent
years [6, 7, 17, 27] and becomes of interest in many application do-
mains – e.g., location sharing or recommendation for users of enter-
prises in social media [16]; route planing for taxi driver to maximize
potential passenger pickups [27]; forecasting criminals/terrorists
next location for public safety [11]; etc.

Many methods exploiting human recent mobility and their his-
torical visits have been proposed for next POI prediction, including
Matrix Factorization (MF) [16], Markov Chain (MC) [9], Factorizing
Personalized Markov Chains (FPMC) [8] and Tensor Factorization
(TF) [32], all incorporating human visit preferences and investigat-
ing sequential patterns. Deep learning techniques have also been
applied in learning users’ mobility – ST-RNN [17], POI2Vec [7],
and DeepMove [6] – employing recurrent neural networks (RNN
– e.g., LSTM [21] and GRU [4]) to capture the sequential patterns
of users’ mobility preferences. Given historical trajectories, these
works train a RNN module to predict the next POI, together with
corresponding contextual (e.g., spatial and temporal) features.

However, there are certain challenges for the existing works:
(1) Sparsity of recent mobility – within a given period, a user may
generate only a few check-ins (different from GPS data that is pas-
sively/continuously sampled), making the prediction difficult. (2)
Density of historical mobility – LBSNs often collect user’s check-ins
for months and even years. In comparison with recent mobility, it
is more difficult to represent and exploit the whole historical tra-
jectory effectively and efficiently in a training model. (3) Complex
data – user’s historical moving patterns affect the subsequent foot-
prints [3, 17], whereas individual check-in behaviors are complex
and personalized.

To address the above challenges, we propose a novel model –
Variational Attention based Next (VANext) POI prediction, lever-
aging the recent advances in variational Bayesian techniques [14]
to encode recent mobility into a latent variable and use it to query
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one’s historical mobility. We also introduce a historical trajectory-
based learning module implemented by a convolutional neural
network (CNN) kernel – capturing individual’s long-term moving
patterns in a more efficient way, compared to widely used RNNs.
Specifically, a variational attention on historical trajectory is com-
binedwith the latent representation learned from a recent trajectory
to capture the similar check-in sequence (not necessarily contin-
uous) which reflects user long-term visit intention. Finally, we
concatenate representations of recent mobility and historical trajec-
tory features to predict user’s next POI. We also propose VANext-S
– a semi-supervised variant, to better capture the latent variables
by pre-training all current trajectories in an unsupervised manner
within the framework of Variational Auto-Encoder (VAE) [14]. It
samples from latent variables to generate and reconstruct each
current trajectory, and utilizes the encoder to initialize VANext. In
summary, our main contributions are:
•We frame the mobility prediction task using a generative prob-

abilistic model together with neural networks, and propose VANext
that can simultaneously learn implicit relationships between users
and POIs and capture sequential patterns of user check-in behavior
for next POI prediction.
•We introduce a novel variational attention mechanism to learn

the attention on the historical trajectories, from which the latent
representation of a recent trajectory is leveraged to match user’s
most similar moving patterns in the past.
•We conduct experiments on real-world datasets consisting of

users’ check-in behavior in four cities, demonstrating that VANext
outperforms existing models in terms of both prediction accuracy
and training efficiency.

To our knowledge, VANext is the first attempt to incorporate
CNN to capture long term and structural dependency among user
check-ins, achieving comparable learning ability with the state-
of-the-art RNN based methods, while significantly improving the
learning efficiency. For the rest of this paper, we first review the re-
lated work, then formalize the problem and present ourmain results,
followed by experimental evaluations and concluding remarks.

2 RELATEDWORK
POI recommendation and prediction are two different but related
and extensively studied topics in LBSN: the former usually learns
users’ preferences over POIs while the latter is more interested
in mobility pattern recognition. Collaborative filtering (CF)-based
models, such as Matrix Factorization (MF) [2, 15, 16] and ten-
sor factorization (TF) [32], are widely used in POI recommenda-
tion for learning users latent preferences. Geographical informa-
tion [15, 16, 31], as well as time-aware influence and content-aware
influence [10, 26, 30] are most effective features incorporated in en-
hancing recommendation performance [18]. However, these model-
based methods are not suitable to predict user’s next behavior/visits,
due to the lack of taking sequential and periodical patterns into
account. Markov Chains (MC)-based methods are widely used for
modeling sequential influence. For example, FPMC [20] and FPMC-
LR [3] aim to predict the user’s next visit based on factorization
of the probability transition matrix. In addition, embedding has
also been applied for addressing next POI prediction [7, 8] – e.g.,

a Personalized Ranking Metric Embedding (PRME) [8], attempt-
ing to capture user preference with the latent space. Inspired by
the word2vec [19] technique in NLP, POI2Vec [7] was proposed for
next POI prediction with geographical influence included. However,
both MC and embedding based methods are not capable of learning
long term dependency of POIs and the periodicity of individual’s
historical moving.

Recently, deep learning techniques – especially recurrent neural
networks (RNNs) such as LSTM [21] and GRU [4] – have been
widely used to capture the long term sequential influence and mo-
bility patterns. Spatial Temporal Recurrent Neural Networks (ST-
RNN) [17] extend the RNN model by incorporating temporal and
spatial context in each time unit for predicting next POIs. A unified
RNN-based framework jointly learning the embeddings of multiple
factors (e.g., user identity, location and time, etc.), was presented
in [29]. However, these methods do not explicitly model user’s
historical visit patterns and personal preferences, but greatly fo-
cusing on current locations and short term dependencies among
POIs. More recently, [6] propose an attentional recurrent network
for mobility prediction from lengthy and sparse trajectories, where
two RNN models – learning the current and the historical trajec-
tory, respectively – together exploit user’s mobility and location
preference with attention on multi-level periodicity of historical
trajectories. However, it is complicated to train due to the relative
high density of historical trajectories.

CNNs have been widely applied in image classification and video
tagging, but are less common for sequence embedding. A CNN-
based architecture successfully improving the machine translation
performance was recently proposed in [12]. Compared to RNN-
based model, CNNs can easily capture hierarchical representations
of the underlying context, and, most importantly, are faster to be
trained due to parallelization with GPU. Variational Auto-Encoder
(VAE) [14] has been applied in many NLP tasks, such as text classifi-
cation [25] and dialogue generation [22], and has shown promising
performance in exploiting underlying patterns of trajectories [34].
In addition, these models neither consider the contextual informa-
tion associated with POIs, nor capture periodical mobility patterns,
thereby cannot be directly employed for POI prediction.

Our proposed model VANext differs from these VAE-based meth-
ods in terms of its periodical pattern learning and the variational
attention mechanism.

3 PRELIMINARIES
We now proceed with introducing the basic terminology and for-
malizing the problem, followed by the details of the proposed model
– including causal POI embedding, variational current trajectory
learning, historical trajectory attention module and the classifier.

A POI is defined as a location of relevance obtained, for example,
as a GPS point; a centroid of a region; an address of an object, etc. –
which can be uniquely identified in a suitable coordinate system. It
is represented as a triplet l = <id,lo,la>, where id , lo and la denote
the POI id, longitude and latitude. Tu denotes a trajectory gener-
ated by a user u, represented as a sequence Tu = (lut1 , l

u
t2 , · · · , l

u
tn ),

where luti is i-th POI visited by user u at time ti . When there is
no ambiguity, we will omit the superscript u . A trajectory T can
be segmented as T = (T1,T2, · · · ,Tm ), meaning that there arem
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Figure 1: Main components of VANext

sub-trajectories within the time interval [t1, tn], ordered along the
temporal dimension. The trajectories are separated from each other
by application dependent thresholds δ jT (1 ≤ j ≤ m), which could
indicate, for example: – the time span of each Tj is no more than
δ
j
T; – the last time-stamp of Tj is at least δ jT time units smaller than
the time-stamp of the first location in Tj+1; etc.

Let Th = (T1, · · · ,Tm ) denote the entire historical trajec-
tory of the user u (note that its time span may vary, from
weeks, to months or even years for different users) and let Tc =
Tm+1 = (ltn+1 , ltn+2 , · · · , ltn+k−1 ) denote the current/most recent
sub-trajectory.
Problem formulation:We consider next POI prediction as amulti-
classification problem, which is formulated as: given a user u with
the historical trajectory Th , and the recently visited sequence of
POIs Tc = (ltn+1 , ltn+2 , · · · , ltn+k−1 ), train a modelM to predict the
next POI γ = ltn+k for user u – i.e.,M (Th ,Tc ) 7→ γ .
VAE [14] is a generative model that learns the probability p (X |z)
of the data X (e.g., a trajectory) given a latent variable z, and a
recognition model q(z|X ) simultaneously. The lower bound of the
true marginal log likelihood is:

logpθ (X ) ≥ Ez∼qϕ (z |X )[logpθ (X |z)] − KL (qϕ (z|X ) | |p (z))

where both qϕ (·) and pθ (·) are learned with deep neural networks,
parameterized by ϕ and θ , respectively. KL is the KL-divergence.

4 METHODOLOGY
4.1 Basic Framework
Figure 1 shows the four main modules of our proposed model
VANext:
(I) Causal POI embedding: To better present the semantic relation-
ships among different POIs, we first embed POIs, from both current
trajectory and historical trajectory, into a low dimensional repre-
sentation using a causal embedding method.
(II) Current Trajectory Learning Module: We apply a recurrent neural
network (RNN) – in this paper, we choose the GRU cell – to encode
the current trajectory Tc , and use the last hidden state to represent
it , and further learns the distribution of a latent variable z using
variational encoding as qϕ (z|Tc ).
(III) Historic Trajectory Learning Module: VANext utilizes a shared
weight matrix and a convolutional layer to encode the historical

trajectory Th . The attention mechanism with latent variable z is
considered as a query to exploit users’ (historical) mobility pat-
terns. It seeks the most similar mobility to the current trajectory
Tc by searching the historical trajectory Th , and aggregates its
hidden state from Th to form the representation. The formalized
representation of aggregated result is T̃h . In other words, attention
module will force the historical trajectory representation T̃h to
automatically match Tc .
(IV) Classifier: This is the final component which unifies the last
hidden state from current trajectory and the aggregated attention
from historical trajectory into a feature representation, and predicts
the next POI γ .

4.2 Trajectory Generative Model
Before presenting the details of each component, we first adapt
our VANext into a trajectory generative model. The primary task
of VANext is to predict γ from Tc . Hence, the likelihood can be
specified as:

logpθ (γ |Tc ) = log
∫
z
pθ (γ |Tc , z)p (z)dz

= log
∫
z
qϕ (z|Tc ,γ )

pθ (γ |Tc , z)
qϕ (z|Tc ,γ )

p (z)dz,

With Jensen’s inequality, we have

logpθ (γ |Tc ) ≥ Eqϕ (z)[logpθ (γ |Tc , z) + log
p (z)

qϕ (z |γ , Tc )
]

= Eqϕ (z)pθ (γ |Tc , z) − K L (qϕ (z |γ , Tc ) | |p (z)). (1)

Since γ is a function of input Tc , we can absorb γ into Tc follow-
ing [33] and therefore obtain the following variant of Eq.(1):

logpθ (γ |Tc ) ≥ Eqϕ (z)pθ (γ |Tc , z) − K L (qϕ (z |Tc ) | |p (z)). (2)

In VaNext, we propose a variational attention mechanism to obtain
an attentional representation T̃h . In detail, we use the latent variable
z as a query vector to find the most similar mobility T̃h from Th .
Since z determines T̃h , hence we obtain our training objective that
is to maximize the lower bound of likelihood L(θ ,ϕ):

L(θ, ϕ ) = Eqϕ (z)[logpθ (γ |Tc , T̃h )] − λK L[qϕ (z |Tc ) | |p (z)], (3)

where λ is harmonious factor.

4.3 Causal POI Embeddings
Inspired by word2vec [19], previous works [6, 11, 34] embed POIs
with the context information using CBOW or Skip-Gram models.
However, for the next POI prediction problem, we are more inter-
ested in embedding the proceeding part of a trajectory instead of
the surrounding context – the rationale behind is that the current
POI is determined by its previous footprint rather than the ones
behind it, which is very similar to the idea of high-order Markov
Process. That is, there can be no leakage from the future into the
past when embedding the POIs. This can be accomplished with a
causal embedding where the probability of check-in lτ is maximized
only with the given elements from earlier footprints lτ−ω : lτ−1,
where ω is the fixed size of the sliding window.

Specifically, the check-in representations v ∈ R |L |×d – |L| is
the number of check-ins in the dataset and d is the dimensionality
– are obtained by predicting each current location lτ in both Th
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and Tc given the proceeding context locations lτ−ω : lτ−1. The
probability p (lτ |C (lτ )) is defined by the softmax function as:

p (lτ |C (lτ )) =
∏

l ′∈C (lτ )

exp(v(lτ ) · v(l ′))∑
l ′′∈L exp(v(l ′′) · v(l ′))

where we adopt the Negative Sampling technique to avoid the enu-
meration of all check-ins l ′′ ∈ L for the efficiency purpose.

4.4 Current Trajectory Learning Module
This module processes the current trajectory Tc with a recurrent
network and meanwhile learns a distribution of a latent variable z.

4.4.1 – Current trajectory with GRU:. To capture users’ current
sequential check-in pattern, we use a vanilla GRU to exploit the mo-
bility of Tc . Note that user’s recent trajectories are usually shorter
sequence compared to the extremely long historical trajectory, i.e.,
|Tc | ≪ |Th |. Therefore, we use a recurrent network instead of con-
volutional operation that would be employed in the historical mod-
ule introduced in next section. Moreover, to make a well-targeted
comparison with previous work [6], we also select GRU kernel as
the neural network unit:

hτ = (1 − дτ )hτ−1 + дτ h̃τ (4)

where дτ is the update gate in time τ which decides how much the
unit updates its activation by

дτ = σ (Wдv(lτ ) +Uдhτ−1), (5)

where σ denotes the sigmoid activation function. The candidate
state h̃t is computed similarly to traditional RNN unit

h̃τ = tanh(Wh̃v(lτ ) +Uh̃ (sτ ⊙ hτ−1)) (6)

where ⊙ is element-pair product, sτ is a set of reset gates and is
computed similarly to update the gate

sτ = σ (Wsv(lτ ) +Ushτ−1) (7)

whereW∗ andU∗ are both parameterized matrices.

4.4.2 – Latent variable learning: Variational auto-encoding pro-
vides an efficient way to approximate the posterior distribution
of latent variables. In our trajectory generative model, we sample
the empirical posterior qϕ (z|Tc ) of latent variables z from the last
hidden state of current trajectories. The objective is to minimize the
KL-divergence between posterior and prior as shown in Eq.(3). Typi-
cally, we assume the prior distribution of latent variable z following
a standard Gaussian: p (z) ∼ N (0, I ).

4.5 Historical Trajectory Learning Module
This module involves the convolutions on historical trajectories
and the variational attention layer.

4.5.1 – Historical trajectory convolution: Before applying the con-
volution operation over the historical trajectories, we first use a
shared weight layer (e.g, a MLP) to incorporate each POI represen-
tation vector into a hidden state:

cti = ReLU(Wh (v(lti )) + bh ), i ∈ [1, 2, · · · ,n] (8)

where ReLU is the activation function. Then, we obtain all hidden
states of embedded POIs as: ct = (ct1 , ct2 , · · · , ctn ).
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Figure 2: Attention mechanism in Historical Trajectory
Module.

Subsequently, a 1×D convolution with non-linearity neural net-
work is involved to exploit the hidden state patterns. The convo-
lution kernel is parameterized with matrixWc ∈ R

2d×nd and bias
bc ∈ R

2d , where n is the number of the hidden states. Therefore,
each input hidden state cti ∈ Rd will generate an output Oi ∈ R

2d

by a CNN. By splitting each element Oi into Oi1 and Oi2 (both
∈ Rd ), the final output oti will be obtained by activating Oi1 and
Oi2 to a non-linearity with gated linear units, as follows:

oti = Oi1 ⊙ σ (Oi2 ) (9)

Thus, the convolutional state ot = (ot1 ,ot2 , · · · ,otn ) is obtained
as the input of the next attention layer.

4.5.2 – Variational attention. As the Figure 2 shows, we present a
variational attention method to learn the weight of convolutional
states in historical trajectories. We first use a MLP to obtain the
query vector q from z:

q = ReLU(zWz + bz ) (10)

which is then used as a query to calculate the similarity score
between q and ot as

uti = tanh(q(Wuoti + bu )) (11)

We next get a normalized importance weight αi with a softmax
function.

αi =
exp(u⊤tiuw )∑n
i=1 exp(u

⊤
tiuw )

(12)

where uw is a vector variable learned during the training process.
Now we obtain the representation of historical trajectory as a

weighted sum of the POIs.

ã =
∑

αioti (13)

Note that above attention method is different from traditional
attention methods in that the learned mobility pattern represen-
tation not only depends on the check-ins of historical trajectory
but also considers the variational query variable z from current
trajectory. This variational attention technique allows us to sam-
ple from a continuous distribution qϕ (z|Tc ) rather than from dis-
crete/sparse current trajectory Tc , and thus is able to better match
the historical trajectory. As we will show in experiments, this novel
variational attention method introduces significant performance
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improvement compared to the traditional vanilla attention used in
previous work [6].
Next POI prediction To predict the next POI of Tc , we first con-
catenate the last hidden state of current trajectory and the atten-
tional historical trajectory to obtain Φ as follows:

Φ =We ∗

[
hn+k−1

ã

]
+ be (14)

Then, we feed Φ into a softmax function to calculate the proba-
bility of each POI p (l ) in the dataset. During the training of VANext,
we are interested in minimizing the empirical risk of predicting the
next POI γ .
Semi-supervised VANext: VANext-S We propose a variant of
VANext, called VANext-S, which utilizes VAE to pretrain all current
trajectories in an unsupervised manner, and uses the encoder and
latent variables to initiate the current trajectory learning.

5 EXPERIMENTS
In this section, we conduct experiments on two real-world datasets
to compare the performance of the proposed models against several
baselines.
Datasets. To ease reproducing the results, we conduct all experi-
ments on the publicly available datasets including Foursquare and
Gowalla [7, 28, 30]. We select two cities (New York, Singapore) from
Foursquare, and two cities (Houston, California) from Gowalla. For
each dataset, we remove the POIs which have been visited by fewer
than 5 users. For each user, we concatenate all check-in locations
to form a single trajectory – subsequently, we divide it into sub-
trajectories with the time interval of 6 hours each, as it was done in
previous related works [7, 11, 17]. Further, we filter out the users
who have fewer than 5 sub-trajectories. For all datasets, we choose
each user’s first 80% sub-trajectories as the training set, and the
remaining 20% as testing data. Table 1 summarizes the statistics of
the datasets after pre-processing.

Table 1: Descriptive statistics of Datasets.
City Users POIs Check-ins Sub-trajectories

New York 1,083 9,815 120,007 36,182
Singapore 2,321 5,596 194,108 34,713
Houston 4,627 15,234 362,783 18,501

California 3,987 21,354 239,493 66,612

Table 2: Experimental settings of VANext and VANext-S.
Parameter Values Model Setting Chooses

window size 5 embedding size 256
HS/NS NS hidden size 300
learning rate 1e-3 attention size 300
dropout rate 0.5 |z | size 128
λ 0.01 batch size 16

Settings. Table 2 characterizes the specific settings and hyper-
parameters when implementing our VANext and VANext-S models.
In particular, we use negative sampling (NS) instead of Hierarchical
Softmax (HS) for our causal POI embedding. We implement two
models, as well as all deep neural network-based models, on the
Tensorflow platform and speed up using a GTX1080ti GPU.
Metrics. To make fair comparisons, we use the standard evaluation
performance metrics, such as Top@k, Area under the ROC curve
(AUC) and Mean Average Precision (MAP) used in [6, 17].

Baselines. We compare our models with several classical meth-
ods and the most recently proposed methods regarding next POI
prediction, including:
•Markov chain [9] – Markov chain is one of the classical methods
which predict the POIs using the estimated transition probability.
• PRME [8] – Personalized ranking metric embedding is a pair-
wise metric embedding method embedding every POI into a latent
Euclidean space and computing the location transition in a Markov
chain model.
• ST-RNN [17] – It is a deep learning model that incorporates
spatial and temporal context and predicts user’s next visit within
the framework of RNN.
• Bi-LSTM [26] – It is a method extending ST-RNN with a more
sophisticated Bidirectional-LSTM model that has been used in [26]
for learning individual trajectory patterns and predicting POIs.
• POI2vec[7] – It is an embedding method which incorporates the
geographical influence for next POI prediction based on word2vec
technique.
•DeepMove[6] – The first historical attention method for learning
human mobility, consists of a sequential encoding module with
RNN for learning motion patterns from both recent and historical
trajectories.

Experimental Results
Overall performance comparison. Table 3 shows the Top@k
performance comparison on four citywide datasets. As we can
see, overall, the proposed VANext and VANext-S yield the best
performance among all methods in terms of prediction precision.
Specifically, VANext and VANext-S outperform the second-best
method DeepMove by 31.52%, 36.81% and 32.68%, in terms of Top@1,
Top@5 and Top@10 respectively on Singapore dataset.

As for the performance of baselines, deep neural network-based
methods (i.e., ST-RNN, Bi-LSTM, POI2vec and DeepMove) exhibit
higher prediction accuracy than traditional feature-based embed-
ding method and Markov-based methods. Furthermore, DeepMove
generally gives better performance than other baselines due to its
ability of exploiting historical trajectories while others can only
learn the sequential patterns in (short) current trajectories during
training. Although all of these methods have employed recurrent
networks in order to capture long term POI dependency, even LSTM
and GRU cannot work well on very long historical trajectories due
to the gradient vanishing problem inherent in recurrent networks.
This result is in accordance with the limitations of applying RNN in
natural language processing [5, 13]. Therefore, the main advantage
of DeepMove lies in its attention on historical trajectories, which
also confirms the superiority of attention mechanism in processing
sequential data, e.g., attention mechanism along achieves compara-
ble results on machine translation with CNN or RNN based seq2seq
methods [23].

On the other hand, our methods outperform DeepMove mainly
because the introduced trajectory generative model which not only
captures short-term human mobility patterns more effectively but
also yields better historical trajectory attention with the novel
variational attention method.

Additionally, VANext-S outperforms VANext because of its pre-
training on the current trajectories in an unsupervised manner.
Although autoencoder based pretraining is a well-known training
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Table 3: Comparison of overall prediction accuracy on four datasets. The best method is shown in bold, and the second best is
shown as underlined

Method New York Singapore Houston California

Top@1 Top@5 Top@10 Top@1 Top@5 Top@10 Top@1 Top@5 Top@10 Top@1 Top@5 Top@10

Markov 18.29% 28.01% 29.59% 6.57% 13.36% 15.81% 6.32% 11.57% 13.12% 5.35% 10.10% 11.71%
PRME 12.83% 24.38% 19.66% 2.36% 6.27% 8.29% 2.36% 6.27% 8.29% 1.57% 4.10% 5.91%
ST-RNN 18.64% 28.01% 30.23% 6.64% 15.01% 18.34% 6.32% 11.38% 13.37% 5.23% 10.30% 11.94%
Bi-LSTM 18.42% 28.85% 31.27% 6.19% 13.67% 17.58% 5.65% 11.14% 13.67% 5.01% 10.15% 11.68%
POI2Vec 18.79% 28.85% 30.81% 6.89% 14.87% 18.27% 6.32% 11.21% 13.52% 4.64% 8.77% 10.23%
DeepMove 19.29% 35.37% 38.35% 8.82% 17.93% 22.80% 6.65% 13.43% 15.87% 6.62% 13.79% 17.15%
VANext 21.09% 38.22% 44.88% 11.60% 24.53% 30.25% 7.29% 15.78% 20.21% 7.34% 14.71% 17.78%
VANext-S 23.21% 41.03% 47.45% 12.13% 24.78% 30.69% 7.69% 16.98% 21.36% 8.35% 17.16% 20.31%

trick in NLP, we are the first to adapt it in a variational autoencoder
framework for learning human mobility. Since this is not core part
of this paper, we focus on the VANext in following experiments for
further explanations.

(a) New York. (b) Singapore.

Figure 3: Module performance comparison.

Individual Module Performance. To investigate the effective-
ness of various components in VANext, we conduct experiments
by manipulating modules in different ways. Specifically, we replace
the attention mechanism of DeepMove with our proposed varia-
tional attention module, yielding a new method VaDeepMove. Thus,
VaDeepMove is similar to VANext only except the historical trajec-
tory learning – VANext uses CNN while GRU units are employed
in VaDeepMove. We compare our VANext with VaDeepMove and
DeepMove upon New York and Singapore datasets, as illustrated
in Figure 3(a) and 3(b). The result clearly indicates the superior-
ity of CNN and variational attention used in VANext. Further, it
proves that CNN exhibits better structural learning than RNN in
the case of extremely long history trajectories which encodes more
structural and periodical patterns of human mobility. The results
of VaDeepMove and DeepMove reflect the advantage of variational
attention which is also their difference.

Efficiency. We now investigate the efficiency of the proposed
methods. Table 4 shows the time consumed when training VANext
(CNN units) and VaDeepMove (RNN units). Note that both VANext
and (Va)DeepMove use RNN for training current trajectory Tc .
However, it is negligible due to few POIs in most current trajectory.
Obviously, CNN based historical trajectory learning significantly
reduces the training time. Combined with above results on learning
structural/periodical patterns of historical trajectories, we conclude
that, arguably, CNN is the most suitable method for learning human
mobility, at least for long term motion patterns.

Table 4: Comparison of time consumption during themodel
training. |Tc |: average length of the current trajectories; |Th |:
average length of the historical trajectories.

City in Dataset |Tc | |Th | Cell Time Cost(min)

New York 3.23 207.70 RNN ≈487
CNN ≈277

Singapore 2.92 119.80 RNN ≈267
CNN ≈117

Houston 9.53 1027.94 RNN ≈1810
CNN ≈463

California 3.64 129.66 RNN ≈790
CNN ≈247
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(a) Sensitivity of |z | size.
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Figure 4: Sensitivity of parameters in Singapore data.

Parameter sensitivity. Finally, Figure 4(a) evaluates impact of
latent variable size |z| and causal POI embedding size d on the
performance of VANext. Simply speaking, VANext demonstrates
robust performance to the two parameters and achieves stable
results when both are small. We observe similar robust results for
other parameters and omit to report due to the space limitation.

6 CONCLUSIONS AND FUTUREWORK
We propose a novel model VANext and its variant VANext-S to learn
human mobility patterns for next POI prediction. It introduces an
attention mechanism affected by the latent variable learned from
current mobility to capture the moving pattern and hierarchical
semantics of historical trajectories. We also apply convolutional
operations on trajectory to greatly improve efficiency over the
existing RNN-based methods. Part of our future work will focus
on incorporating other contextual POIs attributes (e.g., ”museum”;
”restaurant”) to further improve VANext effectiveness. Another
possible extension is to include transportation modes (e.g., ”walk”;
”bus”; ”taxi”) of users trajectories for performance boosting.

2755



ACKNOWLEDGMENT
This workwas supported byNational Natural Science Foundation of
China (Grant No.61602097 and No.61472064), NSF grants III 1213038
and CNS 1646107, and ONR grant N00014-14-10215.

REFERENCES
[1] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang. 2017. walk2friends:

Inferring Social Links from Mobility Profiles. In SIGSAC.
[2] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. 2012. Fused Matrix

Factorization with Geographical and Social Influence in Location-Based Social
Networks.. In AAAI.

[3] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. 2013. Where You Like
to Go Next: Successive Point-of-Interest Recommendation.. In IJCAI.

[4] Junyoung Chung, Caglar Gulcehre, Kyung Hyun Cho, and Yoshua Bengio. 2014.
Empirical Evaluation of Gated Recurrent Neural Networks on SequenceModeling.
Eprint Arxiv (2014).

[5] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville,
and Yoshua Bengio. 2015. A Recurrent Latent Variable Model for Sequential Data.
In NIPS.

[6] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng
Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. In WWW.

[7] Shanshan Feng, Gao Cong, Bo An, and Yeow Meng Chee. 2017. POI2Vec: Geo-
graphical Latent Representation for Predicting Future Visitors.. In AAAI.

[8] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. 2015. Personalized Ranking Metric Embedding for Next New POI Recom-
mendation.. In IJCAI.

[9] Sébastien Gambs, Marc-Olivier Killijian, and Miguel Núñez del Prado Cortez.
2012. Next Place Prediction Using Mobility Markov Chains. In MPM.

[10] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. 2015. Content-aware Point of
Interest Recommendation on Location-based Social Networks. In AAAI.

[11] Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli
Zhang. 2017. Identifying human mobility via trajectory embeddings. In IJCAI.

[12] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In ICML.

[13] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing.
2017. Toward Controlled Generation of Text. In ICML.

[14] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[15] Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-
naswamy. 2015. Rank-GeoFM: A Ranking Based Geographical Factorization
Method for Point of Interest Recommendation. In SIGIR.

[16] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong
Rui. 2014. GeoMF: Joint Geographical Modeling and Matrix Factorization for

Point-of-interest Recommendation. In KDD.
[17] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the Next

Location : A Recurrent Model with Spatial and Temporal Contexts. In AAAI.
[18] Yiding Liu, Tuan-Anh Pham, Gao Cong, and Quan Yuan. 2017. An Experimen-

tal Evaluation of Point-of-interest Recommendation in Location-based Social
Networks. PVLDB (2017).

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[20] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing Personalized Markov Chains for Next-basket Recommendation. In WWW.

[21] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[22] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle
Pineau, Aaron C Courville, and Yoshua Bengio. 2017. A Hierarchical Latent
Variable Encoder-Decoder Model for Generating Dialogues. In AAAI.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS.

[24] HongjianWang, Zhenhui Li, andWang Chien Lee. 2015. PGT:MeasuringMobility
Relationship Using Personal, Global and Temporal Factors. In ICDM.

[25] Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. 2017. Variational Autoencoder
for Semi-Supervised Text Classification. In AAAI.

[26] Carl Yang, Lanxiao Bai, Chao Zhang, Quan Yuan, and Jiawei Han. 2017. Bridging
Collaborative Filtering and Semi-Supervised Learning: A Neural Approach for
POI Recommendation. In KDD.

[27] Cheng Yang, Maosong Sun, Wayne Xin Zhao, Zhiyuan Liu, and Edward Y. Chan.
2017. A Neural Network Approach to Jointly Modeling Social Networks and
Mobile Trajectories. ACM Trans. Inf. Syst. 35, 4 (2017), 36:1–36:28.

[28] Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. 2015. Modeling
user activity preference by leveraging user spatial temporal characteristics in
LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 1 (2015),
129–142.

[29] Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. 2017. SERM: A Recurrent
Model for Next Location Prediction in Semantic Trajectories. In CIKM.

[30] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann.
2013. Time-aware point-of-interest recommendation. In SIGIR.

[31] Shenglin Zhao, Tong Zhao, Irwin King, andMichael R Lyu. 2017. Geo-Teaser: Geo-
Temporal Sequential Embedding Rank for Point-of-interest Recommendation. In
WWW.

[32] VincentWenchen Zheng, Bin Cao, Yu Zheng, Xing Xie, and Qiang Yang. 2010. Col-
laborative Filtering Meets Mobile Recommendation: A User-centered Approach.
In AAAI.

[33] Chunting Zhou and Graham Neubig. 2017. Morphological Inflection Generation
with Multi-space Variational Encoder-Decoders. In CoNLL.

[34] Fan Zhou, Qiang Gao, Kunpeng Zhang, Goce Trajcevski, Zhong Ting, and Fengli
Zhang. 2018. Trajectory-User Linking via Variational AutoEncoder. In IJCAI.

2756


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Basic Framework
	4.2 Trajectory Generative Model
	4.3 Causal POI Embeddings
	4.4 Current Trajectory Learning Module
	4.5 Historical Trajectory Learning Module

	5 Experiments
	6 Conclusions and Future Work
	References

