
Trajectory-based Social Circle Inference
Qiang Gao

University of Electronic Science and
Technology of China, Chengdu, China

qianggao@std.uestc.edu.cn

Goce Trajcevski
Iowa State University, Ames

gocet25@iastate.edu

Fan Zhou∗
University of Electronic Science and
Technology of China, Chengdu, China

fan.zhou@uestc.edu.cn

Kunpeng Zhang
University of Maryland, College park

kpzhang@umd.edu

Ting Zhong
University of Electronic Science and
Technology of China, Chengdu, China

zhongting@uestc.edu.cn

Fengli Zhang
University of Electronic Science and
Technology of China, Chengdu, China

fzhang@uestc.edu.cn

ABSTRACT
Learning explicit and implicit patterns in human trajectories plays
an important role in many Location-Based Social Networks (LB-
SNs) applications, such as trajectory classification (e.g., walking,
driving, etc.), trajectory-user linking, friend recommendation, etc.
A particular problem that has attracted much attention recently –
and is the focus of our work – is the Trajectory-based Social Circle
Inference (TSCI), aiming at inferring user social circles (mainly
social friendship) based on motion trajectories and without any
explicit social networked information. Existing approaches address-
ing TSCI lack satisfactory results due to the challenges related
to data sparsity, accessibility and model efficiency. Motivated by
the recent success of machine learning in trajectory mining, in
this paper we formulate TSCI as a novel multi-label classification
problem and develop a Recurrent Neural Network (RNN)-based
framework called DeepTSCI to use human mobility patterns for
inferring corresponding social circles. We propose three methods
to learn the latent representations of trajectories, based on: (1) bi-
directional Long Short-TermMemory (LSTM); (2) Autoencoder; and
(3) Variational autoencoder. Experiments conducted on real-world
datasets demonstrate that our proposed methods perform well and
achieve significant improvement in terms of macro-R, macro-F1
and accuracy when compared to baselines.

CCS CONCEPTS
• Information systems→ Location based services;

KEYWORDS
trajectory mining, variational auto-encoder, social circle inference

ACM Reference Format:
Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong,
and Fengli Zhang. 2018. Trajectory-based Social Circle Inference. In 26th

∗Corresponding author: Fan Zhou (fan.zhou@uestc.edu.cn)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSPATIAL’18, 2018, Washington,USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5889-7/18/11. . . $15.00
https://doi.org/10.1145/3274895.3274908

Bob

Tom
Alice

Jim

John

l2

l1

l4

BBob

m

User friendship network G (not given) among a set of users U

User generated trajectories

l7

l3

l5

l6

Figure 1: TSCI exemplified: The objective is to (1) reconstruct
friendship among existing users and (2) identify friends for
new users purely based on their trajectories.

ACM SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems (SIGSPATIAL ’18), November 6–9, 2018, Seattle, WA, USA.
ACM, New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/
3274895.3274908

1 INTRODUCTION
Location based social networks (LBSN) such as Wechat, Foursquare
and Twitter, enable a generation of large amounts of social interac-
tion data, part of which is based on users leaving “footprints” by
checking in various locations – e.g., the places that they visited.
These check-in based activities often form a sequence of spatial loca-
tions over time, thereby capturing users’ moving trajectories which,
in turn, can be analyzed and used for various LBSN applications
such as: (1) trajectory classification (classifying user trajectories
into different moving modes, e.g., driving, walking, etc.) [48]; (2)
trajectory-user linking (finding the associated user who produced
the specific trajectory [16]); and (3) social circles discovery (identi-
fying user’s friends) [40].

In this paper we study a related problem: Trajectory-based Social
Circle Inference (TSCI) – however, we tackle a specific variant, dif-
ferent from the existing studied problems in that we do not have

https://doi.org/10.1145/3274895.3274908
https://doi.org/10.1145/3274895.3274908
https://doi.org/10.1145/3274895.3274908

SIGSPATIAL’18, 2018, Washington,USA Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong, and Fengli Zhang

any explicit information about social networks among users. TSCI
usually involves two sub-tasks, as illustrated by the small-scale
example in Figure 1: (1) Finding friends for users by learning latent
patterns of trajectories generated by these users – e.g., Bob, Alice
and Jim; and (2) Identifying potential friends from a set of existing
users for a newly added user – e.g., John is a potential friend of Bob
Alice and Jim.

We formally define TSCI as follows:
Given a TrajectoryT generated by a useru, learn a modelM to predict
a set of usersU who are in the same social circle as u or u’s friends:
M(T) 7→ U .

We believe that addressing this problem and generating effective
methodology for its solution may lead to important insights in
many real-world applications of extreme societal relevance. For
example: – it can be utilized to identify a set of criminals/terrorists
or find out their partners for a set of given anonymized trajectories;
– it can help recommend friends for new visitors with mobility data;
– it can also be used for friendship reconstruction, i.e., rebuilding
the social circles according to their respective trajectories.

In this work, we formulate the TSCI problem from the perspec-
tive of multi-label classification. The challenges of TSCI problem
stem mainly from the following three issues:

(1) Data Sparsity – the number of locations each user has visited
is limited, given the existence of large amounts of unique
locations.

(2) Varying Sociability – some users are gregarious and have
more friends while others are not that socially active in
making friends.

(3) Feature exploiting – identifying and extracting representative
features from trajectories to measure the likelihood of friend-
ship is difficult because there are no features (e.g., related to
lifestyle, mobility behaviors) generic for every user.

The deep learning paradigm has achieved remarkable successes
in problems from the fields of image processing and natural lan-
guage processing. Specifically, the generative models such as Vari-
ational AutoEncoder (VAE) [23, 24] have shown promising per-
formance in various tasks (e.g., text classification [39], machine
translation [49], generating sentences [4]), which is attributed to
its superior capabilities of capturing spatio-temporal features. Mo-
tivated by this, we propose a model called DeepTSCI based on
adopting recurrent neural networks (RNN) and VAE variants to learn
latent patterns of trajectories and consequently infer their social
circles. To improve the performance, we incorporate unlabeled data
into the model via pre-training using autoencoder.

To demonstrate the effectiveness of our proposed model on TSCI,
we conducted experiments on real-world datasets, and the results
demonstrate that our model achieves significant performance im-
provement as compared to baselines. The contributions of this paper
are four-fold:
• We make the first attempt to address the Trajectory-Social
Circle Inference problem using deep neural networks in the
context of LBSN.
• We leverage both check-in embedding to a low dimensional
space (capturing their latent features in an unsupervised
manner) and trajectory embedding to improve the perfor-
mance. We pre-train all sub-trajectories with autoencoder

to enrich the model for capturing temporal patterns in tra-
jectories.
• We use latent variables in VAE to approximate the distribu-
tion of trajectory friendship, and thus improve the perfor-
mance of social circle inference.
• Our experiments, conducted on real datasets, demonstrate
the effectiveness and robustness of our model in terms of
macro-R, macro-F1 and accuracy, compared to the state-of-
the-art baselines.

In the rest of this paper, we review the relevant related works in
Section 2 and present the details of our model in Section 3. Experi-
mental results are discussed in Section 4, followed by conclusions
and directions for future work in Section 5.

2 RELATEDWORK
Due to its impact in different LBSN applications contexts, vari-
ous aspects of learning human mobility have been tackled from
different research perspectives. We now review the relevant litera-
ture in (deep learning based) human mobility mining, friendship
recommendation, and multi-label classification.
(Deep learning based) Human Mobility Mining: Traditional
trajectory mining mainly focuses on detecting mobility similarity
and capturing moving patterns [17, 18], along with exploiting tra-
jectory semantics [44]. Most methods rely on finding the similarity
of long trajectories, such as the Longest Common Sub-sequence,
Edit distance and Co-visit [11, 29, 42, 45]. Chen et. al. proposed a
learning-based approach for exploiting the sequence of POIs and
transition patterns to recommend trajectories [6]. Liu et. al. in-
tegrated various factors to make POI recommendation including
regional popularity, user mobility and user preferences, etc [28].

Deep learning technologies such as RNNs have been success-
fully applied in various domains, including next location predic-
tion [30, 40], and trajectory classification [16]. Variational Autoen-
coder (VAE) [23, 24] also achieves good performance in sequence
learning and classifying textual documents [39]; and learning ef-
fective representations via text hashing [5]. In this paper, we adopt
VAE to capture implicit and explicit features in trajectories, and
along with RNN we achieve significant improvement compared to
baselines.
Friendship Recommendation and Social Structures: Friend
recommendation in LBSN is mainly based on similarities of trajec-
tories and other sources of data, for which paradigms like SVM
and Decision Trees have been employed [2, 3]. Extracted features
capturing local and global spatio-temporal characteristics of tra-
jectories were used in [37] to check whether two users are similar
enough to become friends. Matrix factorization, a well-established
technique used in recommender systems, has also been successfully
applied in link prediction and friend recommendation [3, 42], and
inferring social network structures in ecology [32]. In contrast, the
TSCI learns user mobility patterns to infer their friends, classify-
ing whether or not a user is a friend of the generator for given
(sub-)trajectories.
Multi-label Classification: Multi-label learning predicts multiple
labels for unknown testing instances and has achieved successes in
various applications, e.g., image tagging and text classification [38,

Trajectory-based Social Circle Inference SIGSPATIAL’18, 2018, Washington,USA

47]. Many methods have been proposed, such as ML-SVM, ML-
KNN, etc [34, 46]; even using Multi-Label Learning as a special case
of Multi-Instance Multi-Label (MIML) Learning [50, 51]. A novel
method for optimizing multivariate performance measures that has
shown superior performance is presented in [1], and DeepMIML for
multi-label classification, which outperformed traditional methods
in NLP (Natural Language Processing) and image classification
was proposed in [14]. In this paper, we consider TSCI as a multi-
label classification problem – and DeepTSCI achieves improved
effectiveness and state-of-the-art performance for inferring users’
social circles (friends).

3 METHODOLOGY
Wenow present the details of the DeepTSCImodel and the proposed
methodology, finalizing the section with a discussion of algorithmic
details.

We denote the set of check-ins by L, and Γ = {T1,T2, ...,Tn }
denote the set of all (sub)trajectories (each Ti is a sequence of
check-ins and split based on some time interval), where n is the
total number of trajectories. Let Ti = (l1, ..., lt , ..., lNi), where lt is
the element of L (lt ∈ L), and Ni is the length of (sub)trajectory
Ti .

While the user generating Ti (Ti ∈ Γ) is anonymous, the goal
of TSCI is to identify friends of Ti in the same social circle as
this generator. Considering TSCI as a multi-label classification
problem (similarly to [33, 43]), we define the friend label set as
U = (u1,u2, ...,uF), and each (sub)trajectoryTi is associated with a
subset Ui of U (Ui ⊆ U), where F is the total number of all mem-
bers. The task of TSCI is to learn classifiers that link trajectories
to members who are friends of their owner: Ti (∈ Γ) 7→ Ui (⊆ U).
In addition to trajectories, we encode the relationship space as
Yi = (y1, ...,yk , ...,yF) – i.e., if yk = 1(1 ≤ k ≤ F), then uk is Ti ’s
friend; otherwise (yk = 0), uk is not a friend of Ti .

There are two focal subtasks of TSCI: (1) We use a subset of
(sub)trajectories to learn latent patterns of relations among users
and trajectories for friend prediction and then use the rest as the
testing set to evaluate the prediction performance, denoted as RT-
TSCI. (2) We predict friends of trajectories for new users whose
trajectories never appear in the training set, denoted as RU-TSCI.

3.1 Trajectory Pre-processing
The trajectories are subject to pre-processing which consists of two
main phases:
Trajectory Splitting: To reduce the computational overheads and
capture a richer semantics of the moving patterns, we divide each
trajectory into several consecutive (sub)trajectories with fixed time-
interval – e.g., 6 hours. There exist many trajectory splitting meth-
ods, e.g., based on semantic meaning, shape of trajectories, etc [40].
In this paper, we adopt the simple method used in [16].
Check-in Embeddings: Inspired by [16, 31], we embed each
check-in into a low dimensional vector instead of using traditional
representation methods, such as one-hot. We obtain the check-
in representation v ∈ R |L |×d by maximizing the probabilities of
check-ins given their context in trajectories. Let |L| denote the
number of check-ins in the dataset, and d be the dimensionality in
the lower dimensional space. The check-ins in all trajectories can

be easily embedded into the latter RNN model. More specifically,
the embedding of a check-in lt is to predict its probability given the
context check-ins lt−w : lt+w . We define the context of check-in
lt as C(lt) = lt−w : lt+w , wherew is the size of sliding window of
sub-trajectories.

In this paper, we consider to utilize the Continuous Bag-of-Words
(CBOW) architecture, which is predicting aword given its context in
natural language processing area, to embed our check-in into a low
dimensional representation v(lt) ∈ Rd . The probability p(lt |C(lt))
is defined by the softmax function as:

p(lt |C(lt)) =
∏

l ′∈C(lt)
p(lt |l ′) (1)

=
∏

l ′∈C(lt)

exp(v(lt) · v(l ′))∑
l ′′∈L exp(v(l ′′) · v(l ′))

But it is expensive to compute the denominator of Eq.(1), because
there is a need to enumerate each check-in l ′′ ∈ L. Hence, we
utilize the hierarchical softmax technique to alleviate this issue. The
Huffman tree adopted in hierarchical softmax can obtain the better
performance and higher efficiency for organizing these check-ins.

3.2 DeepTSCI Framework
Wenow describe the overall framework of our approach and present
the details of the three proposed methods: LSTM-based (DeepTSCI-
LSTM, Bi-DeepTSCI), autoencoder-based (DeepTSCI-AE), and vari-
ational autoencoder-based (DeepTSCI-VAE) TSCI. An illustration
is provided in Figure 2. We note that: (a) LSTM has been widely
studied and has demonstrated a superb performance in dealing
with long sequences [20]; and (b) some alternative variant RNNs
can also be adopted here, such as GRU [9, 16] and bidirectional
RNNs [7, 25]. However, these are not the core parts of the current
work.

3.2.1 DeepTSCI-LSTM/Bi-DeepTSCI for TSCI.
In this setting, we model trajectories using the LSTM (cf. [20]).

Specifically, for each (sub)trajectory Ti , let ht−1 and ht (t ∈
{1, 2, ..,Ni }) denote the previous and current hidden state, respec-
tively. The LSTM model used in DeepTSCI is implemented as fol-
lows:

it = σ (Wpv(lt) +Upht−1 +Vpct−1 + bp) (2)
ft = σ (Wf v(lt) +Uf ht−1 +Vf ct−1 + bf)
ot = σ (Wov(lt) +Uoht−1 +Voct−1 + bo)

where it , ft , ot and b∗ are respectively the input gate, forget gate,
output gate and bias vector;σ is a logistic siдmoid function; matrices
W∗, U∗ and V∗ (∈ Rd×d

′
) are the different gate parameters, and d ′

is the hidden size in RNN module; v(lt) is the embedding of the
check-in location lt . The memory cell ct is updated by partially
replacing the existing memory unit with a new cell ct as:

ct = ftct−1 + it tanh(Wcv(lt) +Ucht−1 + bc) (3)

where tanh(·) refers to the hyperbolic tangent function. The trajec-
tory embedding is then updated by:

ht = ot ⊙ tanh(ct) (4)

where ⊙ is the element-wise product. We refer to this straight-
forward LSTM based TSCI solution as DeepTSCI-LSTM and its

SIGSPATIAL’18, 2018, Washington,USA Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong, and Fengli Zhang

p p p p EOS

p p p p EOS

m s

z

Yi

p p p p EOS

Yi

E
n
c
o
d
e
r

D
e
c
o
d
e
r

(a) (c)

p p p p EOS

p p p p EOS

(b)

Yi

Ti Ti Ti

Figure 2: Overview of three proposedmethods for the TSCI problem. The input consists of check-in embeddings of trajectories
(low-dimension representation). The output is a list of possible friends with probabilities for each (sub)trajectory. (a) The ar-
chitecture of DeepTSCI using LSTM or bi-directional LSTM to encode trajectories and make a multi-label classification, called
DeepTSCI-LSTM and Bi-DeepTSCI. (b) DeepTSCI-AE leverages more data (trajectories in the testing set) via a pre-training
process under an unsupervised component (e.g., encoder-decoder) to improve the performance. (c) uses variational autoen-
coder (VAE) to learn the implicit distributions capturing relationships between users and trajectories via a latent variable z.
Combining with encoder, VAE can make a better classification. We define this method as DeepTSCI-VAE.

Bi-directional LSTM variant as Bi-DeepTSCI. As the input of classi-
fier in this method, we define input feature as:

I = ht (5)

where I is the input of the classifier.

3.2.2 DeepTSCI-AE for TSCI.
Due to its advanced capabilities, autoencoder has been widely

integrated into deep neural nets for extracting latent features of
unlabeled data, especially in text classification problems [10, 36]
– and RNN-based autoencoder is often used in the process of pre-
training.

In the context of DeepTSCI, we apply autoencoder on all tra-
jectories (including those in the testing set) to learn the latent
characteristics. This pre-trained autoencoder will be used to de-
code friendship in the subsequent steps. The competitive gains of
this autoencoder-based DeepTSCI are mainly based on leveraging
a lot more unlabeled data. The LSTM also adopts the sequence
autoencoder, but only in the initialization stage (cf. [10, 39]).

3.2.3 DeepTSCI-VAE for TSCI.
Variational autoencoder was proposed in [24, 35] and has been

applied in many areas [22, 26, 39, 49]. It provides an efficient way
to approximate the posterior of a distribution of latent variables. It
derives a lower bound for the marginal likelihood of the observed
data (sometimes denoted ELBO). In this paper, we assume a la-
tent variable z for (sub)trajectories to capture their characteristics,
whose true posterior distribution (p(z|Γ)) is usually too complicated
to have an analytical form. The typical solution is to find a distri-
bution in an exponential family to approximate the true posterior:
q(z) ∼ p(z|Γ). The Kullback-Leibler (KL) divergence is often used

to measure the distance between two distributions (KL is always
non negative). Thus, our objective is to minimize the KL divergence
between p(z|Γ) and q(z). Using the Bayesian theory, we have:

KL(q(z)| |p(z|Γ)) =
∫

q(z) log
q(z)
p(z|Γ)dz (6)

=

∫
q(z)[logq(z) − log

p(Γ |z)p(z)
p(Γ)]dz

=

∫
q(z) log

q(z)
p(z)dz −

∫
q(z) logp(Γ |z)d(z) + logp(Γ)

Here, since logp(Γ) does not depend on z, the term can be consid-
ered as a constant for the purpose of the optimization task. Thus,
we have:

logp(Γ) − KL(q(z)| |p(z|Γ)) (7)

=

∫
q(z) logp(Γ |z)dz − KL(q(z)| |p(z))

In accordance to [12, 24], we choose a data dependent empirical
distribution qϕ (z|Γ) instead of an arbitrary q(z) as the approximate
posterior . Therefore, the lower bound of themarginal log likelihood
of data (trajectories) becomes:

logpθ (Γ) ≥ Ez∼qϕ (z |Γ)[logpθ (Γ |z)] − KL(qϕ (z|Γ)| |p(z)) (8)

where we assume that p(z) ∼ N (0, I), q(z|Γ) ∼ N (µ(Γ),σ (Γ)2),
and the parameters ϕ and θ will be learned via deep neural net-
work models. The two terms on the right side of Equation (8) can
be calculated separately: the first term can be considered as mea-
suring the distance between the real Γ and the predicted Γ̃ with
cross entropy (cf. Equation (9)), while the second term denotes the

Trajectory-based Social Circle Inference SIGSPATIAL’18, 2018, Washington,USA

KL divergence between prior p(z) and posterior qϕ (z|Γ), defining
loss_KL in Equation (10):

loss(Γ, Γ̃) =
∑

c ′′∈Γ, c̃ ′′∈Γ̃
−c ′′ · log(c̃ ′′) (9)

loss_KL = KL(qϕ (z|Γ)| |p(z)) (10)

where c ′′ and c̃ ′′ denote the one-hot check-in distribution in Γ and
the predicted check-in probability distribution in Γ̃, respectively.
The objective of VAE is to minimize LV :

LV = loss(Γ, Γ̃) + loss_KL (11)
The latent variable z is represented by a Gaussian variable:

z = дθ (ϵ, Γ) (12)

where ϵ is an independent Gaussian noise variable: ϵ ∼ N(0, I).
We note that the VAE introduces a reparameterization trick to
reparameterize µ and σ 2:

дθ (ϵ, Γ) = µ + σ ⊙ ϵ (13)

where µ and σ 2 represent the respective mean and variance of the
latent variables z, both of which can be learned from the data via
autoencoder; and ⊙ denotes an element-wise product. In order to
minimize the loss(Γ, Γ̃), we choose the softplus (i.e, f (x) = ln(1+ex))
as the activation function to deal with the input of the decoder:

softplus(Wsz + bs) (14)

whereWs and bs denote the weight and bias, respectively.
Observe that in our VAE-based DeepTSCI, we improve Equation

(5) by combining the latent variable z with the output in the last
hidden states – as illustrated in Figure 2 (c). We also note that we
can either use the mean h̄ of all hidden states, or the hidden state
at the last step ht for friends prediction – and, in this paper, we
choose the mean h̄ for friend prediction.

I =Wv

[
h̄
z

]
+ bv (15)

whereWv and bv are the weight and bias, respectively. Note that
we use the VAE encoder which has been pre-trained to initialize
parameters of the neural network classifier.

3.3 Multi-Label Classifier for TSCI
We next design a multi-label classifier, called Friend Decoder (FD),
to decode the relationships among trajectories and labels. We define
FD(Γ), denoting the friendship set, as:

FD(Γ) =
[
x0

x1

]
=Wτ I + bτ ,x0,x1 ∈ RF (16)

where x0 means the probability set that this trajectory does not
have the friendship with each label, and x1 means the probability
set that this trajectory has the friendship with each label. Note that
wτ and bτ denote the parameterized weight and bias, respectively.
The final predicted multi-label is accordingly computed as:

Ỹ = (s([x0
1 ,x

1
1]), · · · , s([x

0
k ,x

1
k]), · · · , s([x

0
F ,x

1
F])) (17)

where s(·) is the so f tmax function.

The list of predicted members/friends can be obtained from Ỹ
by comparing the probabilities of all (x0

k ,x
1
k) pairs – i.e., if x0

k < x1
k ,

fk is a member/friend of the trajectory Γ.
For RT-TSCI, we aim at minimizing the cost between the true

Y and the empirical Ỹ. We train our model to maximize the log-
likelihood with the parameter setκ. At each training step, stochastic
gradient descent is used to estimate the parameter set κ as:

Ỹ(Γ,κ) 7→ Y(Γ)

To test RU-TSCI, we use the trained model to make friend pre-
diction for new trajectories which are generated by new users – i.e.,
these users and their trajectories do not exist in the training set.

3.4 Implementation Aspects
We now turn the attention to a few typical issues intricately in-
volved in our models: Dropout, KL cost annealing, Algorithmic
Issues.

3.4.1 Dropout.
In order to alleviate the problem of overfitting inherent to RNN

models, we apply a variational inference based on the dropout
technique (cf. [15]) to our model for pre-training and learning. To
ensure a well embedding of trajectories for the RNN model, we
randomly drop some check-ins in the training. The dropout we use
is defined similarly to [15].

3.4.2 KL cost annealing.
As demonstrated in [4], a dynamic weightwKL (0 ≤ wKL ≤ 1)

added to the KL term in the VAE model can be very effective in
training . At the start of VAE training,wKL is zero, and it can make
the model encode rich trajectory information to latent variables
z. The value ofwKL gradually increases as the training proceeds.
Eventually, it will force the VAE to smooth out encodings and pack
into the prior as we specified. Thus, the LV now becomes:

LV = loss(Γ, Γ̃) +wKL ∗ loss_KL

wKL ← wKL + step ∗ α

where step denotes the iterations of training, and α is the weight
factor that can be set (or adjusted) by the users.

3.4.3 Algorithmic Issues.
With the sparsity of trajectories generated by various users, it

may very well be the case that a number of relatively short trajec-
tories have been generated in a given time-interval. In the interest
of speeding up the training process and capturing more trajectory
features, we sort all trajectories by their length. This, in turn, en-
ables to organize each batch of trajectories with similar length as a
bucket. This procedure provides two advantages for training and
predicting: (1) It can speed up the process of the trajectory embed-
ding, while still handling well various trajectories with different
lengths. (2) It reduces the unnecessary padding for the respective
batches of trajectories, which implicitly forces the RNN model to
capture more trajectory features.

The process of DeepTSCI-VAE is summarized in Algorithm 1.

SIGSPATIAL’18, 2018, Washington,USA Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong, and Fengli Zhang

Algorithm 1: Training Algorithm of DeepTSCI-VAE.
Input: Trajectory:Ti ∈ Γ; User Ui ∈ U .

1 Embed Check-ins into vector v(lt)
/* Pre-training */

2 foreach Ti ∈ Γ do
3 Variational encode Ti to obtain latent variable zi (∈ z);
4 Decode latent variable zi to obtain T̃i ;
5 Minimize the cost LV according to Eq.(11).
6 end
Output: Pre-training ModelM0.
/* Training */

7 Training dataset D ← ∅.
8 foreach Ui ∈ U do
9 D ←< Ti , Ui >;

10 end
11 repeat
12 foreach < Ti , Ui >∈ D do
13 Encode Ui (∈ U) to Yi (∈ Y);
14 Variational encode Ti to obtain zi and h̄i (∈ h̄) ;
15 Decode zi and h̄i to obtain T̃i (∈ Γ̃) and empirical Ỹi (∈ Ỹ);
16 Predict friendship Ỹi via Eq.(15)-(17);
17 Minimize LV (Eq.(11)) and the cost between Ỹi and Yi .
18 end
19 until converge

Output: Training ModelM.

4 EXPERIMENTAL RESULTS
We now describe in detail the setup of our experiments and present
the quantitative observations regarding the advantages of our ap-
proaches. We start with discussing the real-world datasets used in
our experimental evaluations, followed by the parameters setting
and metrics, as well as the list of the baselines used for comparisons
in the experimental results. We note that the source code of the
implementations used in our experiments is publicly available1.

4.1 Datasets
To evaluate the performance of DeepTSCI in comparison with
the baselines, we chose three popular and widely used datasets:
Brightkite, Gowalla [8] and Foursquare [41, 42]. For Foursquare, we
choose two most popular cities Tokyo and New York. All datasets
include check-in and social network information. Specifically, each
visit consists of user ID, location ID and a time stamp. Recall that this
paper focuses more on learning mobility patterns to predict users’
social circles – thus, chunking trajectories into sub-trajectories
might improve the performance because they can capture more
information about mobility patterns.

We conducted two different sets of experiments regarding pre-
dicting friend set for each trajectory: RT-TSCI and RU-TSCI. For
RT-TSCI, we chose 50% of sub-trajectories of each user for training,
and the rest for testing. For RU-TSCI, we infer social circle members
for new trajectories generated by those who are not in the training
set.

Brightkite and Gowalla: We first extracted user relationships to
construct friends set as a multi-label set, and we concatenate all
1https://github.com/gcooq/TSCI

check-ins to form trajectories for each user. A long trajectory is
further divided into sub-trajectories based on the time interval (e.g.,
6 hours). Next, we link the friend set to each sub-trajectory for
each user, and remove the user ID (for privacy preservation). For
Brightkite and Gowalla, we randomly selected 201 and 92 users
for RT-TSCI, respectively. The number of sub-trajectories is still
large (in the order of thousands) in the training set and test set.
In the RU-TSCI test, for the purpose of robustness, we chose new
trajectories whose generators have at least 5 friends existing in the
selected users for RT-TSCI. Thus, we effectively chose 514 users for
Gowalla and 199 users for Brightkite.
Foursquare data in Tokyo and New York: We extracted users profile
information to obtain their social connections (follower-followee)
and applied the method proposed in [42] to construct respective
social networks. The users and their corresponding trajectories are
selected as follows. We first randomly chose 60 seeding users for
Tokyo and 40 for New York. They also became our two global friend
sets. We then explored the social network to find users who have
at least 5 friends in the global sets. Among these users, we then
randomly chose 200 and 150, with their corresponding trajectories,
as the final dataset for Tokyo and New York, respectively. During
selection, trajectories of users who have at least 5 friends but not
in the RT-TSCI set are used for RU-TSCI test. The details of dataset
description are shown in Table 1.

Table 1: Datasets description. F : the number of members in
the global social circle set; URT : the number of users for
RT-TSCI test; Uo : the number of users for RU-TSCI test;
Ttrain/Ttest : the number of sub-trajectories in training vs.
the number of sub-trajectories in testing for RT-TSCI test;
To : the number of sub-trajectories for RU-TSCI test.

Dataset F Uo URT Ttrain/Ttest To

Brightkite 92 199 92 10012/10061 37403

Gowalla 201 514 201 10104/10052 59514

Tokyo 60 248 200 9036/9153 22769

New York 40 62 150 6220/6295 5185

4.2 Parameter Settings
We now describe the parameters involved in the neural networks
and the training for DeepTSCI. The check-in embedding leverages
Skip-gram model with the window size of 5; and 10 in the negative
samplings. We embed each check-in into a low dimensional latent
space. The detailed settings are shown in Table 2. We tested on
various parameter settings and did not find much variation – and
the subsequent results are reported based on the fixed parameters
in Table 2.

4.3 Metrics
Similar to [27, 34], we report macro-R, macro-F1 and accuracy to
evaluate all experimental results for the TSCI problem. LetN denote
the number of trajectories in the testing set. macro-R is the average
proportion of predicted friends that are also in the ground truth.
macro-F1 is defined as the harmonic mean of macro-P and macro-R.

Trajectory-based Social Circle Inference SIGSPATIAL’18, 2018, Washington,USA

Table 2: Parameters used in all experiments. “window size”
means howmuch contextual informationwe consider in the
CBOWmodel for embedding; “embedding size” is the vector
size of the embedded low dimension space; “hidden size” is
the number of neuron units in the hidden layer; “initial lr”:
initial learning rate; “epoch lr” means that we will gradu-
ally decrease the value of learning rate in a fixed value; |z|
denotes the dimensionality of latent variable z; α is the the
weight factor used in pre-training.

Parameters Brightkite Gowalla Tokyo New York
windows size 5 5 5 5

embedding size 250 250 200 200
hidden size 500 800 500 800

initial lr 0.001 0.001 0.001 0.001
epoch lr 8 × 10−6 8 × 10−6 2 × 10−6 2 × 10−6

dropout rate 0.5 0.5 0.5 0.5
batch size 16 16 16 16

|z | 50 50 50 50
α 8 × 10−6 8 × 10−6 8 × 10−6 8 × 10−6

We also demonstrate the accuracy, as defined in [34], to report the
performance of the models.

macro-P =
1
N

∑ # correctly predicted friends
predicted friends

macro-R =
1
N

∑ # correctly predicted friends
True friends

macro-F1 =
2 × (macro-P) × (macro-R)
(macro-P) + (macro-R)

accuracy =
1
N

∑ # correctly predicted friends
True Friends ∪ # predicted friends

4.4 Baselines
We now present the baselines used for comparison with our models.
• Co-visit: Longest Common Sub-sequence (LCS) has been widely
used in computing trajectory similarity [19]. It cannot be directly
applied to our TSCI because users generate very few check-ins in
a fixed time interval. However, it is useful to find user common
interests or locations [42]. For training data, we concatenate these
sub-trajectories which have the same friendship label set. Each
friend label associates with a concatenated trajectory. Then for
a new testing trajectory, we identify their friends from similar
trajectories in terms of common check-ins in the training data. The
threshold for the number of co-visits can be manually set.
•MF: Matrix Factorization has been successfully applied in extract-
ing latent characteristics of trajectories and social networks [3].
For our TSCI, we construct a friend check-in frequency matrix
where each cell represents the number of times the corresponding
check-in has been visited by that user in all trajectories. To obtain
the friend list for a new testing trajectory, we calculate the similar-
ity between its vector and every friend vector which are from the
matrix factorization.
• Decision Trees: Decision Trees have been successfully used
in friend recommendation [3]. We consider our TSCI as a multi-
label classification problem. Traditional algorithms such as decision
trees can then be applied to features extracted from trajectories. To
capture trajectory features, we calculate the mean value of check-in
vectors from trajectory.

• SVM: SVM algorithm has shown a better performance not only
in text retrieval and mining area but also in trajectory classification.
In accordance with [51], we train a linear kernel based SVM model
for this multi-label classification problem in our experiments.
• RandomForest: Similarly to [21], we utilize the multi-label clas-
sification algorithm based on RandomForest to predict friends list
for each trajectory.
• MLP: To show performance of basic deep learning in terms of
capturing the temporal information, a multi-layer perceptron used
in [14] is also compared.
• TULER: One of the most recent work on identifying human
mobility model is proposed in [16] which leverages RNNs to capture
the sequential patterns of human trajectories and to predict the
generators of unknown trajectories. We train the "TULER" using a
stacked GRU for the multi-label classification problem.
• DeepMIML: DeepMIML is a MIML learning method originally
developed for sentence and image classification [14]. Since the
corresponding codes have not been published yet, we re-implement
it using AE to obtain the representation vector of trajectories and a
2D sub-concept layer proposed in DeepMIML to learn friends for a
given trajectory.

We implemented the DeepTSCI model, TULER and Deep
MIML [14] via Tensorflow, which is an open-source python library
for deep learning. Most of traditional machine learning algorithms
from the baselines are implemented based on the scikit-learn library.
We also speed up DeepTSCI using one GTX1080 Ti GPU.

4.5 Performance Comparison
Table 3 and Table 4 show the performance comparison among
proposed algorithms and baselines for RT-TSCI and RU-TSCI, re-
spectively on four datasets, where the best performance is shown
in bold, while the second best in underlined.

4.5.1 Performance for RT-TSCI.
The performance comparison of our proposed algorithms and

baselines for RT-TSCI problem are shown in Table 3.
Ourmodels vs. baselinemodels: As the result shows that we can
infer user’s social preference, and find out a majority of their social
circle. Our methods achieve the best performance in all datasets in
terms of macro-R, macro-F1 and accuracy except that DeepTSCI-
LSTM performs a little worse compared to baselines in New York
dataset. Proposed methods can well infer human social circle. For
example, DeepTSCI-VAE outperforms other methods for all met-
rics, and gains up to 6.66%, 2.48% and 4.12% over RandomForest
in Gawalla. Compared to TULER and DeepMIML, our proposed
models can well capture trajectory moving patterns, and the results
show that our model is well-suited to TSCI, under the framework
of a multi-label classification problem.
Analysis of proposed model: In order to tackle with TSCI prob-
lem, we proposed four methods, including LSTM-based, Bidirec-
tional LSTM-based, pre-training with Autoencoder, and Varia-
tional Autoencoder-based. Based on the results, we observe that
Bi-DeepTSCI and DeepTSCI-VAE obtain the best performance. In
this paper, we try to incorporate VAE to encode and decode trajec-
tories, and embed trajectory into a lower dimensional latent vector
z. Overall, DeepTSCI-VAE achieves the best result in our proposed
models.

SIGSPATIAL’18, 2018, Washington,USA Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong, and Fengli Zhang

Table 3: Performance comparison among different algorithms for RT-TSCI on four datasets.

Method
Brightkite Gowalla Tokyo New York

macro-R macro-F1 accuracy macro-R macro-F1 accuracy macro-R macro-F1 accuracy macro-R macro-F1 accuracy

Co-Visit[42] 0.5542 0.4207 0.3210 0.4144 0.3710 0.2941 0.4592 0.4463 0.3790 0.6209 0.5902 0.5339

MF[3] 0.5253 0.4121 0.2681 0.4600 0.2075 0.1122 0.2997 0.3119 0.1908 0.4608 0.4040 0.2774

Decision Trees[3] 0.5965 0.6369 0.4841 0.4493 0.5659 0.3861 0.3004 0.4100 0.2764 0.4199 0.5242 0.3791

SVM[51] 0.6348 0.6870 0.5404 0.4815 0.6218 0.4467 0.3442 0.4601 0.3246 0.3652 0.4893 0.3463

RandomForest[21] 0.6572 0.7099 0.5801 0.5473 0.6603 0.4997 0.5190 0.6043 0.5004 0.6404 0.7118 0.6199

MLP[14] 0.6524 0.6954 0.5547 0.5126 0.6288 0.4505 0.4766 0.5617 0.4401 0.4887 0.5903 0.4529

TULER[16] 0.6203 0.6896 0.5350 0.4697 0.6176 0.4358 0.5592 0.6282 0.5318 0.6487 0.7174 0.6300

DeepMIML[14] 0.5362 0.6371 0.4650 0.5239 0.5780 0.4022 0.5633 0.6010 0.5111 0.6480 0.7156 0.6273

DeepTSCI-LSTM 0.6746 0.7247 0.5866 0.5869 0.6799 0.5262 0.5797 0.6390 0.5479 0.6501 0.7103 0.6182

Bi-DeepTSCI 0.6829 0.7258 0.5955 0.6131 0.6838 0.5385 0.5886 0.6453 0.5579 0.6713 0.7203 0.6381

DeepTSCI-AE 0.6819 0.7289 0.5965 0.5636 0.6747 0.5113 0.5657 0.6373 0.5380 0.6696 0.7249 0.6405

DeepTSCI-VAE 0.6999 0.7320 0.6061 0.6139 0.6851 0.5409 0.6022 0.6534 0.5704 0.6757 0.7220 0.6407

Table 4: Performance comparison among different algorithms for RU-TSCI on four datasets.

Method
Brightkite Gowalla Tokyo New York

macro-R macro-F1 accuracy macro-R macro-F1 accuracy macro-R macro-F1 accuracy macro-R macro-F1 accuracy

Co-Visit[42] 0.1452 0.0542 0.0293 0.1010 0.0870 0.0420 0.1008 0.0894 0.0491 0.1172 0.0905 0.0522

MF[3] 0.1846 0.1006 0.0641 0.1114 0.0959 0.0511 0.1154 0.1130 0.0653 0.1051 0.0914 0.0558

Decision Trees[3] 0.1736 0.1962 0.1032 0.1150 0.1683 0.0874 0.0756 0.1089 0.0572 0.1787 0.2343 0.1320

SVM[51] 0.1736 0.1615 0.1032 0.1253 0.1878 0.0970 0.0901 0.1260 0.0643 0.1591 0.2271 0.1273

RandomForest[21] 0.1449 0.1615 0.0804 0.1352 0.1885 0.0900 0.0951 0.1251 0.0656 0.1961 0.2576 0.1442

MLP[14] 0.1584 0.1709 0.0855 0.1519 0.2101 0.1045 0.1183 0.1477 0.0778 0.2143 0.2707 0.1542

TULER[16] 0.3348 0.2525 0.1371 0.1377 0.2009 0.0999 0.1233 0.1554 0.0808 0.2489 0.2943 0.1661

DeepMIML[14] 0.2847 0.2482 0.1240 0.1524 0.1974 0.0989 0.1251 0.1579 0.0820 0.2433 0.2909 0.1620

DeepTSCI-LSTM 0.3441 0.2594 0.1362 0.1634 0.2222 0.1119 0.1345 0.1624 0.0859 0.2565 0.2996 0.1712

Bi-DeepTSCI 0.3250 0.2435 0.1297 0.1733 0.2246 0.1134 0.1342 0.1610 0.0806 0.2628 0.3036 0.1724

DeepTSCI-AE 0.3060 0.2572 0.1394 0.1568 0.2162 0.1086 0.1224 0.1552 0.0824 0.2442 0.2892 0.1625

DeepTSCI-VAE 0.3541 0.2608 0.1404 0.1743 0.2271 0.1141 0.1386 0.1676 0.0902 0.2760 0.3101 0.1784

4.5.2 Performance for RU-TSCI.
We now show the performance evaluation of RU-TSCI, cf. Table 4.
Effectiveness of RU-TSCI: Our proposed methods outperform
baselines and DeepTSCI-VAE performs the best. But macro-R,
macro-F1, and accuracy for all methods are relatively low. The
possible reason is that we do not have any information about these
new users except several short sub-trajectories. It is similar to a
cold start problem in recommender systems. We use the learned
model from RT-TSCI to predict social circles for these new users.

This is an important problem especially in security area. For
example, a user enters into a city where he leaves some footprints
within a short time period. Using our proposed model might help
find his partners (related users).
Model Analysis: As the result shows in Table 4, our proposed
model DeepTSCI-VAE still achieves the best performance compared
to other methods. For example in New York dataset, it lifts up to
2.71%, 1.58% and 1.23% over TULER, and 1.32%, 0.65% and 0.60%

comparing to Bi-DeepTSCI. For trajectory embeddings, we find
out our proposed model can capture more semantic information
comparing with TULER and DeepMIML methods, in which they
also use RNN-based model to embed the trajectories.

4.6 Model Robustness
In Figure 4, we depict a sub-trajectory (1068→ 32123→ 26273→
3232 → 1371) generated within 6 hours by a randomly selected
user in the New York dataset. The outcome of the predicted social
fiends of this user is illustrated in the right part of Figure 4, which
contains all the real friends of this user.

Next, to measure the sensitivity in terms of how the parameters
involved in our models (e.g., learning rate, the number of iteration,
etc.) affect the performance, we conducted experimentswith various
parameter settings. As shown in Figure 5, the accuracy of TSCI is
proportional to the number of iterations (denoted by epoch). We

Trajectory-based Social Circle Inference SIGSPATIAL’18, 2018, Washington,USA

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

va
lu
e

RT−TSCI@R

RT−TSCI@F

RU−TSCI@R

RU−TSCI@F

(a) DeepTSCI R-F on Brightkite.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

ac
cu
ra
cy

DeepTSCI−LSTM

Bi−DeepTSCI

DeepTSCI−AE

DeepTSCI−VAE

(b) RT-TSCI accuracy on Brightkite.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

va
lu
e

RT−TSCI@R

RT−TSCI@F

RT−TSCI@R

RT−TSCI@F

(c) DeepTSCI R-F on Gowalla.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

ac
cu
ra
cy

DeepTSCI−LSTM

Bi−DeepTSCI

DeepTSCI−AE

DeepTSCI−VAE

(d) RT-TSCI accuracy on Gowalla.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

va
lu
e

RT−TSCI@R

RT−TSCI@F

RU−TSCI@R

RU−TSCI@F

(e) DeepTSCI F-R on Tokyo.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

epoch

a
cc
u
ra
cy

DeepTSCI−LSTM

Bi−DeepTSCI

DeepTSCI−AE

DeepTSCI−VAE

(f) RT-TSCI accuracy on Tokyo.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

epoch

va
lu
e

RT−TSCI@R

RT−TSCI@F

RU−TSCI@R

RU−TSCI@F

(g) DeepTSCI R-F on New York.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

epoch

a
cc
u
ra
cy

DeepTSCI−LSTM

Bi−DeepTSCI

DeepTSCI−AE

DeepTSCI−VAE

(h) RT-TSCI accuracy on New York.

Figure 3: Results of Recall, F1 and accuracy on Gowalla, Brightkite, Tokyo and New York (@R and @F are abbreviations for
macro-R and macro-F1).

decreased the learning rate in every epoch, but the accuracy did
not exhibit too much variation as the learning rate changes after a
certain epoch (in the sense of convergence).

Pre-training is an important component in the training process
of our TSCI. In this work we used AE and VAE for pre-training.
Figure 6(a) shows that the AE based pre-training can increase the
accuracy, while the loss decreases. Our VAE based pre-training
makes the convergence faster for both RT-TSCI and RU-TSCI tests,
as shown in Figure 6(b). Once again we observe that the accuracy
increases, while this time both the KL and the loss decrease. We
re-iterate that we also achieved a good recall and F1 score for both
RT-TSCI and RU-TSCI as the epoch increases (cf. Figure 3).

555673

43952851

151910207

276

135

209

214

32

Figure 4: Visualization of the results on friend prediction for
a sub-trajectory in New York dataset.

(a) RT-TSCI test on Brightkite. (b) RU-TSCI test on Brightkite.

Figure 5: Model robustness on Brightkite

0 50 100
0

5000

10000

epoch

lo
ss

0 50 100
0

0.5

1

a
c
c
u
ra
c
y

loss accuracy

(a) Pre-training AE on Gowalla.

0 50 100

10
5

epoch

lo
ss

0 50 100
0

0.5

1

a
c
c
u
ra
c
y

entropy loss

KL loss

accuracy

(b) Pre-training VAE on Gowalla.

Figure 6: Results of AE/VAE based pre-training on Gowalla

SIGSPATIAL’18, 2018, Washington,USA Qiang Gao, Goce Trajcevski, Fan Zhou, Kunpeng Zhang, Ting Zhong, and Fengli Zhang

5 CONCLUSIONS AND FUTUREWORK
We proposed a framework – DeepTSCI – with deep learning based
models to learn mobility patterns and infer users’ social circles
(friends) based on their trajectories. DeepTSCI integrates recurrent
neural networks and autoencoder to understand latent characteris-
tics of trajectories and does not require any extra data regrading
users, such as user profile or their social connections. Experiments
conducted on real-world datasets demonstrated that our proposed
methods outperform baselines in terms of macro-R, macro-F1 and
accuracy.

As part of our future work, we plan to incorporate the interplay
of different semantic values of inter-relationships among friends
(by way of corresponding labels). In addition, we plan to focus in a
more detailed manner on potential improvements via supervised
models like, for example, reinforcement learning methods, to better
infer users’ social circles in different contexts (e.g., age, gender, etc.
– cf. [13]).

6 ACKNOWLEDGMENTS
This workwas supported byNational Natural Science Foundation of
China (Grant No.61602097 and No.61472064), NSF grants III 1213038
and CNS 1646107, and ONR grant N00014-14-10215.

REFERENCES
[1] Apoorv Aggarwal, Sandip Ghoshal, Ankith M. S., Suhit Sinha, and Ganesh Ra-

makrishnan. 2017. Scalable Optimization of Multivariate Performance Measures
in Multi-Instance Multi-label Learning. In AAAI.

[2] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. 2006.
Link prediction using supervised learning. In SDM.

[3] Basma Alharbi, AbdulhakimAli Qahtan, and Xiangliang Zhang. 2016. Minimizing
User Involvement for Learning Human Mobility Patterns from Location Traces.
In AAAI.

[4] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio. 2016. Generating sentences from a continuous space. In
CoNLL.

[5] Suthee Chaidaroon and Yi Fang. 2017. Variational Deep Semantic Hashing for
Text Documents. In SIGIR.

[6] Dawei Chen, Cheng Soon Ong, and Lexing Xie. 2016. Learning Points and Routes
to Recommend Trajectories. In CIKM.

[7] Zheqian Chen, Ben Gao, Huimin Zhang, Zhou Zhao, Haifeng Liu, and Deng
Cai. 2017. User Personalized Satisfaction Prediction via Multiple Instance Deep
Learning. In WWW.

[8] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:
user movement in location-based social networks. In KDD.

[9] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[10] Andrew M Dai and Quoc V Le. 2015. Semi-supervised sequence learning. In
NIPS.

[11] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J
Keogh. 2008. Querying and mining of time series data - experimental comparison
of representations and distance measures. In PVLDB.

[12] Carl Doersch. 2016. Tutorial on Variational Autoencoders. arXiv (2016).
[13] Yuxiao Dong, Yang Yang, Jie Tang, Yang Yang, and Nitesh V. Chawla. 2014.

Inferring user demographics and social strategies in mobile social networks. In
KDD.

[14] Ji Feng and Zhi-Hua Zhou. 2017. Deep MIML Network. In AAAI.
[15] Yarin Gal and Zoubin Ghahramani. 2015. A Theoretically Grounded Application

of Dropout in Recurrent Neural Networks. Statistics (2015), 285–290.
[16] Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli

Zhang. 2017. Identifying Human Mobility via Trajectory Embeddings. In IJCAI.
[17] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Fabio Pinelli, Chiara Renso, Salva-

tore Rinzivillo, and Roberto Trasarti. 2011. Unveiling the complexity of human
mobility by querying and mining massive trajectory data. VLDB J. 20, 5 (2011).

[18] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. 2007. Trajectory
pattern mining. In ACM SIGKDD.

[19] Limin Guo, Guangyan Huang, Xu Gao, Jing He, Bin Wu, and Haoming Guo. 2015.
DoSTra: discovering common behaviors of objects using the duration of staying

on each location of trajectories. In AAAI Workshop.
[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.
[21] Hsun-Ping Hsieh and Cheng-Te Li. 2014. Inferring Social Relationships from

Mobile Sensor Data. In WWW Companion.
[22] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou.

2017. Variational Deep Embedding: An Unsupervised and Generative Approach
to Clustering. In IJCAI.

[23] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
2014. Semi-supervised learning with deep generative models. In NIPS.

[24] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR.

[25] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional
Neural Networks for Text Classification. In AAAI.

[26] Xiaopeng Li and James She. 2017. Collaborative Variational Autoencoder for
Recommender Systems.. In KDD.

[27] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera.
2015. Personalized tour recommendation based on user interests and points of
interest visit durations. In IJCAI.

[28] Bin Liu, Yanjie Fu, Zijun Yao, and Hui Xiong. 2013. Learning geographical
preferences for point-of-interest recommendation. In KDD.

[29] Hechen Liu and Markus Schneider. 2012. Similarity measurement of moving
object trajectories. In SIGSPATIAL.

[30] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the Next
Location: A Recurrent Model with Spatial and Temporal Contexts. In AAAI.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. In ICLR.

[32] Ioannis Psorakis, Stephen J. Roberts, Iead Rezek, and Ben C. Sheldon. 2012.
Inferring social network structure in ecological systems from spatio-temporal
data streams. Journal of The Royal Society Interface 9, 76 (2012), 3055–3066.

[33] Jesse Read and Fernando Perezcruz. 2014. Deep Learning for Multi-label Classifi-
cation. Machine Learning 85, 3 (2014), 333–359.

[34] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. 2011. Classifier
chains for multi-label classification. Machine Learning 85, 3 (2011), 333.

[35] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
ICML.

[36] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In NIPS.

[37] HongjianWang, Zhenhui Li, andWang-Chien Lee. 2014. PGT:Measuringmobility
relationship using personal, global and temporal factors. In ICDM.

[38] Yuhong Guo Xin Li. 2013. Active Learning with Multi-Label SVM Classification.
In IJCAI.

[39] Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. 2017. Variational Autoencoder
for Semi-Supervised Text Classification. In AAAI.

[40] Cheng Yang, Maosong Sun, Wayne Xin Zhao, Zhiyuan Liu, and Edward Y Chang.
2017. A Neural Network Approach to Jointly Modeling Social Networks and
Mobile Trajectories. TOIS 35, 4 (2017), 36.

[41] Dingqi Yang, Daqing Zhang, Longbiao Chen, and Bingqing Qu. 2015. Nation-
Telescope: Monitoring and visualizing large-scale collective behavior in LBSNs.
Journal of Network & Computer Applications 55 (2015), 170–180.

[42] Guolei Yang and Andreas Züfle. 2017. Spatio-temporal Prediction of Social Con-
nections. In Proceedings of the Fourth International ACM Workshop on Managing
and Mining Enriched Geo-Spatial Data (GeoRich ’17). ACM, New York, NY, USA,
6:1–6:6.

[43] Chih Kuan Yeh, Wei Chieh Wu, Wei Jen Ko, and Yu Chiang Frank Wang. 2017.
Learning Deep Latent Spaces for Multi-Label Classification. In AAAI.

[44] Josh Jia-Ching Ying, Wang-Chien Lee, and Vincent S. Tseng. 2013. Mining
geographic-temporal-semantic patterns in trajectories for location prediction.
ACM TIST 5, 1 (2013), 2:1–2:33.

[45] Josh Jia-Ching Ying, Eric Hsueh-Chan Lu, Wang-Chien Lee, Tz-Chiao Weng,
and Vincent S Tseng. 2010. Mining user similarity from semantic trajectories. In
SIGSPATIAL.

[46] Min-Ling Zhang and Zhi-Hua Zhou. 2007. ML-KNN: A lazy learning approach
to multi-label learning. Pattern Recognition 40, 7 (2007), 2038 – 2048.

[47] Shiquan Zhao, Jian Wu, Victor S. Sheng, Chen Ye, Pengpeng Zhao, and Zhiming
Cui. 2015. Weak Labeled Multi-Label Active Learning for Image Classification.
In MM.

[48] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. 2008. Under-
standing mobility based on GPS data. In UbiComp.

[49] Chunting Zhou and Graham Neubig. 2017. Multi-space Variational Encoder-
Decoders for Semi-supervised Labeled Sequence Transduction. In ACL.

[50] Zhi-Hua Zhou and Min-Ling Zhang. 2017. Multi-label Learning. Springer US,
Boston, MA, 875–881. DOI:http://dx.doi.org/10.1007/978-1-4899-7687-1_910

[51] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. 2012. Multi-
instance multi-label learning. Artificial Intelligence 176, 1 (2012), 2291 – 2320.

http://dx.doi.org/10.1007/978-1-4899-7687-1_910

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Trajectory Pre-processing
	3.2 DeepTSCI Framework
	3.3 Multi-Label Classifier for TSCI
	3.4 Implementation Aspects

	4 Experimental Results
	4.1 Datasets
	4.2 Parameter Settings
	4.3 Metrics
	4.4 Baselines
	4.5 Performance Comparison
	4.6 Model Robustness

	5 Conclusions and Future Work
	6 ACKNOWLEDGMENTS
	References

