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ABSTRACT 
 
There is increasing interest in developing means to estimate, in 
real-time, the level of stress of computer users, particularly for 
applications such as computer-based tutoring. This real-time 
stress recognition has been attempted through the processing of 
a variety of biosignals measured from the computer user, such 
as the Galvanic Skin Response (GSR), the Blood Volume Pulse 
(BVP), etc. Recent reports in the literature have strengthen the 
notion that the Pupil Diameter (PD) can also play an important 
role in the affective assessment of stress in humans, and its 
differentiation from a baseline state of relaxation. This paper 
studies different approaches to perform digital pre-processing of 
the raw PD data towards the detection of stress states in the 
computer user. The pre-processing consists of removal, by 
filtering, of abrupt changes in the PD signal that are not likely to 
correspond to actual pupillary reactions. This study also 
summarizes preliminary results for stress detection obtained by 
imposing a threshold on the filtered PD signal.  

 
1. INTRODUCTION 

 
Previous studies have proposed that the interaction between 
computing systems and their users would be greatly enhanced if 
computers had an awareness of the user’s affective state. Recent 
scientific findings have indicated that emotions play an essential 
role in rational decision making, perception learning, and 
various cognitive tasks [1]. Therefore, giving computers the 
capability to be aware of the user’s affect can permit more 
meaningful, natural and productive human-machine interaction.  
 
It is known, from studies in psychophysiology, that the balance 
of the sympathetic and parasympathetic divisions of the 
autonomic nervous system (ANS) changes when emotions are 
elicited [2]. It is also known that the ANS has a significant 
impact on the regulation of many physiological variables. 
Therefore, observation of the physiological variables is a critical 

mechanism to detect a user’s affective state. Being aware of the 
user’s affective state could enable the computers to select 
appropriate strategies to adapt the interface to the user.  Some 
relevant physiological signals that have been chosen in previous 
research to recognize emotions are the Electroencephalogram 
(EEG), the Electrocardiogram (ECG), the Electromyogram 
(EMG), Blood Pressure (BP), Blood Volume Pulse (BVP), Skin 
Temperature (ST), Galvanic Skin Response (GSR), Heart Rate 
Variability (HRV), etc.  Many of the mechanisms to measure 
and evaluate these signals have been directly inherited from the 
“lie detector” evolution. However, the pupil diameter is a 
physiological variable that has not been fully investigated in its 
potential for real-time assessment of the affective state of a 
human subject. This may be due to the fact that the 
instrumentation required for this kind of real-time measurement 
did not become available until recently. Nonetheless, it is now 
established that if the sympathetic division of the ANS is 
activated (e.g., due to stress) , the pupil is enlarged, and if the 
parasympathetic division predominates (e.g., during relaxation), 
the pupil shrinks [3, 4]. In an isolated fashion, it has been 
verified that the variations of the Pupil Diameter (PD) reflect 
the emotional change driven by auditory emotional stimulation 
[5].  
 
In general, the human pupil can constrict to 1.5mm, and dilate 
to as much as 9mm. Typically, the pupil can react to stimuli 
within 2 seconds. These constriction and dilation are controlled  
mainly by the ANS. Janisse [6] pointed out that the relation of 
pupillary response to ANS activity appears to have been 
accepted as early as the 1850s by investigators such as Claude 
Bernard. Charles Darwin related pupil dilation to fear and other 
emotions in animals in his book [7]. Partala and Surakka have 
found, using auditory emotional stimulation, that the pupil size 
variation can be seen as an indication of affective processing [5]. 
All these known facts prompted us to consider the possibility of 
using pupil size variation to detect affective state changes 
during the human-computer interaction. 



Unfortunately, the instruments that are typically used for 
capturing pupil diameter variations in human-computer 
interaction are not necessarily designed with that primary goal 
in mind. In many instances, and also in our own case, pupil 
diameter measurements are obtained as a “byproduct” of the 
process of monitoring eye movements with an Eye Gaze 
Tracking (EGT) system. These instruments are optimized to 
provide estimated point-of-gaze (POG) coordinates, but only 
provide a sub-optimal pupil diameter signal for the purpose of 
affective assessment.  
 
The aim of this study is to investigate alternative digital filtering 
techniques that can be applied to the PD signal obtained from an 
EGT instrument to facilitate its use in the detection of computer 
user stress. Further, a thresholding mechanism is proposed and 
implemented on experimental PD signals filtered by a median 
filter to evaluate the performance of a stress detector based on 
them. The paper first introduces the instrumental setup used to 
record PD signals while stress stimuli were applied to the 
subjects and the alternative filtering approaches that were 
initially considered. This is followed by the implementation of a 
proposed thresholding algorithm on the median-filtered PD 
signals, and a report of the classification performance obtained 
by these means in the analysis of our experimental data. The 
results are discussed and some conclusions are drawn. These 
results are also considered to guide the directions of future work 
that might be undertaken towards the ultimate goal of accurate, 
real-time measurement of pupil diameter changes and their 
utilization for affective assessment of computer users. 
 
 

2. METHODOLOGY 
 

Experiment Description 
  The complete instrumental setup used in our experiments is 
shown in Figure 1. This instrumental setup was designed for a 
broader study on affective sensing that included measurement of 
Blood Volume Pulse (BVP), Galvanic Skin response (GSR) and 
Skin Temperature (ST), in addition to Pupil Diameter (PD) 
signals. The part of the instrumentation related to PD recording 
is enclosed in the dotted-line box. 
 

 
 

Figure. 1. Instrumental setup. 
 

As indicated in Figure 1, the PD signal was obtained from a 
desk-mounted Eye Gaze Tracking instrument. Further details on 
this instrument and the PD signal obtained from it are given in 
the next section. 

In order to observe the changes of pupil diameter due to stress 
in the computer user, a program was created to elicit mild 
mental stress in the participating subjects at known times during 
the experiment. This was accomplished through implementation 
of a “Paced Stroop Test”. Figure 2 shows the stimuli schedule in 
this experiment from the beginning of the session to its end. In 
total, the experiment is composed of three consecutive sections. 
In each section, there were four segments. They are:  
1) ‘IS’ – the Introductory Segment to let the subject get used to 
the task environment;  
2) ’C’ – is a Congruent segment of the Stroop Test, in which the 
subject was asked to click the on-screen button naming the font 
color of a word that spelled the actual font color being displayed; 
3) ‘IC’ – is an Incongruent segment of the Stroop Test in which 
the subject was asked to click the on-screen button naming the 
font color of a word that spelled the name of a different color; 
4) ‘RS’ – is a Resting Segment to let the subject relax for some 
time.  
 

 
 

Figure. 2. Stimuli schedule. 
 
The incongruent Stroop segments (IC) were expected to elicit 
mild mental stress in the subject, according to previous research 
found in the psychophysiological literature [8]. In contrast, the 
congruent Stroop segments (C) were expected to allow the 
subject to continue in a relaxed state. The binary numbers 
shown in Figure 2 represent the de-multiplexed output of the 
stimulus generator, which was used in the system to insert the 
corresponding values (1,2,3) in the event channel of the pupil 
diameter record obtained from the EGT system, along with the  
PD values. A previous report on this overall instrumental setup 
[9] provides more details on this scheme to label the boundaries 
between experimental segments. 
 
In these experiments, signals from 32 adult, healthy subjects 
were collected. Three relaxed (congruent Stroop) and three 
stressed (Incongruent Stroop) segments were recorded from 
each subject. The lighting of the experimental environment  and 
the brightness of the computer stimuli were kept constant 
through all the experimental segments and across all the 
subjects. 
 
Eye Gaze Tracking (EGT) System 
In our study, we used the Applied Science Laboratories series 
5000 Eye Gaze Tracking system. This system determines first 
the line-of-gaze, and then the point-of-gaze (POG) from real-
time analysis of video images of one of the subject’s eyes.  The 
system captures these images through a Sony EVI-D30 
pan/tilt/zoom camera fitted with an infrared filter. In addition, 
the camera has been fitted with infrared illuminators that 
irradiate the face of the subject (Figure 3) . As a result, the 
image captures gray-scale images that exhibit two circular 
reflections: the “glint” or very bright and small “corneal 



reflection”, and the back-reflection of the infrared radiation on 
the retina of the subject, which is perceivable only through the 
aperture of the pupil, or “pupil reflection”.  
 

 
Figure. 3. Eye Gaze Tracking camera 

 
The EGT system performs real-time edge detection to isolate 
these two circular landmarks of each image in the video stream, 
also estimating their centers and diameters.  Figure 4 shows the 
EGT system monitors and an example of the gray-scale images 
that the EGT system analyzes in real-time. 
 
 
 
 

 
 

Figure. 4. EGT system showing eye image processed 
 
 
In our case, the PD values calculated by the EGT system were 
first measured at 60 samples/second, but they were 
subsequently upsampled by interpolation to 360 samples/second, 
to synchronize them with the other variables measured during 
the experiment. The event markers created by the instrumental 
setup at each of the critical segment transitions (e.g., from a 
congruent segment to the following incongruent segment) were 
also stored.  
 
PD Data Processing 
In addition to the interpolation process performed to obtain an 
effective sampling rate of 360  samples/second, the PD signals 
were analyzed by an algorithm that detected the interruptions 

due to eye blinks (identified as sudden transitions to a false PD 
value of zero) and compensated them by interpolation of the lost 
values.  Figure 5 below shows the results of the blink-
elimination process (bottom panel), on a raw PD signal (top 
panel) 
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Figure 5. PD data record by the EGT system and signal after blink 

artifact removal. 
 

It should be noted that, even after elimination of blinking 
artifacts the PD signal provided by the EGT system contains a 
significant amount of variability that is not likely to originate 
from actual pupil size variations, given the extremely fast rate 
of the changes. Furthermore, when shorter segments of PD data, 
such as the signal displayed in Figure 6 are analyzed, it becomes 
apparent that the high variability of the signal is in fact 
quantization noise, derived from the fact that the pupil only 
occupies a small portion of the camera’s field of view (see 
Figure 4), which is, in turn, sampled at a relatively low 
resolution (768 H x 492 V   pixels).  
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Figure. 6. Typical PD signal recorded during the experiment. Congruent 
(“C”) and Incongruent (“IC”) Stroop segments are indicated in the plot. 
 
 



Figure 6 also shows the segment transition boundaries as 
vertical lines. The most important boundaries are the ones 
between congruent Stroop segments (C) and incongruent Stroop 
segments (IC). The PD signal is expected to be relatively low in 
the former and higher in the latter. In Figure 6, it is apparent 
that simple thresholding on the raw PD signal will not result in a 
very accurate detection result, due to the noise included in the 
raw PD data. This underscored the need to investigate 
alternatives for the removal of this noise, by filtering, prior to 
the application of a threshold. 
 
A first filtering alternative consisted of the application of a 
digital low-pass Finite Impulse Response (FIR) filter. Several 
orders and cut-off frequencies were attempted, and the most 
promising results were obtained with a  42-order FIR low-pass 
filter with its cut-off set to ¼ of the sampling rate, which in this 
case was 90 Hz. Figure 7 shows the effect of filtering the same 
PD data sequence shown in Figure 6 with this low-pass filter. 
As this figure shows, some level of improvement was achieved, 
but the result was still not appropriate for a successful 
classification by thresholding. 
 
Since our interest in the PD signal seemed to be focused on the 
general trend of its variations, without being concerned with the 
fast transitions that provide the details of the raw PD waveform, 
it seemed appropriate to attempt the separation of the 
components of interest using a wavelet-based approach.  The 
specific denoising process used employed the Daubechies D4 
wavelet, level 5, with a threshold value of 54600, established 
according to Stein’s Unbiased Estimate of Risk (SURE) 
guidelines. An example of the results obtained with this 
approach is shown in Figure 8, for the same raw PD signal as 
displayed in Figure 6. It is clear that the success achieved by 
this method was also limited. 
 
Since the noise observed in the PD signal seemed to have a 
structure similar to the “salt-and-pepper” noise of corrupted 
images, which is successfully addressed with a 2-dimensional 
median filter, we decided to also explore a median filter for this 
case. We applied a sliding window of 1900 samples, and, at 
each position of the window the median of the included samples 
was calculated and assigned as the result. Figure 9 shows the 
output from this filtering approach for the segment of raw PD 
data shown in Figure 6. 
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Figure 7. PD filtering using an LP FIR 

 
 

 
 

Figure 8. Noise removal output from a Wavelet de-noising approach.  
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Figure 9. Noise removal output from Median Filter  

 
By comparison of Figures 7, 8 and 9, one can conclude that the 
results obtained from the median filter (Figure 9) are the ones 
that are the most appropriate to attempt the detection of stress 
states ( IC segments) through thresholding of the filtered PD 
signal.  
 
As we proceeded with the application of the median filter to the 
data of all 32 subjects we noticed that, indeed, the incongruent 
Stroop segments (IC) displayed an increase in PD values, 
relative to the preceding congruent Stroop (C) segments.  On 
the other hand, it also became evident that the IC and C PD 
levels were subject-dependent. This meant that the baseline size 
of the pupil (in a relaxed state) may be different from subject to 
subject. Therefore, the threshold for each subject must take into 
account this individual characteristic.  
 
In particular, it was determined that the threshold could be set at 
a level that had been offset from the average value of PD in the 
segments of interest (congruent and incongruent Stroop 
segments). Specifically, we chose the threshold as 
  

var02.0 ×−= mthr                          (1) 
 
where m indicates the mean value of the congruent and the 
incongruent segments, and var  is the variance of the PD data 
within the congruent and incongruent Stroop segments . 



 
 

3. RESULTS AND DISCUSSION 
 

Selection of pupil diameter filtering method 
Figures 7, 8 and 9 show the results obtained from filtering a 
sample raw PD data segment with an FIR low-pass digital filter, 
a wavelet de-noising approach, and a median filter. Inspection 
of these sample results, and other similar graphical outputs 
obtained in the analysis of data from other subjects, guided our 
selection of the use of the median filter as our chosen pre-
processing block for the classification of PD data towards the 
detection of stress in the subject.  
 
The selection of the median filter for this pre-processing task 
also seems appropriate taking into account the nature of the 
artifacts present in our recorded signals, which seem to have 
characteristics similar to impulse noise. Numerous reports from 
the image processing literature have indicated that non-linear 
filters, such as the median filter, tend to be particularly apt in 
the removal of this type of noise. 
 
Selection of threshold definition  
Our choice to use Equation (1) to define a customized threshold 
for each subject stems from the recognition that the baseline PD 
values of each individual in a relaxed state can vary 
considerably.   
 
Sample results  
Figure 10 shows the result of applying the median filter on the 
raw PD segment first presented in Figure 6. In addition, this 
figure shows graphically the threshold level determined by 
Equation 1. For this particular example, the threshold value was 
calculated as thr = 42.483 .   
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Figure.10. Threshold for the median-filtered PD signal 

 
After the threshold is set, the congruent Stroop and the 
incongruent Stroop segments can be identified by the following 
algorithm: 

Case 1: 
If PD data< threshold, PD data ?  Congruent Stroop 
Case 2: 
If PD data>threshold, PD data ?  Incongruent Stroop 

 
The identified congruent and incongruent Stroop sections are 
marked in Figure. 11.  
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Figure 11. C & IC Stroop identified by threshold 

 
Figure. 11 shows that the threshold we set can successfully 
distinguish the C and IC Stroop intervals. When the known 
boundaries of the incongruent Stroop segments are compared 
with the output of the thresholding operation, it is found that 
there is  96.42% coincidence between them (for the PD signal 
from this particular subject.) 
 
Global results  
Analyzing the PD time series obtained from all 32 subjects after 
median filtering in the same way as described in the previous 
paragraph, the results for agreement in the identification of 
samples corresponding to an incongruent Stroop (“stress”) 
segment are distributed in the groups illustrated in Table 1. 
 
 

AGREEMENT NUM. OF SUBJECTS. 

80%~85% 1 

85%~90% 4 

90%~95% 8 

95%~100% 19 

 
Table. 1. Accuracy analysis of the total 32 sets PD data 

 
From 32 sets of data in total, there are 19 in which the 
agreement of recognized stress and incongruent Stroop is more 
than 95%.  Furthermore, in 27 of the data sets the agreement is 
above 90%. This seems to indicate that the combination of 
median filtering performed with the type of adaptive 
thresholding implemented may hold significant promise for the 
use of pupil diameter data towards the identification of “stress” 
states as they occur in computer users. 
 
 

4. CONCLUSION 
 

This paper investigated the use of three filtering approaches for 
the partial removal of the impact of quantization noise in pupil 
diameter signals collected through an eye gaze tracking 
instrument. We concluded that the application of a median filter 
seems to be the most successful approach for this goal. In fact, 



the median-filtered pupil diameter data series were processed to 
detect the occurrence of incongruent Stroop segments which are 
expected to be associated with the elicitation of stress in the 
experimental subjects. Our results indicate that the 
implementation of a subject-adaptable threshold was able to 
generate a detection signal that was in good agreement with the 
time markers identifying the extent of those incongruent Stroop 
segments in the original data. 
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