
Optimum versus Nash-equilibrium in taxi ridesharing

Luca Foti1 & Jane Lin2
& Ouri Wolfson3

Received: 10 February 2019 /Revised: 5 June 2019
Accepted: 15 August 2019

Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In recent years, Transportation Network Companies (TNC) such as Uber and Lyft have
embraced ridesharing: a passenger who requests a ride may decide to save money in exchange
for the inconvenience of sharing the ride with someone else and incurring a delay. When
matching passengers, these services attempt to optimize cost savings. But a possible scenario is
that while passenger A is matched to passenger B, if matched to passenger C then both A and
C would have saved more money. This leads to the concept of “fairness” in ridesharing, which
consists of finding the Nash equilibrium in a ridesharing plan. In this paper we compare the
optimum plan (i.e., benefit maximized at a global level) and the fair plan in both static and
dynamic contexts. We show that in contrast to the theoretical indications, the fair plan is almost
optimum. Furthermore, the fairness concept may help attract more passengers to rideshare and
thus further reduce vehicle miles traveled. If social preferences are included in the total benefit,
we demonstrate that the optimum ridesharing plan may be unboundedly and predominantly
unfair in a sense that will be formalized in this paper.

Keywords Geospatial analysis .Optimal/fairmatching .Ridesharing graph . Road transportation

1 Introduction

Mobility-on-demand (MOD) ridesharing services have become increasingly popular, especial-
ly in big cities, because they represent a valid solution to issues such as air pollution, fuel
consumption, traffic congestion. However, the way these MOD ridesharing services are
probably implemented by the Transportation Network Companies (TNC) such as Uber and

GeoInformatica
https://doi.org/10.1007/s10707-019-00379-6

* Ouri Wolfson
owolfson@gmail.com

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
2 Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL 60607,

USA
3 Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-019-00379-6&domain=pdf
mailto:owolfson@gmail.com

Lyft have important drawbacks from a passenger’s point of view. Specifically TNCs probably
group passengers according to system optimum to maximize its gain or minimize its cost.
However, system optimum results in some passengers incurring a higher cost (or lower
saving), which is “unfair” to those passengers. In other words, if passengers were allowed to
self-organize, they would do so differently than TNC’s, namely fair ridesharing.

We show in this paper that fairness and optimum in ridesharing are equivalent to user
equilibrium and system optimum in traffic and parking [1]. In other words, the gap between user
equilibrium and system optimum that exists in these other transportation domains, carries over
to ridesharing through the mechanisms outlined in this paper. This means that fair ridesharing
may be suboptimal to the entire system, and optimum ridesharing may be unfair to individual
passengers. Moreover, we show in this paper that optimum ridesharing may be detrimental to
most passengers, and in fact unboundedly so. Such situations may arise particularly if a
passenger’s social preferences (e.g., preference for a foodie ridesharing partner) are considered
in calculating the benefits of ridesharing. Overall, giving passengers a sense of “fairness” may
attract more customers, thus have an overall positive impact on ridesharing demand.

In this paper we compare the fair and the optimal ridesharing plans (i.e. trip matchings).
More specifically, we develop algorithms to compute fair ridesharing plans for two variants of
fairness: an even-split benefit function where the benefit of ridesharing is split evenly between
the ridesharing partners, and an uneven-split benefit function. We show that both cases are well
grounded in practice. We then quantify the gap between fair and optimum ridesharing both
theoretically and experimentally. Theoretically, we show that for the uneven-split variants of
fairness, the Price of Anarchy (PoA)1 is unbounded, whereas for the even split it is tightly
bounded by two. Furthermore, we show that a fair ridesharing plan always exists for even-split
benefit, it may not exist for uneven-split benefit, and that optimum plans may be very unfair in
a sense that is precisely defined.

Experimentally we examine the gap from a practical perspective, using the NYC taxi
database of over 700 million trips. We measure the gap in terms of mileage saving (or dollar
saving assuming a linear relationship between the two). We determine that the gap is small, i.e.
2% on average.

1.1 Static and dynamic models in ridesharing

The comparison between fair and optimum ridesharing is carried out between two different
model settings, i.e., static and dynamic. Both static (e.g., [2–4]) and dynamic ridesharing
models (e.g., [5–8]) have been well studied in the literature.

Within a static model, requests which specify a pick-up time within a given time interval are
pooled together and assigned to empty vehicles available at the common pickup location.
Hence, occupied vehicles are excluded from the assignment because their current routes are
already assigned. A practical scenario for this static model is a taxi station, e.g., at an airport.
Consider a scenario in which a person’s flight has landed at 10 am, but she needs a ride to go
from the airport to her destination: the passenger registers to a specific pool (e.g., “10:30–
10:35” pool) so that there is time to pick up her checked baggage. Rides in a pool are
combined, and assigned to empty taxis waiting in a queue at the terminal. Assuming empty
taxis are always available at the taxi station, a request or a group of requests is never assigned
to a vehicle that is in progress of serving other requests.

1 Price of Anarchy or PoA is the maximum ratio between the benefit of the optimum plan and the fair one

GeoInformatica

In a dynamic model, new requests can be combined and assigned to a taxi anytime and
anywhere even if that taxi may already be occupied, as long as it has enough empty seats to
accommodate the requests. A new route has to be computed in order to satisfy all the requests
either newly assigned to or already onboard the vehicle. Hence, the vehicle’s route changes
dynamically.

1.2 Relevant work

The recent scientific literature has paid close attention to mobility-on-demand ridesharing in
general [9–15], and taxi ridesharing in particular [2, 3, 6, 8, 16–20]; in taxi ridesharing the
drivers do not have their own destinations, and this in turn expands the number of possible
ridesharing routes. In these references, the discussed issues relate to how to match passengers
and taxis efficiently (i.e. quickly), effectively (i.e. maximizing the benefits), taking advantage
of multimodality (specifically walking), and what savings (e.g., in terms of mileage, number of
trips, or dollar values) can be obtained by this matching in various practical situations. Agatz
et al. [21] provide a review of optimum ridesharing.

Santi et al. [2] introduce the unweighted ridesharing graph used in this study, and provide
experimental results in the Manhattan area. In the dynamic model, Alonso-Mora et al. [5]
propose an any-time optimal approach, also used here, which finds the optimum solution to the
problem of minimizing travel delays; but due to the complexity of the problem and the fact that
a solution has to be found in real-time, a suboptimal solution is found there. In contrast, in this
study we find the optimum solutions; the reason is that our study’s purpose is to compare the
gap between optimum and fair plans, and we are not bound by real-time considerations. And
we use an adaptation of the any-time algorithm which maximizes benefit rather than mini-
mizing delay.

Ridesharing is a cooperative game, specifically a coalition formation (CF) game in which a
set of trip requests is partitioned into a coalition-structure i.e. disjoint subsets of requests; each
subset is a coalition whose members will rideshare ([22]).2 The coalition structure is formed
subject to constraints dictated by bounds on delay due to ridesharing, passengers’ preferences
for other passengers, and objective functions such as cost or mileage savings. The approach to
ridesharing taken in the CF literature has been to optimize the objective function, and
subsequently redistribute the benefit in order to make the optimum as stable as possible (see
[10]); where stability means that passengers’ preferences provide no incentive to switch
coalitions, and is equivalent to our fairness concept. There are three problems with this
approach. First, the approach is incompatible with quantitative social ridesharing (the approach
used here) since preferences cannot be naturally distributed among passengers, i.e., they are a
nontransferable utility in CF terminology. Second, even if the benefit can be distributed,
passengers cannot be given an intuitive and understandable formula for the way ridesharing
benefit is split. For example, consider two trips A and B, both of which originate at the same
time from an airport, and are combined to rideshare such that A is dropped off first, and then B
is dropped off. The CF approach may still distribute to A more of the savings that ridesharing
produces, even though ridesharing inconveniences B more than A (due to the fact that the
combined trip follows the shortest path to A, but not to B). Passenger B may understandably
consider this distribution unfair, and consequently refuse to rideshare with A, or refuse to use
the ridesharing system in general. Third, the opportunities for redistribution of the benefit for

2 A coalition-structure is a ridesharing-plan in our terminology.

GeoInformatica

the purpose of fairness are limited. More specifically, it is possible that the optimum coalition
structure is not amenable to fair redistribution while keeping the total benefit of each coalition
within its members (a natural requirement for ridesharing) (see [10, 23]).

In this paper we take a Hedonic Game approach ([24]), which means that we treat benefits
as nontransferable (even though sometimes the benefits represent $-savings). The reason is that
in our setting the individual benefit of each passenger in a ridesharing group (a coalition)
depends only on the ridesharing partners and is independent of other coalitions and their
members. Furthermore, this individual benefit is given by a predefined formula that is simple
and easily understandable. For example, the $-savings of a combined trip is distributed evenly
among the passengers; or, it is distributed proportionally to the increase (compared to the solo
trip) in the distance traveled.

Social preferences in ridesharing have been discussed in the literature [10, 25, 26]. Our
social-ridesharing model is compatible with [25], but in contrast to [10, 26] we do not impose
the qualitative requirement that a ridesharing group form a connected social network subgraph.
The passengers specify social preferences that are weighted in conjunction with spatio-
temporal compatibility of trips. Another commonality between the present paper and [10] is
that they also discuss fairness/stability. However, [10] does not compare between the fair and
optimal ridesharing plans, but introduces an algorithm that incorporates fairness into an
optimal solution using the CF approach discussed above. Also, the [10] notion of fairness
differs from the one in this paper.

Thaithatkul et al. [14] investigate day-to-day dynamics of a ridesharing matching problem
using a modified Stable Roommates Problem (SRP) approach in a static setting, allowing
within-day and day-to-day variation in ridesharing decisions. They use a specific pair-wise
utility function, and find that multiple day-to-day equilibria exist under certain conditions. No
distinction between SRP and optimum ridesharing is drawn and consequently no comparison
to optimal ridesharing is discussed.

Finally, in our prior investigation [27], we have introduced the concept of fair ridesharing,
devised algorithms for static fair ridesharing plans, and analyzed their complexities. However, [27]
does not quantify the difference between fair and optimum ridesharing plans, which is the focus of
this paper. Nor does it discuss and quantify the difference between the static and the dynamic
models, or between the uneven and even-split of the benefits. In our most recent investigation [18],
we focus on the comparison of the fair and optimum ridesharing plans in dynamic models. This
paper builds on [18, 27], adding the following: 1. we integrate the two papers under a single model;
2. we conduct further experiments, quantifying the difference between fair and optimum ridesharing
plans in both static and dynamicmodels, with even and uneven split; 3.We show that for a set of ride
requests the fair ridesharing plan is unique, and thus the PoA and a related concept, the Price of
Stability, are identical; 4.We show that for the even-split fair plan the bound of 2 on the PoA is tight,
and that this bound holds even for the geometric variant of the problemwhere the benefit is given in
terms of mileage savings on a concrete road network; 5. we introduce the concepts of predominant
and unbounded unfairness in ridesharing, and demonstrate the optimum plan may be unboundedly
and predominantly unfair; and this is more likely to occur when considering social-preferences for
the purpose of devising the ridesharing plan.

The framework of our ridesharing platform is the following. The passenger’s request
expresses willingness to rideshare by providing a bound on the delay; and the system returns
with a discount (compared to riding alone). When installing the app, the user can also specify
criteria and preferences for social ridesharing. This framework is slightly more flexible than
Uber’s and Lyft’s, where the system proposes the delay and the discount and there is no social

GeoInformatica

consideration. And our framework is not based on auctions, thus a large body of work related
to truthfulness in ridesharing (e.g. [28–30]) is not directly applicable.

1.3 Contributions

In summary, the main contributions of this paper are as follows:

& We introduce the concept of fair ridesharing for an arbitrary benefit function, and contrast
it with optimum ridesharing; and we show how to incorporate quantitative social
ridesharing into the frameowork.

& We introduce the concepts of predominant and unbounded unfairness in ridesharing, and
demonstrate the optimum plan may be unboundedly and predominantly unfair.

& We distinguish between even and uneven split of the benefit and prove that the PoA is
tightly bounded by two in the former, even in the geometric setting of ridesharing (see sec.
5.1), and unbounded in the latter.

& We show experimentally that for ridesharing worst case analysis is significantly different
than the average case in the sense that in practice the difference between fair and optimum
ridesharing is small (around 2%); this is regardless whether the benefit is evenly or
unevenly split.

The rest of the paper is organized as follows. Section 2 defines fair and optimum ridesharing
schemes. Section 3 presents the algorithms used to compute ridesharing plans in both the static
and dynamic models. Section 4 describes the settings of the numerical experiments, followed
by the results in sec. 5. Finally, conclusions and future work are discussed in sec. 7.

2 The ridesharing model

In this section, we first define the concepts of a ridesharing pool (sec. 2.1). Then we define the
pairwise ridesharing graph (sec. 2.2). In sec. 2.3 we define the concepts of a fair and an optimal
ridesharing plan, and prove several related properties. In sec. 2.4 we discuss social ridesharing,
and in sec. 2.5 we discuss the extension of the concepts to ridesharing that combines more than
two trips.

2.1 Pooling requests

A road network is a weighted directed graph where a vertex is a road intersection, and an edge
is the road segment between two intersections. The weight of an edge represents time to
traverse the road segment or the length of the segment. A trip request, or a request for short, is
a tuple which consists of: pick-up and drop-off locations on the road network, pick-up time
availability, passengers count in a traveling party, and a fraction representing the bound on the
delay (compared to solo travel along the fastest path) that the trip can tolerate due to
ridesharing. For example, if the bound on the delay is 20%, then an hour-long trip along the
shortest path can be lengthened to at most 1.2 h to facilitate ridesharing.

Typically, requests are considered with queuing based formulations [31], thus vehicles are
matched to requests as the latter arrive in real time. In this paper we group requests issued
within a specific time interval into a “pool” to facilitate ride matching.

GeoInformatica

Ridesharing Pool (definition 1): a ridesharing pool is a set of requests characterized by a
time interval which ranges from “start pool time” to “end pool time” (e.g., if pool size is 5 min,
then a possible pool starts at “10:00:00” and ends at “10:04:59”): all the requests which have
been issued for a pick up within this interval (e.g., pick up time is at “10:02:00”) are added to
this set.

2.2 Ridesharing graph and ridesharing plan

We represent the pairwise ridesharing opportunities of a pool of requests as a weighted graph,
called ridesharing graph (RSG) [5]. In an RSG = (V, E), each node vi ∈V is a single request,
and each edge eij ∈E connects two ridesharing requests vi and vj. Intuitively, if eij ∈E it means
that requests vi and vj can be combined and serviced by a single vehicle. Formally, this means
that:

1. There is a path P in the road network from one of the two origins to one of the two
destinations, such that

a. P goes through the remaining origin and destination, and
b. in P each origin comes before its corresponding destination; and

2. P satisfies the delay constraints of requests vi and vj.

The weight of edge eij , denoted wij, is rational positive number representing the total benefit
gained by combining requests vi and vj in a vehicle traveling along path P over the execution of
the two single requests separately (i.e., riding alone). The total benefit of a ridesharing
partnership may include dollar saving, mileage saving, pollution saving, social benefit (see
sec. 2.4) or a combination of such factors.

The weight of an edge wij must be positive since if wij ≤ 0 then vi and vj should not be
combined, i.e. eij ∉E. For simplicity we assume that the edge weights are distinct, i.e. for every
pair of different edges eij and ekl, wij and wkl are different. If this condition is not satisfied
initially, the RSG can be easily modified to satisfy it by adding to some edges a fraction that is
arbitrarily close to 0.

The total benefit wij is split between the individual benefit of vi, denoted wij(i), and that of vj,
denoted wij(j), such that wij(i) +wij(j) =wij. Intuitively, this means that the individual benefits of
the two partners sum up to the total benefit of the partnership. The individual benefits are
calculated according to a predefined formula.

Figure 1 is an example of RSG. In Fig. 1, the individual benefits are calculated as follows.
The total benefit of an edge is the dollars saved compared to the two requests being serviced by
different vehicles, and the total benefit is split evenly between the two requests. Other formulas
for calculation of the individual benefits are discussed in sec. 2.4 and 4.3. In terms of notation,
on each edge eij between requests vi and vj, a label which encloses two values in square
brackets is depicted: the value closest to request vi (vj) indicates the individual benefit of
request vi (vj) in this shared ride.

Ridesharing Plan (definition 2): Given an RSG G, a ridesharing plan (rsp) on G, or a plan
for short, is a set S of edges in the G such that no request appears in different edges of S.

Intuitively, each edge eij, if exists, represents a shared ride combining requests vi and vj, and
thus the edges are selected such that no request belongs to more than one edge. In graph theory,
an rsp is also known as a matching of the RSG.

GeoInformatica

2.3 Fairness vs. optimality in ridesharing

Fair ridesharing (definition 3): Given an RSG G, an rsp F on G is fair if there is no pair of
requests A and B that are unmatched in F, but the individual benefit of Awhen matched with B
is higher than A’s individual benefit when matched with its partner in F; and the same for B.

In other words, an rsp is fair if there is no pair of unmatched requests that would both
benefit more if they were matched. Observe that fairness requires reciprocity. That is, an rsp
may be fair even if for a pair of unmatched requests A and B, A would benefit more when
matched with B, but B would not. This is analogous to A making a partnership offer that is
turned down by B, and it is fair for B to turn down the offer. Our notion of rsp fairness is the
application of the stable matching concept, used in economics and mathematics, to ridesharing.

For example, in Fig. 1, the rsp that combines (A,B) and (C,D) is fair, yielding an overall
dollar saving of $14, but the rsp = {(A,D), (B,C)} is unfair because A and B can both save
more by ridesharing with each other. Even though D may incur higher saving if pairing up with
A over C, the pairing of A and D is not reciprocal because A prefers B and vice versa. Hence,
in the rsp = {(A,B), (C,D)}, no one can benefit more by changing his/her partner unilaterally,
and thus it is a fair one.

This concept of fairness results from the application of Nash Equilibrium to ridesharing.
Specifically, in a game setting of ridesharing, passengers are the players; the strategies to each
passenger are the feasible matches with other passengers; the payoff for each passenger is his/
her net benefit in ridesharing relative to riding alone. By definition, the Nash equilibrium
describes a desirable strategy in the game in which no player can improve his/her payoff by
changing strategy unilaterally [32]. Fair ridesharing as defined above is a matching problem,
and it can be formulated as a Nash Equilibrium [33].

For reasons of complexity, existence of a solution, and practicality we further distinguish an
even-split and an uneven-split RSG in this study. An even-split RSG is one in which, for each
edge eij ∈E, there exists wij(i) =wij(j), as in Fig. 1; an uneven-split RSG is one where there
exists at least one eij ∈E such that wij(i) ≠wij(j).

Even and uneven split cases may arise in practice. For example, the taxi shared ride service
at the O’Hare airport in Chicago (flychicago.com) pairs passengers going to downtown
Chicago, and if two passengers are paired, then each one of them pays $25, regardless of

Fig. 1 An example even-split
Ridesharing Graph (RSG)

GeoInformatica

http://flychicago.com

who gets dropped off first. This results in an even-split RSG. On the other hand, it may make
more sense for the passenger who gets dropped off first to save less. This results in an uneven-
split RSG.

Theorem 1 A fair rsp may not exist for an uneven-split RSG.

Proof A fair rsp is a variant of the Stable-Roommate Problem (SRP), and it is established that
a solution to an SRP may not exist. For example, consider the RSG of Fig. 2 and the rsp
R = {(A,D), (B,C)}. This rsp is unfair to A, since both A and C save more when pairing with
each other than with their partners in R (namely D and B respectively).

Now consider any other rsp say R’. The benefit of partnering with D is positive for each
other request, thus R’ will partner some request, i.e. B or C, with D. Using the same argument
as used above for A, it can be shown that R’ will be unfair to that request. [].

If a fair rsp does not exist, then at least one pair of requests is treated unfairly (i.e. the
requests prefer each other over the partners assigned to them by the rsp); however, this is
unavoidable.

Optimum ridesharing (definition 4): Given an RSG G, an optimum rsp is one that yields
the maximum total benefit among all possible rsp’s on G.

For example, in Fig. 1, the optimum rsp combines (A,D) and (B,C), providing the largest total
dollar saving of $15; the fair rsp = {(A,B), (C,D)} gives an overall dollar saving of $14. Observe
that, even thoughA andB could rideshare, andA andD could rideshare as well, A, B, andD cannot
rideshare at the same time since B and D are not sharable (i.e., no edge between B and D).

Observe further that changing the split of a single edge may produce a different fair plan,
even if the total dollar saving of the edge does not change. For example, in Fig. 1, if edge
(A,B) has a split of {3,6}, instead of {4.5,4.5}, which means that A incurs a saving of $3 in
ridesharing with B and B incurs a saving of $6 in ridesharing with A, then the optimum plan is
also a fair one, i.e., rspo = rspf = {(A,D), (B,C)}.

In contrast to Theorem 1, it is easy to see that an optimum rsp always exists.
Given an RSG G, the Price of Anarchy (PoA) is the ratio between the optimum rsp on G,

and the worst fair rsp, i.e.,

PoA ¼ maxp∈PBenefit pð Þ
minp∈EBenefit pð Þ ð1Þ

where P is the set of all rsp’s on G, E ⊆ P is the set of fair rsp’s, and Benefit(p) is the benefit of
rsp p.

(2,5)

Fig. 2 A Ridesharing Graph for
which a fair rsp does not exist

GeoInformatica

Similarly, the Price of Stability (PoS) is the ratio between the optimum rsp and the best fair
rsp on G, i.e., in the formula (1) above the min is replaced by max.

Theorem 2 In an even-split RSG, the PoA and the PoS are both bounded by 2, and the bound
is tight.

Proof The greedy algorithm used to compute the fair rsp is described in sec. 3.1.1(c) and is
called Even-Split-Nash-Equilibrium (ESNE). In essence, it selects edges of the RSG in
descending order of benefit and finds a collection of disjoint sets of edges of maximum total
benefit. This algorithm can be easily shown to be a 2-approximation of the optimum (see [34]).
Theorem 5 in sec. 3.1.1 indicates that for a given even-split RSG there is a unique fair rsp, thus
PoA and PoS are bounded by 2.

To see that the bound is tight consider again the RSG of Fig. 1, but modify the total benefit
of the edges as follows: (A,B) = x + ε1, (A,D) = x + ε2, (D,C) = ε1, (C,B) = x where ε1 > ε2. The
PoA (and PoS) in this case is arbitrarily close to 2. [].

Theorem 3 In an uneven-split RSG, the PoA and the PoS are unbounded.

Proof Assume that in Fig. 1 request D’s individual benefit for ridesharing with A is not 4, but
an arbitrarily large value X (e.g., D’s social score, defined below, for A is very high). In this
case the optimum rsp is {A,D} and {B,C}, whereas the fair rsp is {A,B} and {C,D}. The ratio
between the two is a constant times X, i.e. an arbitrarily large value. [].

2.4 Incorporation of social preference scores

We have defined in sec. 2.2 a RSG as a weighted graph. The weight wij represents the total
benefit gained by combining requests vi and vj over the execution of vi and vj separately (i.e.,
riding alone). Previously the weight was measured in terms of dollar or mileage saving. In this
section, we generalize the definition of a weight to include a passenger’s social preference
scores and show that, when incorporating social scores, the optimum rsp may no longer be
sensible in contrast to the fair rsp.

From sec. 2.2, we have

wij ¼ wij ið Þ þ wij jð Þ ð2Þ
where wij is the total benefit of edge eij, wij(i) and wij(j) are the individual benefits of vi and vj,
respectively. For each individual benefit, we define it as a weighted sum of the out-of-pocket
monetary saving, delay, as well as social preferences such as personal preferences on what type
of person to rideshare with. For example, a female passenger may prefer to rideshare with
another female passenger; singles may prefer other singles; a wine lover may want to be able to
strike a conversation with another wine lover. That is,

wij ið Þ ¼ ∑kαk ið Þxk ið Þ ð3Þ

where xk(i)‘s are the individual benefit scores for out-of-pocket monetary saving, delay, social
preferences, etc., and αk(i)‘s are the weights reflecting the relative importance of those benefit
scores. For example, if someone strongly prefers a partner who is a classical music lover, the

GeoInformatica

person may place a very high weight on that score. We assume that the weights and individual
scores for social features (e.g. classical-music lover) are provided truthfully.

We now demonstrate that when social scores are incorporated in the ridesharing benefit
calculation, optimum ridesharing may be unboundedly unfair. Consider the scenario in Fig. 3,
where D feels strongly about partnering with A only. For example, suppose D places a great
deal of emphasis on his/her ridesharing partner being single. Between D’s potential partners,
i.e., A and C, A is single but C is not. Hence, D has a very high overall benefit in ridesharing
with A (e.g. X = 1000) over C (e.g. 100). In this case, even though A and B prefer each other,
and C prefers D, the optimum plan is rspo = {(A,D), (B,C)}. As a result, the optimum plan
benefits only D and inconveniences all others, thus it is clearly unfair. Furthermore, the
inconvenience may be arbitrarily large. The following discussion formalizes these concepts.

Let G= (V,E) be an RSG, and assume that a fair plan on it exists. Let P be an rsp on G, and
S a subset of the set of requests V. We say that P unfair on S if for each request r in S, the
individual-benefit of r in P is lower than the individual benefit of r in every fair plan defined
on G. We say that P is predominantly unfair, if S contains a majority of the requests in V.

Furthermore, P is unboundedly unfair on S, if for any number N, the individual benefits on
G can be modified3 to create RSGG’ which has a fair plan, such that for P on G’ the following
condition C1 is satisfied:

C1: for each request r in S, the individual-benefit of r in P is lower than the individual
benefit of r in every fair plan defined onG’ by a factor of at least N, i.e. for every r ∈ Vand
for every fair plan F, b(F,r)/b(P,r) > N, where b(Q,r) is the individual benefit of r in rsp Q.

P is predominantly unboundedly unfair, if it is unboundedly unfair on a set of requests S
containing a majority of the requests in V.

Proposition 1 Consider the RSG in Fig. 3. The optimum plan P= {(A,D), (B,C)} on it is
predominantly unboundedly unfair.

Proof For each X > 10 and ε < 1 there is a single optimum plan and a single fair plan, and each
member of S = {A, B, C}, has a higher individual benefit in the fair plan {(A,B), (C, D)} than in
P. Thus, P is unfair on S. Now let N be a number, and let X =N. For r = A, B, and C, and
F= {(A,B), (C, D)}, b(F,r)/b(P,r) >N. [].

Fig. 3 An example of an rsp that is
optimal but predominantly and
unboundedly unfair

GeoInformatica

We postulate that often a Transportation Network Company may choose to make the
majority of its customers happy, rather making a single customer very happy. In other words,
the TNC may choose the fair plan over the optimum one if the latter is predominantly and
unboundedly unfair.

2.5 Ridesharing graph with more than two requests in a shared ride

In this case the ridesharing problem is represented as a weighted undirected Ridesharing
Hyper-graph (RSH) [2]. In an RSH (V, H) each node in V is a request, and each hyper-edge
E ∈H is a set of nodes; the cardinality of E is c or lower, where c is the maximum capacity of a
vehicle. The weight of E is the total benefit obtained if the corresponding set of requests is
serviced by a single vehicle. The individual benefit in an RSH is defined analogously to the
RSG.

An (un)even-split RSH is one in which the total benefit represented by the weight of each
hyper-edge is (un)evenly split among its requests.

A ridesharing plan is a set of node-disjoint hyper-edges in the RSH. An optimum rsp is one
of maximum total weight. An rsp F is fair if there is no hyper-edge E ∈H that is not in F, but
each request r in E has a higher individual benefit than r’s individual benefit in F.

3 Ridesharing algorithms

In this section we present the algorithms used to produce the optimum and the fair rsp within
the static and dynamic models. They are summarized in Table 1. The algorithms for the static
model are presented in sec. 3.1 and the ones for the dynamic model in sec. 3.2.

This section has two objectives: first to discuss possible algorithms to solve each one of the
problems in Table 1, and second to discuss the algorithms implemented in the experiments
presented in sec. 4.

3.1 Static models

The static models assume that: (a) all ridesharing trip requests within a pool are known in
advance, (b) all trips originate at a single location, namely a traffic hub H (e.g., an airport),4

and (c) there are sufficient empty taxis available at the pickup location. Assumption (c) is
strong, but in practice it may often be the case as taxi drivers often have very good knowledge
about where the traffic demand hotspots are. For example, at an airport taxis often wait in line
for customers.

We consider two types of RSGs: pairwise (at most two requests) RSG (sec. 3.1.1); and a
general RSH in which any number k of requests can be merged, where k is constrained by the
taxi capacity (sec. 3.1.2). In each type, we compute three rps’s: the optimum rsp, the even-split

3 The modification adjusts only the weights of the edges of G. The nodes and edges remain the same, thus P is an
rsp on the resulting graph G’ as well.
4 Due to this assumption, which implies a queue of taxis waiting for passengers, we are able to consider in a
realistic setting ridesharing that is independent of vehicles locations and availability; these are being considered in
the dynamic models.

GeoInformatica

fair rsp, and the uneven-split fair rsp. The algorithms for finding the rsp’s are of different
complexity.

3.1.1 Combining at most two requests

Consider a pool of n requests.

(a) Construct the RSG

Each request in the pool is a node in the RSG. Two nodes are connected by an edge if the benefit of
combining them is positive. For example, assume that the benefit, i.e. weight, of an edge eij is the
distance saved by combining (ridesharing) the requests vi and vj. Then the weight wij is (S− L),
where L is the shortest path in the road network that starts at the hubH, ends at the destination of vi
(or vj) and goes through the destination of vj (or vi); and S is the sum of the two respective shortest
paths from the origin to the destination. The individual benefits are either (S− L)/2 in the even-split
case, or are computed according to the split equation (see sec. 4.1 for an example of split equation) in
the uneven-split case. The weight of the edge needs to be computed for each pair of requests in the
pool. If the weight of an edge (i.e. the individual benefit of each request in the edge) can be
computed in constant time,5 then the RSG-construction takesO(n2). If the weight of an edge cannot
be computed in constant time, e.g. in the above examplewhere theweight is the vehicle-miles saved,
then the RSG-construction takesO(n2) shortest path computations; each shortest path is computed in
the graph G(N,A) representing the road network. Overall, the time complexity in this case is
O(n2(|A| + |N| log |N|)).

(b) Compute the optimum rsp

The optimum rsp can be computed with any maximum weight matching on the RSG. The
Edmonds maximum matching is employed for the weighted case [35]. It yields a O(n2.5) time
complexity.

Table 1 Set of rsp’s considered in this study

Optimum Fair

Static model Combining at most two requests (pairwise) Even-split
Uneven-split

Combining more than two requests (k > 2) Even-split
Uneven-splita

Dynamic model Adding any feasible number of new requests to the onboard ones Even-split
Uneven-splitb

a the algorithm is discussed but not implemented in the experiment described in sec. 4
b only the case of combining at most two requests (new and onboard together) is implemented in the experiment
described in sec. 4

5 For example, the weight of an edge can be computed in constant time if the Euclidean distance saved is used as
the weight. Specifically, the weight of eij is (S − L), where L = min {[(Euclidean distance from H to the
destination of vi) + (Euclidean distance from the destination of vi to the destination of vj)], [(Euclidean distance
from H to the destination of vj] + (Euclidean distance from the destination of vj to the destination of vi)]; and S is
the sum of the two Euclidean distances from the hub to the two destinations.

GeoInformatica

(c) Compute an even-split fair rsp

The even-split fair rsp is computed iteratively by combining two requests at a time; the requests
combined are the ones connected by the edge with the highest individual benefit (which is the
heaviest edge in this case) in the remaining RSG, and removing them from RSG (along with their
outgoing edges). This is done while there are still edges available in RSG. More specifically, the
algorithm is as follows.

More specifically, the fair rsp F is computed by the following algorithm called Even-Split-
Nash-Equilibrium (ESNE):

(a) Let F consist of the empty set.
(b) While there are edges in the remaining RSG do:

(b.1) find the edge eXY with the highest individual benefit in the remaining RSG,
(b.2) put the edge eXY in F (i.e. combine trips X and Y), and remove X,Y and their
adjacent edges from the remaining RSG.[]

In terms of time complexity of ESNE, observe that there are at most O(n2) edges in the RSG,
and sorting them takes O(n2 log (n)). A data structure in which each request points to its
adjacent edges in the sorted list, and vice versa, can be prepared in O(n2 log (n)). Then the
algorithm can be completed by a linear scan of the sorted list, where the processing of each
entry can be done in constant time. Thus, the time complexity of the algorithm ESNE is O(n2

log (n)).

Theorem 4 For an even-split RSG, the rsp F computed by ESNE is fair.

Proof Assume by contradiction that there exist two trips A and B that are not paired with each
other in F, but both A and B have a higher individual benefit if they rideshare with each other,
rather than with their assigned partners in F. Then the edge eABmust have been removed at step
b.2 in some iteration k of ESNE. Furthermore, at iteration k another edge, say eAC, must have
been put inF. The fact that ESNE selected eAC rather than say eABmeans that the weight of eAC is
not lower than that of eAB. Therefore, since the RSG is evenly split, A’s individual benefit in
ridesharing with C is not lower than A’s individual benefit in ridesharing with B. This is a
contradiction to the assumption that A’s individual benefit is higher when ridesharing with B. [].

Theorem 4 indicates that for an even-split RSG a fair rsp always exists. This is in contrast to
an uneven-split RSG, for which Theorem 1 indicated that a fair rsp may not exist.

Theorem 5 For an even-split RSG, there is a unique fair rsp.

Proof Assume by way of contradiction that there exists another fair rsp,E, that is different than
F computed by ESNE. Then sort the edges of F and E in decreasing order by weight, and
consider the first position kwhere the edges of the two rsp’s are different; i.e. fvw in F is different
than the k’th edge ofE. Due to the fact that the edge-weights of the rsp are distinct (see sec. 2.2),
v appears in the sorting ofE after position k, and so doesw. Due to the way Fwas constructed, v
has a lower individual benefit in E than in F; and so does w. Thus E is unfair. []

(d) Compute an uneven-split fair rsp

GeoInformatica

The uneven-split fair rsp algorithm USNE works as follows.

1) each request in the RSG sorts its neighbors (possible partners in the ridesharing plan) by
individual benefit in descending order;

2) the sorted lists are solved with the algorithm that solves the “Stable Roommates Problem
with Incomplete Lists” (SRP) [36] to find a fair rsp.

Overall, the time complexity of USNE is O(n2 log (n)).

3.1.2 Combining more than two requests (k > 2)

We assume that a vehicle can hold at most c passengers, and thus the RSH consists of hyper-
edges of cardinality of at most c. For the experiments described in sec. 4 we set c = 4.

(a) Construct the RSH

Each request in the pool is a node in the RSH. The construction is similar to that of the RSG
discussed above in sec. 3.1.1. If the weight of a hyper-edge can be computed in constant time,
then the RSG construction takes O(nc).

(b) Compute the optimum rsp

Finding a maximum matching in a hyper-graph is a NP-complete problem. By a straightfor-
ward reduction it can be shown that, consequently, finding the optimum rsp is NP-complete.

For the experiments described in sec. 4 we find the optimal rsp by a computation that is
exponential in the worst case. However, for speed up we use a Branch-and-Bound technique
inspired by the solution to the “Graph-Constrained Coalition Formation” (GCCF) problem
([26, 37]).

(c) Compute an even-split fair rsp

The even-split fair rsp is computed with an equivalent of Algorithm ESNE; i.e. it selects hyper-
edges in decreasing order of their individual benefits. Observe that here, in contrast to ESNE, it
is possible that at some iteration of step b.1 of ESNE, a selected hyper-edge E may have a
lower weight than that of another hyper-edge K in the remaining RSH, even though E’s benefit
is higher (due to the fact that E has a lower cardinality). The worst-case complexity of the
algorithm is O(nc log (n)).

(d) Compute an uneven-split fair rsp

The problem of finding an uneven-split fair rsp or establishing that there is none becomes NP-
complete; this can be demonstrated by a straightforward reduction from the “Stable Room-
mates Problem with triple rooms” (3D-SR) discussed in Iwama et al. [38].

As shown in sec. 4 in the context of combining only two requests at a time, there is no
significant difference between the even- and the uneven-split fair plans; thus, for ridesharing of
more than 2 requests, sec. 4 compares the optimum plan to the even-split fair plan only. In

GeoInformatica

other words, an uneven-split fair rsp for combining more than 2 requests is not considered in
the experiments presented in sec. 4.

3.2 Dynamic models

In the dynamic models, new requests may appear dynamically in space and time, and they are
grouped into pools as in the static case. The algorithm for finding an rsp also involves
assigning a taxi to a group of newly matched requests in a pool. The total number of taxis
is fixed and limited, which means that an assigned taxi may need to travel to the pickup
location and it may already be occupied at the time of assignment. The implications are as
follows: 1) we consider the general k-request rsp’s (where k > 2) for both optimal and fair rsp’s;
and 2) in contrast to the static model, a taxi may dynamically change its route to service a
newly arrived request, and the on-board requests need to be considered when computing the
revised route. Therefore each pool consists of new requests, or NRs, i.e., requests whose pick-
up time availability falls between start-pool-time and end-pool-time; and onboard requests, or
ORs, which are requests that are on board taxis.

(a) Construct an extended RSH (e-RSH)

In the dynamic model requests are only meaningful when assigned to a taxi. Furthermore,
different taxi assignments can provide different benefits. To implement this idea, we first
construct the RSH (V, EH) with respect to NRs only, following the approach discussed in sec.
3.1.2. So the nodes in the RSH are NRs and the hyper-edges are disjoint sets of the NRs
sharing rides. Next, we extend the RSH to include ORs and create an extended-RSH (e-RSH).

This is how the e-RSH (Ve, Ξ) is created. The nodes of the e-RSH are the NRs in the pool
and the taxis. A taxi T is feasible for a hyper-edge E of the corresponding RSH if: 1) currently
T can accommodate the NRs in E; 2) the delay constraints of the ORs in T and of the NRs in E
can be satisfied; and 3) the benefit of combining the ORs in Twith the NRs in E is positive. For
each hyper-edge E of the RSH and taxi T, if T is feasible for E then a new hyper-edge ΞET is
created in the e-RSH;ΞET consists of the requests in E and taxi T.6 Otherwise, no hyper-edge is
created for the pair in the e-RSH.

If a hyper-edge E of the RSH is not connected to a taxi in the corresponding e-RSH,
meaning that the matched new requests in the hyper-edge cannot be allocated to a taxi in the
current pool, these new requests are pushed to the next pool.

In the instantiation of the e-RSH construction used in sec. 4, the weight of an e-RSH hyper-
edge is the distance saved by combining the NRs and ORs. If the taxi is empty at the time of
being assigned to the NRs, then the weight is computed among the NRs the same way as in
sec. 3.1.1(a).7 If the taxi is already occupied, then the weight is the difference (S − L), where:

& S is the sum of

& the sum of the shortest paths to satisfy the NRs, and

6 Observe that all the subsets of a hyper-edge are also hyper-edges in the RSH, since if requests A, B, C can be
combined, then clearly they can be pairwise combined. For the purpose of constructing the e-RSH, singleton
subsets of an RSH hyper-edge are also hyper-edges with weight 0 (since there is no ridesharing benefit). It means
that {A}, {B}, and {C} in the example are also hyper-edges that are matched with taxis.
7 Observe that this formulation does not consider the distance that the empty taxi travels to the pickup location.

GeoInformatica

& the remaining taxi path to satisfy the ORs at the time the algorithm is run;

& L is the shortest path to satisfy all the NRs and ORs at the time the algorithm is run.

The overall time complexity for constructing the e-RSH is O(n4m) shortest path computations,
i.e., O(n4m(|A| + |N| log |N|)), where m is the number of taxis, n is the number of total requests
in the pool, and G(N, A) is the graph representing the road network.

(b) Compute the optimum rsp

To solve for the optimum rsp for a given e-RSH, we apply an adaptation of the Integer Linear
Programming (ILP) problem presented in [5]. In contrast to [5], we maximize the overall
benefit, rather than minimize the cost; also our ILP uses hyper-graphs rather than graphs.
Otherwise the ILP’s are similar, and we present ours here simply for completeness.

In order to speed up the process of finding the optimum rsp, we start from an initial solution
found by the following greedy algorithm:

1) sort the hyper-edges of the e-RSH by weight in the descending order;
2) add the remaining hyper-edge with the highest weight, Ξ (∈Ξ), to the solution;
3) remove the nodes (i.e., new requests and taxi) and the connected hyper-edges that contain

nodes in Ξ from the remaining e-RSH;
4) repeat steps 2) and 3) until no hyper-edges remain in the e-RSH.

Then, the ILP presented in Table 3 improves this initial solution to find the optimal one.
The ILP assigns taxis (vj’s) to groups of matched new requests (gk’s), i.e. edges of the RSH,

to maximize the total savings.
In addition to the notations listed in Table 2, there are two sets of binary variables used in

the ILP:

∈gkvj ¼ f 1; if gk∪ v j
� �� �

∈ERV; and gk∪ v j
� �� �

is in the solution
0; otherwise

and;

X ri ¼ 1; ∀v j∈Vand ∀gk ∈Gri ; hyperedge gk∪ v j
� �� �

is not in the solution
0; otherwise

�
ð4Þ

ϵgkv j is 1 if hyper-edge (gk ∪ {vj}) of the e-RSH is in the solution, and is 0 otherwise. X ri

defines the assignment status of a new request to a taxi: if X ri ¼ 1, then in the solution, new
request ri is not assigned to any taxi vj. The union of the two sets is denoted by

X ¼ ϵgkv j

� �
∪ X rif g. The saving sgkv j represents the weight of the e-RSH hyper-edge that

connects gk and vj.
In the objective function shown in Table 3 line (2), each X ri is multiplied by p and

subtracted in order to penalize new requests that are unassigned to a taxi. The constraints of
this ILP problem are: (3) each taxi can be assigned to at most one new request set gk∈Gv j ; and

(4) each new request is either a member of some new request set gk∈Gri that is assigned to a
taxi, or is not assigned at all.

GeoInformatica

We employ the Mosek solver for the ILP optimality; the algorithm is an anytime algorithm
that improves an initial solution and is inherently parallel, which improves the computation
time.

(c) Compute an even-split fair rsp

We solve the even-split fair rsp for an e-RSH by an algorithm that is similar to the adaptation of
ESNE to hypergraphs given in 3.1.2(c) for the static model. Observe that each hyper-edgeΞ of
the e-RSH consists of a single taxi T and a set of NRs and ORs aboard T, and the benefit ofΞ is
evenly split among the NRs and ORs. Specifically, the fair rsp F is found as follows:

1) examine hyper-edges of the e-RSH in decreasing order of individual benefit.
2) for each hyper-edge Ξ examined, insertΞ in the solution F and remove those hyper-edges

that contain either an NR or a taxi in Ξ.
3) repeat step 2) until all hyper-edges have been removed.

(d) Compute an uneven-split fair rsp

Similar to the static model, the problem of finding a fair rsp in an uneven-split e-RSH is NP-
complete. For simplicity, we only analyze the case with at most two requests. Specifically, if a
taxi is empty at the time of assignment, then at most two new requests can be combined and
assigned to the taxi; if the taxi is already occupied with ongoing requests, at most one new
request can be assigned. We employ the same algorithm, i.e., USNE, devised for the static
model. We find that there is no significant difference between the even- and uneven-split fair
plans in the dynamic models (see in Section 5.2).

Table 2 Notations in ILP

R set of all new requests in the pool, i.e., R = {ri, i = 1, 2,…, n}, where n is the number of requests in a given
pool.

V set of all taxis, i.e., V = {vj, j = 1, 2,…,m}, where m is the total number of taxis serving a given area.
ERV the set of hyper-edges in the e-RSH,
Gv j set of gk’s such that taxi vj ∈V is feasible for all the gk’s in the set, i.e., Gv j ¼

gk j gk∪ v j
� �� �

∈ERV and v j∈V
� �

Gri set of gk’s such that each gk contains new request ri, i.e.,
Gri ¼ gk jri∈gk ; gk is a hyperedge of RSHf g

Vgk set of vj’s such that each vj is feasible for a given gk (⊂R), i.e., Vgk ¼ v j
� �� gk∪ v j

� �� �
∈ERVg

p The positive real number representing the penalty for a request to be unsatisfied in the current pool, thus
transferred to the next one.

Table 3 Dynamic model: ILP formulation of maximum matching

(1) Initial solution by greedy algorithm

(2)
∑optimum ¼ argmax C Xð Þ;

where C Xð Þ ¼ ∑
gk ;∪; v jf gð Þ∈ERV

sgk v j∈gk v j− ∑
ri∈R

X ri p

(3) s:t: ∑
gk∈Gv j

∈gk v j ≤1; v j∈V; j ¼ 1; 2;…;m

(4) ∑
gk∈Gri ;v j∈Vgk

∈gk v j þX ri ¼ 1; ri∈R; i ¼ 1; 2;…; n

GeoInformatica

4 Experimental design

4.1 Network setting and data

We use the New York City road network extracted from the Open Street Map. The experiments
are conducted in a subarea of NYC that contains LaGuardia and Manhattan; the subarea road
network is a directed graph which consists of 59,792 intersections and 72,557 road segments.

We use the New York City taxi data (see [39] for details) to generate the trip and
ridesharing requests. The NYC taxi data are stored in CSV format with over 700
million trips over four years of taxi operations in NYC, organized by year and month.
Each taxi trip provides, among others, pick-up and drop-off locations (longitude/
latitude coordinates); pick-up and drop-off timestamps; number of passengers on
board; actual travel time; and distance traveled. We treat each taxi trip record as a
single trip request. For simplicity, each request’s pick-up location and drop-off loca-
tion are mapped to the closest road network intersection [2]. We also assume the pick-
up timestamp is identical to the pick-up time availability.

Pools are created based on the pick-up timestamp. For example, if the pool size is
set to be 5 min, then the 10:00–10:05 pool contains all the requests whose pick up
timestamp is within this time interval. We assume that each taxi can have at most four
passengers at any given time.

4.2 Performance measure

In the experiments we measure the potential benefit of a rsp in terms of the percentage of
vehicle miles traveled (VMT) saved by ridesharing, which is given by:

%VMT saved ¼
∑i¼ 1;…;nf gmilessp;i

� 	
− ∑ j¼ 1;…;mf gmilestraveled j

� 	

∑i¼ 1;…;nf gmilessp;i
� 100% ð5Þ

wheremilessp, i is the number of miles on the shortest path for satisfying request i alone (i.e., no
ridesharing); miles _ traveledj is the miles traveled by taxi j with some passengers on board; n
is the number of satisfied requests8; and m is the total number of taxi trips. In other words, the
distance saved is the difference between the total miles traveled without and with ridesharing.

In order to calculate the delay due to ridesharing, which is bounded by a parameter provided
by the user, we compute the time of each taxi route. To do so we assume that the travel speed
on each link is the product of the maximum link speed (given by the road network) and a
congestion fraction (cf) representing the slowdown due to traffic. In the experiments we set the
congestion fraction value to be 0.7, which means that the link travel speed is 70% of the
maximum link speed for the entire road network.9 The same fraction applies when computing
both the optimum and the fair rsp’s.

8 Unsatisfied requests are not taken into account to compute the total distance saved in the experiments.
9 In fact, the cf. value matters only for the dynamic model. The reason for this is that it can be easily shown that in
the static model, since there is no waiting after the pool-end time, the delay bound is satisfied for a value v1 of cf.
if and only if it is satisfied for any value. However, this is not the case for the dynamic model, where the delay of
a request is the sum of the travel delay and the waiting delay (which in turn may arise due to a request being
transferred from one pool to the next).

GeoInformatica

4.3 Uneven-split mechanism of benefit

In the experiments, when analyzing an uneven-split RSG, the total benefit is distributed
proportionally to the increase (compared to the corresponding shortest path) in the distance
traveled. Specifically, for any two requests vi and vj that are connected by an edge, suppose that
the destination of vi is SPi miles away along its shortest path, and Di miles away in the joint
path; and that the destination of vj is SPj miles away along its shortest path, and Dj miles away
in the joint path.

Let:

inci ¼ Di

SPi

inc j ¼ Dj

SP j

Therefore, inci (incj) represents the increase in miles traveled for request vi (vj) relative to its
shortest path. Then, for every edge (h,k) of the RSG the individual benefits (mileage savings)
of h and k are calculated according to the following equations:

whk hð Þ ¼ inch
inch þ inck

� whk ð6Þ

whk kð Þ ¼ inck
inch þ inck

� whk ð7Þ

For example, consider the situation in which passengers A and B rideshare starting from origin
H; passenger A is dropped off first, and then the taxi continues to the destination of passenger
B. Then incA=1 since the joint path follows the shortest path to dest(A). In contrast, incB is
higher, say 1.5, since the joint path from H to dest(B) goes through dest(A) rather than directly.
Now, assume that the benefit of ridesharing is 5 units. Then passenger A gets 2 units and
passenger B gets 3 units of this benefit.

4.4 Sensitivity analysis

We vary the following parameters and present their effects on the rsp’s:

& Willingness to rideshare: probability that a passenger will participate in ridesharing. For
example, if in a pool there are 50 requests and willingness to rideshare is 90%, then the
pool analyzed consists of 45 random requests;

& Maximum delay tolerated: maximum percentage of the shortest drive time from pickup
location to drop-off location that a passenger is willing to tolerate in order to rideshare. For
example, if a request requires 30 min along the shortest path and maximum delay tolerated
is 10%, then the passenger who makes the request accepts ridesharing with someone else if
he/she can be dropped off within at most 33 min;

& Pool size: the time interval during which requests are grouped into a pool.

GeoInformatica

5 Experimental results

5.1 Static model settings and results

In the static model we consider only requests that originate at the LaGuardia airport and
terminate at an intersection in the considered NYC road network. The total distance saved by
ridesharing a pool of n requests is the weight of the respective (hyper-)edge, as described in
sec. 4.2.

In the pairwise rsp (combination of at most two requests) discussed in sec. 5.1.1, the
demand consists of all the requests issued in the year 2013, each day from 7 am to midnight.
Overall, there are about two millions such requests. In the rsp involving more than two
requests in each shared ride (sec. 5.2.2), since the computation is exponential for the reasons
explained in sec. 3.1.2, we randomly choose and analyze 100 pools of requests issued in 2013.

We assume that a sufficient number of empty taxis are available at the LaGuardia airport to
serve the demand. Consequently, no request is propagated from one pool to another because, if
a request cannot find a rideshare partner, it rides alone in a taxi. Thus the set of requests in each
pool is fixed and identical in the fair and optimum simulations.

Table 4 shows the settings for each analyzed parameter considered in the analysis. Values in
bold indicate the default for the parameters. For example, when measuring the mileage saved
as a function of the willingness to rideshare, maximum delay tolerated and pool size are fixed
to 10% and 5 min, respectively.

Results are obtained by averaging all the pools for the entire year of 2013. So, for example,
if the pool size is 10 min, the number of pools analyzed is 6×24×365.

5.1.1 Combining at most two requests

In this subsection we compare the optimum rsp with the even- and uneven-split fair rsp’s, and
evaluate the number of pools for which an uneven-split fair plan does not exist. First, we
compare the optimum and even-split fair plans (see Fig. 4). As expected, the %VMT_saved
increases with the willingness to rideshare, delay tolerance, and pool sizes, in both the
optimum and the fair plan. This is because a greater value in any one of these parameters is
positively correlated with greater ridesharing opportunities for each pool. For the set of
parameters tested, the maximum %VMT_saved peaks at a value between 30 and 38%. Santi
et al. [2] demonstrated 40% reduction in vehicle trips with a maximum delay of 150 s (or a
journey time of 25 min if the maximum delay is 10% of the journey time).

The difference between the optimum and the even-split fair plans is calculated as:

mileage savings of optimum rspð Þ– mileage savings of fair rspð Þð Þ= mileage savings of optimum rspð Þ

Table 4 Static model: parameters settings

Parameter Settings

Willingness to rideshare (%) 10, 20, 30, 50, 70, 90
Maximum delay tolerated (%) 5, 7.5, 10, 12.5, 15, 20
Pool size (min) 5, 6, 7, 8, 9, 10

GeoInformatica

This difference is no greater than 2% of Vehicle-Miles-Traveled in all the parameter values
tested. Furthermore, by comparing the fair and optimum plans for each pool we determined
that the difference between the two is less than 15% in at least 90% of the pools. This is
surprising given the tight bound of 2 on the PoS (see theorem 2). One may speculate that this is
due to the geometric nature of the problem, and in fact, in ridesharing the bound of 2 on the
PoS is not tight. In Fig. 5 we demonstrate by an example that this is not the case. The example
shows a road network with a Hub (LaGuardia), four destinations A, B, C, and D, and the
distances between them (Fig. 5a). Figure 5b shows the corresponding RSG. The fair rsp is
(B,C) which has a benefit of x-y + ε, whereas the optimum plan is {(A,B), (C,D)} which has a
benefit of 2(x-y). The ratio between the benefits of the two plans can be arbitrarily close to 2. In
other words, the experimental analysis indicates that the worst case rarely occurs in practice.

We also compare the performance between the even-split fair plan and the uneven-split fair
plan. For the purpose of this comparison we ignore pools for which an uneven-split fair plan
does not exist. The difference in performance is measured by the % difference in VMT,
denoted %ΔVMT, between the uneven- and the even-split fair plan. It is defined as:

%ΔVMT ¼ VMTu−VMTe

VMTn
� 100% ð8Þ

where VMTu, VMTe, and VMTn denote, respectively, the total VMT in the uneven-split fair
plan, the even-split fair plan, and the plan without ridesharing (i.e. each request is serviced by a
different taxi). The results are summarized in Fig. 6. The average %ΔVMT is negative for all the
parameter values considered. This indicates a slightly greater VMT reduction in an uneven-
split fair plan than an even-split one (although the difference is statistically insignificant). This
is surprising since in the worst case the PoS is unbounded in the uneven case, and bounded by

Fig. 4 Static model combining at most two requests: %VMT_saved by the optimum and even-split fair plans

Fig. 5 Requests A, B, C, D on a road network, and their corresponding Ride-Sharing Graph

GeoInformatica

2 in the even case. Again, this indicates that worst case analysis in ridesharing does not provide
a reliable comparison in practice.

Figure 7 presents the percentage of pools in which there does not exist an uneven-split fair
plan as a function of the willingness to rideshare (a), the maximum delay tolerated (b), and the
pool size (c). All three plots suggest that the nonexistence probability increases as a function of
the ridesharing opportunity.

5.1.2 Combining more than two requests

Figure 8 presents the case in which k requests (k > 2) can rideshare in the same taxi, keeping all
other input parameters at the default values as listed in Table 4. As expected, the %VMT_saved
yields a higher value when more requests can be combined into a single shared ride. However,
the gap between the optimum and the fair plan is still no more than 2%, and it shrinks as the
number of passengers allowed to rideshare in a taxi increases. This suggests that the system
wide performance between the optimum and the fair ridesharing plan is quite consistent.

5.2 The dynamic model settings and results

As discussed in sec. 3.2, the dynamic models are much more computationally expensive than
the static ones. Thus, we consider the much smaller Manhattan road network, which consists
of 3933 road intersections and 8400 road segments. Furthermore, we only consider the
requests originating and terminating in Manhattan from 10 am to noon on January 25th,

%
∆

%
∆

%
∆

Fig. 6 Static model combining at most two requests: %ΔVMT between uneven- and even-split fair plans. The
figure gives the average and range of the standard deviation

Fig. 7 Static model combining at most two requests: % of pools for which no fair rsp exists with the uneven-split
RSG

GeoInformatica

2013. In this time span, about 40,000 requests were issued. We group the requests into pools of
30 s. The represents on average about 167 new requests issued each 30 s in that two hour span.
In contrast, in the static model a 10-min pool has on average less than 50 requests. The reason
is that the requests in the dynamic case do not originate at a single location, as LaGuardia in the
static case, but anywhere in Manhattan.

We discuss two scenarios. In sec. 5.2.1 we conduct two simulations, one producing a fair
plan, and the other an optimum plan. Then we compared the mileage-savings. A similar
comparison is reported in sec. 5.2.2 between the even- and uneven-split RSGs. In the uneven-
split fair simulation, if an uneven-split fair plan does not exist for a pool, then an even-split fair
plan is used. For simplicity we assume that each request involves a single passenger.

If a request cannot be satisfied in one pool due to an insufficient number of feasible taxis,
then it is propagated to the next pool. Consequently, in the fair and optimum simulations a pool
in a time interval, say 10:21:00–10:21:30, may consist of different sets of requests. The reason
is that the sets of requests propagated from the 10:20:30–10:21:00 pool are different in the two
simulations. In turn, the latter two sets differ because the fair and optimum plans combine and
assign requests to taxis differently. In other words, a request r in the 10:20:30–10:21:00 pool
may be satisfied by the optimum rsp, but not by the fair one. Then the 10:21:00–10:21:30
time-interval pool will contain r in the fair case, but not the optimum.

Observe that in the static model, since empty taxis are always available, no request is
propagated from pool to pool; if a request cannot find a rideshare partner, it rides alone in a
taxi. Thus the set of requests in each time-interval pool is identical for the fair and optimum
simulations. In the dynamic model, if the delay tolerated is exceeded then the request is labeled
unsatisfied and propagates to the next pool. And we use the %satisfied_requests as an
additional measure of performance in comparing the fair and optimum plans.

Fig. 8 Static model combining
more than two requests:
%VMT_saved with the optimum
and fair plans

Table 5 Dynamic model: parameters settings

Parameter Settings

Willingness to rideshare (%) 90
Maximum delay tolerated (%) 5, 7.5, 10, 12.5, 15, 20
Pool size (sec) 30
Penalty to delay a request (p) 0.1

GeoInformatica

Furthermore, in the ILP algorithm we consider a penalty for delaying a request (p= 0.1). This
should increase the %unsatisfied-requests in exchange for an increased VMT_saved. Even so, as
discussed in sec. 5.2.2, the gap in %VMT_saved between the fair and optimum plans is miniscule.

At the beginning of a simulation, taxis are initialized as empty at random road intersections.
During the simulation, if a taxi is not assigned to any request and does not have any passenger
on board at current time step then it follows a shortest path from its current location to a
random road intersection. In practice, unless they are in a high-demand area, it is not
uncommon that taxis drive around to look for customers.

In the experiments, we vary the value of themaximumdelay toleratedwhile keeping constant the
willingness to rideshare and the pool size. The parameters settings are summarized in Table 5.

5.2.1 Optimum plan vs. even-split fair plan

In this comparison, 5000 taxis were randomly selected from the NYC taxi data set. As shown in
Fig. 9, the %VMT _ saved in the optimum plan increases from 17.9% to 33.7% as the maximum
delay tolerated increases from 5% to 20%.Avery similar trend is also observed for the even-split fair
plan. Again, the gap between the optimum and the even-split fair plan is within two percentage
points.

Figure 10 shows the trend in %satisfied_requests. Recall that in the dynamic model if the
delay tolerated is exceeded then the request is labeled unsatisfied. Thus the %

Fig. 9 Dynamic model:
%VMT_saved with the optimum
and even-split fair plans

Fig. 10 Dynamic model: %
satisfied requests

GeoInformatica

satisfied_requests improves as the maximum delay tolerated relaxes. When the delay tolerance
is at 5%, less than 60% of the requests are satisfied in both the optimum and even-split fair
plans. At 20% of the tolerance level, less than 70% of the requests are satisfied. Again the
performances of the optimum and the fair plans are almost identical with respect to the
%satisfied_requests, with the fair plans even having a slight advantage.

5.2.2 Even-split vs. uneven-split fair plan

In this comparison, we consider only the pairwise fair plans. In order to maintain an acceptable
%satisfied_requests, we increased the taxi fleet to 7500 vehicles in the simulations.

Observe that in Fig. 11 both the even- and uneven-split fair plans have very similar
%VMT_saved and %satisfied_requests, with no more than two percentage point difference
between the two. This is a desirable feature because it suggests that the even-split fair plans
have similar benefits, but is much more efficient computationally. Lastly, it is interesting to
observe that in the dynamic models the % of pools with a nonexistent solution (Fig. 11(c)) is
far lower than in the static settings (Fig. 9). This suggests that in the dynamic model most
ridesharing requests are accommodated satisfactorily, another desirable feature.

6 Conclusion

In this paper we have defined fair ridesharing plans, analyzed algorithms for their evaluation, and
compared them with the optimal ridesharing plans that are most likely used by Transportation
Network Companies such as Uber. The comparison was done both theoretically and experimentally.
A fair ridesharing plan is one in which the grouping of passengers that ride together does not violate
individual self-interests of the passengers.We have shown that when social considerations are taken
into account in grouping the passengers, the fair plan should be used to avoid serious anomalies and
inconsistencies in grouping. For reasons of fair-plan existencewe distinguished between fair plans in
which the ridesharing benefit is evenly split among the passengers, and the ones in which it is
unevenly split. Specifically, an uneven-split fair plan does not always exist, whereas an even-split
always exists.

Theoretically, the gap between the fair and optimum ridesharing plans is evaluated by the
traditional Price of Anarchy and Price of Stability measures. Since we have shown that the fair
plan is unique, there is no difference between the two. We have shown that the PoA may be

Fig. 11 Dynamic model: comparison between even- and uneven-split fair plans

GeoInformatica

unbounded in the uneven-split benefit case, but it is tightly bounded by 2 in the even-split case.
This means that the ratio between the benefit of the optimum plan and the fair one is
unbounded in the first case, but is at most 2, and can be 2, in the second case. The tight
bound of 2 holds even in the purely geometric sense, i.e. when the benefit is measured in terms
of the mileage saved on a realistic road network, and realistic trip requests.

The experimental comparison between the plans used the NYC 2013 taxi demand data. We
have found that fair ridesharing plans produce very close VMT savings compared to the
optimum, in both the static and dynamic models. Specifically, we have found that the overall
difference in VMT saving between the optimum and fair plans is no more than 2% in both the
static and the dynamic ridesharing models. This means that the fair ridesharing concept, which
can attract more ridesharing passengers, can do so without a significant loss in efficiency.
Furthermore, fairness can increase ridesharing participation, thus further reduce VMT. For
example, our results indicate that if ridesharing requests increases from 10% to 15%, then the
%VMT saved in the static fair ridesharing plans increases by over 40%.

The gap between the even- and uneven-split fair plans is also found to be small in terms of
VMT saving. However, the uneven-split fair plan is computationally more expensive and
sometimes intractable, and may not even exist. These findings suggest that an even-split fair
plan may be practically the most reasonable approach. These results also indicate that for
ridesharing worst case analysis is probably not a good predictor of practical performance.

In this paper, we considered two fixed payoff splitting strategies, the even and uneven
benefit split. Observe that the split itself is a subject of mechanism design to incentivize or
disincentivize a ridesharing partnership. An interesting theorectical future research direction is
how to minimally modify an optimum ridesharing plan to make it fair.

Experimentally, the most important future work direction is to implement the fair plan in
real ridesharing in order to determine whether indeed it will increase ridesharing acceptance,
and how it should be fine-tuned.

Acknowledgements This study was supported in part by the NSF Grants IIS-1213013 and IIP-1534138.

References

1. Ayala D, Wolfson O, Xu B, Dasgupta B, Lin J (2011) Parking slot assignment games. In: Proceedings of the
19th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 299–
308

2. Santi P, Resta G, Szell M, Sobolevsky S, Strogatz SH, Ratti C (2014) Quantifying the benefits of vehicle
pooling with shareability networks. Proceedings of the National Academy of Sciences (PNAS) 111(37):
13290–13294

3. Lin, J., Sasidharan, S., Ma, S., &Wolfson, O. (2016). A model of multimodal ridesharing and its analysis. In
2016 17th IEEE International Conference on Mobile Data Management (MDM), vol. 1 IEEE, p 164–173

4. Qian X, Zhang W, Ukkusuri SV, Yang C (2017) Optimal assignment and incentive design in the taxi group
ride problem. Transp Res B Methodol 103:208–226

5. Alonso-Mora J, Samaranayake S, Wallar A, Frazzoli E, Rus D (2017) On-demand high-capacity ride-
sharing via dynamic trip- vehicle assignment. Proceedings of the National Academy of Sciences (PNAS)
114(3):462–467

6. Huang Y, Bastani F, Jin R, Wang X (2014) Large scale real-time ridesharing with service guarantee on road
networks. Proceedings of the VLDB Endowment 7(14):2017–2028

7. Ma S, Zheng Y, Wolfson O (2013) T-share: a large-scale dynamic taxi ridesharing service. 2013 IEEE 29th
International Conference on Data Engineering (ICDE), pp. 410–421

GeoInformatica

8. Ma S, Zheng Y, Wolfson O (2015) Real-time city-scale taxi ridesharing. IEEE Trans Knowl Data Eng 27(7):
1782–1795

9. Masoud N, Jayakrishnan R (2017) A real-time algorithm to solve the peer-to-peer ride-matching problem in
a flexible ridesharing system. Transp. Res. B Methodol 106:218–236

10. Bistaffa F, Farinelli A, Chalkiadakis G, Ramchurn SD (2017) A cooperative game-theoretic approach to the
social ridesharing problem. Artif Intell 246:86–117

11. Ben Cheikh S, Tahon C, Hammadi S (2017) An evolutionary approach to solve the dynamic multihop
ridematching problem. Simulation-transactions of the Society for Modeling and Simulation International
93(1):3–19

12. Nourinejad M, Roorda M (2016) Agent based model for dynamic ridesharing. Transportation Research Part
C – Emerging Technologies 64:117–132

13. Thaithatkul P, Seo T, Kusakabe T, Asakura Y (2015) A passengers matching problem in ridesharing systems
by considering user preference. J East Asia Soc Transp Stud 11:1416–1432

14. Thaithatkul P, Seo T, Kusakabe T, Asakura Y (2017) Simulation approach for investigating dynamics of
passenger matching problem in smart ridesharing system. Transportation Research Procedia 21:29–41

15. Czioska P, Mattfeld D, Sester M (2016) GIS-based identification and assessment of suitable meeting point
locations for ride-sharing, 19th euro work. Gr Transp Meet EWGT 2016

16. Barann B, Beverungen D, Muller O (2017) An open-data approach for quantifying the potential of taxi
ridesharing. Decision Intelligence 246:86–117

17. Ma S, Wolfson O (2013) Analysis and evaluation of the slugging form of ridesharing. In Proceedings of the
21st ACM SIGSPATIAL international conference on advances in geographic information systems, pp. 64–
73

18. Foti L, Lin J, Wolfson O, Rishe N (2017) The Nash equilibrium among taxi ridesharing partners.
Proceedings of the 25th ACM SIGSPATIAL international conference on advances in geographic informa-
tion systems, https://doi.org/10.1145/3139958.3140028

19. Pelzer D, Xiao J, Zehe D, Lees MH, Knoll AC, Aydt H (2015) A partition-based match making algorithm
for dynamic ridesharing. IEEE Trans. Intell. Transp. Syst 16(5):2587–2598

20. Tian C, Huang Y, Liu Z, Bastani F, Jin R (2013) Noah: in proceedings of the 2013 ACM SIGMOD
international conference on management of data. ACM, pp. 985–988

21. Agatz N, Erera A, Savelsbergh M, Wang X (2012) Optimization for dynamic ride-sharing: a review. Eur J
Oper Res 223(2):295–303

22. Cerquides J, Farinelli A, Meseguer P, Ramchurn SD (2013) A tutorial on optimization for multi-agent
systems. Comput J 57(6)

23. Chalkiadakis G, Elkind E, Wooldridge M (2011) Computational aspects of cooperative game theory.
Synthesis Lectures on Artificial Intelligence and Machine Learning 5:1–168

24. Bogomolnaia A, Jackson M (2002) The stability of hedonic coalition structures. Games and Economic
Behavior 38(2):201–230

25. Fu X, Huang J, Lu H, Xu J, Li Y (2017) Top-k taxi recommendation in Realtime social-aware ridesharing
services. In Int. conf. on SSTD. Springer

26. Bistaffa F, Farinelli A, Ramchurn SD (2014) Sharing rides with friends: a coalition formation algorithm for
ridesharing, Proceedings of the twenty-ninth AAAI conference on artificial intelligence, pp. 608–614

27. Wolfson O, Lin J (2017) Fairness versus optimality in ridesharing a dynamic ridesharing system,
Proceedings of the 18th IEEE international conference on Mobile data management, pp. 118–123,
https://doi.org/10.1109/MDM.2017.25

28. Kamar E, Horvitz E (2009) Collaboration and shared plans in the open world: studies of ridesharing, Proc.
of the 21st IJCAI. Morgan Kaufmann Publishers Inc, San Francisco

29. Asghari M, Deng D, Shahabi C, Demiryurek U, Li Y (2016) Price-aware real-time ride-sharing at scale: an
auction-based approach. Proceedings of the 24th ACM SIGSPATIAL international conference on advances
in geographic information systems, ISBN: 978-1-4503-4589-7, https://doi.org/10.1145/2996913.2996974

30. Asghari M, Shahabi C (2017) An on-line truthful and individually rational pricing mechanism for ride-
sharing. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL’17, pages 7:1–7:10

31. Zhang R, Pavone M (2016) Control of robotic mobility-on-demand systems: a queueing-theoretical
perspective. The International Journal of Robotics Research 35(1–3):186–203

32. Nash J (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48–49
33. Ayala, D., Wolfson, O., Dasgupta, B., Lin, J., & Xu, B. (2018) Spatio-temporal matching for urban

transportation applications. ACM Transactions on Spatial Algorithms and Systems (TSAS) 3(4):11
34. Chandra B, Halldorsson MM (2000) Greedy local improvement and weighted set packing approximation.

Journal of Algorithms 39:223–240

GeoInformatica

https://doi.org/10.1145/3139958.3140028
https://doi.org/10.1109/MDM.2017.25
https://doi.org/10.1145/2996913.2996974

35. Galil Z (1986) Efficient algorithms for finding maximum matching in graphs. ACM Comput Surv (CSUR)
18(1):23–38

36. Gusfield D, Irving RW (1989) The stable marriage problem: structure and algorithms. MIT press
37. Bistaffa F, Farinelli A, Cerquides J, Rodríguez-Aguilar JA, Ramchurn SD (2016) Algorithms for graph-

constrained coalition formation in the real world. ACM Trans Intell Syst Technol pp:1–23
38. Iwama K, Miyazaki S, Okamoto K (2007) Stable roommates problem with triple rooms. Proc. 10th

KOREA-JAPAN joint workshop on algorithms and computation (WAAC 2007), pp. 105–112
39. Swoboda AJT (2015) New York City taxicab transportation demand modeling for the analysis of

ridesharing and autonomous taxi systems. B.S. thesis, Department of Operations Research and Financial
Engineering, Princeton University

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Luca Foti received his joint MS degree in Computer Science from University of Illinos at Chicago and
Politecnico di Milano, Italy, in 2017. He is currently a Data Scientist and Project Manager at Laife Reply
Milano, Lombardy, Italy. Focused on Artificial Intelligence in Healthcare area, he is involved in the development
of a Deep Learning platform to detect and classify tumors in medical images (X-RAIS); moreover, he is the
Activity Leader of EU-funded projects in Occupational Medicine area collaborating with international partners.

Jane Lin Ph.D., is Professor in transportation engineering and systems in Department of Civil and Materials
Engineering at University of Illinois at Chicago. She has published over 75 refereed papers. She is Editor of
Transport Policy, and Associate Editor of Transportation Research Part D. She received her MS and PhD from
University of California, Davis, and BS from Tsinghua University, Beijing, China. She was a post-doctoral fellow
at Harvard University before joining UIC.

GeoInformatica

Ouri Wolfson Ph.D., is the Richard and Loan Hill Professor of Computer Science at the University of Illinois at
Chicago, and an Affiliate Professor in the Department of Computer Science at the University of Illinois at Urbana
Champaign. He is the founder of Mobitrac, a venture-funded high-tech startup that was acquired in 2006, and of
Pirouette Software. Wolfson authored over 220 publications, and holds seven patents. He is a Fellow of the
ACM, AAAS, and IEEE, a University of Illinois Scholar, and a past ACM distinguished lecturer. He co-authored
six award winning papers. Wolfson’s research is in big/mobile data.

GeoInformatica

	Optimum versus Nash-equilibrium in taxi ridesharing
	Abstract
	Introduction
	Static and dynamic models in ridesharing
	Relevant work
	Contributions

	The ridesharing model
	Pooling requests
	Ridesharing graph and ridesharing plan
	Fairness vs. optimality in ridesharing
	Incorporation of social preference scores
	Ridesharing graph with more than two requests in a shared ride

	Ridesharing algorithms
	Static models
	Combining at most two requests
	Combining more than two requests (k > 2)

	Dynamic models

	Experimental design
	Network setting and data
	Performance measure
	Uneven-split mechanism of benefit
	Sensitivity analysis

	Experimental results
	Static model settings and results
	Combining at most two requests
	Combining more than two requests

	The dynamic model settings and results
	Optimum plan vs. even-split fair plan
	Even-split vs. uneven-split fair plan

	Conclusion
	References

