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ABSTRACT
Ride sourcing services such as Uber and Lyft have become wide-
spread in large cities for everyday mobility. When matching pas-
sengers, these services attempt to optimize cost savings at a global
level. However, a possible scenario is that a passenger A is matched
to passenger B even though if A were matched to passenger C, then
both A and C would have saved more money. This introduces the
concept of “fairness” in ride sharing, which consists of finding the
Nash equilibrium in ridesharing. In this paper we compare optimum
and fair ridesharing theoretically and experimentally. We show that
although theoretically the gap between fair and optimum is large,
in practice it is very small.

CCS CONCEPTS
• Applied computing → Transportation; • Information sys-
tems → Spatial-temporal systems;

KEYWORDS
Optimum, Fairness, Static, Dynamic, Ridesharing

1 INTRODUCTION
The way ridesharing is currently implemented by Mobility on De-
mand (MOD) companies such as Uber and Lyft have significant
drawbacks. Specifically, passengers’ preferences, benefits, and con-
straints are not considered in selecting their ridesharing partners;
for example, everything else being equal, a passenger may prefer
a ridesharing partner in their social network over a stranger. As
we demonstrate in Sec. 2 there may be a conflict between the way
MOD companies would group passengers, namely optimal rideshar-
ing, and the way passengers would be grouped if their preferences
of ridesharing partners were considered, namely fair ridesharing.
This means that fair ridesharing may be suboptimal and optimum
ridesharing may be unfair1. The concept of fairness results from
the application of Nash Equilibrium to ridesharing. Fairness and
optimum in ridesharing are equivalent to user equilibrium and
system optimum in traffic and parking ([2]).

1Of course, in fair ride-sharing, the preferences will not be specified for each ride.
Instead, when installing the ridesharing app (e.g. Uber) the user will specify preferences
that are taken into consideration in all matchings. The concept of fair ridesharing was
introduced in [12].
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In this paper we discuss two variants of fairness, the evenly
split and the unevenly split, and quantify the gap between fair and
optimum ridesharing. We do so theoretically and experimentally.
On the theoretical side we show that for the unevenly-split variant
of fairness, the price of anarchy (poa is the maximum ratio between
the benefit of the optimal plan and the fair one) is unbounded,
whereas for the evenly split one it is bounded by a constant. Then
we examine the gap from a practical perspective, using the NYC
taxi database of over 700 million trips (see [11]). We do so in terms
of mileage (or $-savings assuming a linear relationship between
the two). We determine that the gap is at most 2% on average.

The comparison between fair and optimum ridesharing is car-
ried out in two different models, static (see e.g. [6], [9], [10]), and
dynamic (see e.g. [1], [5], [7], [8]). To our knowledge, these models
are compared here for the first time.

The rest of the paper is organized as follows. In Sec. 2 we in-
troduce the model and prove the poa results. In Sec. 3 we describe
the algorithms used to compute groups for ridesharing, and the
experimental results.

2 THE MODEL AND PRICE OF ANARCHY
A (trip) request consists of: 1. pick-up and drop-off locations, 2.
pick-up time availability, and 3. passenger-count. In the experiments,
for each request we also consider a bound on the delay due to
ridesharing, but this parameter is not necessary in the model.

Sometimes a vehicle is matched to a request as soon as the latter
arrives, and before the next request is serviced. Another option,
which is the one followed in this paper, and better facilitates ride-
sharing, is to group requests issued for a specific time interval into
a “pool”.

Pools and Ridesharing graphs. Given a time interval starting
at “s = start pool time” and ending at “e = end pool time”, a pool(s,e)
is the set of requests whose pick-up time availabilities are between
s and e . For example, if a pool starts at “10:00:00” and ends at
“10:04:59” then it consists of all the requests which have a pick-
up time availability within this interval. The pairwise ridesharing
opportunities of a pool are represented by a weighted graph (see
[1], [12]), called the ridesharing graph (RSG) (see e.g. Figure 1). In
an RSG(V,E), each node vi ∈ V is a single request, and each edge,
ei, j ∈ E connects two potential ridesharing partner requests vi and
vj . The weight of edge ei, j , denotedwi, j , is the benefit obtained by
combining requests vi and vj , compared to the execution of the
two single requests separately. The benefitwi, j is split between the
individual-benefit of vi , denotedwi, j (i) and the individual-benefit
of vj , denotedwi, j (j), such thatwi, j (i) +wi, j (j) = wi, j . Intuitively,
this means that the individual benefits of the two partners sum
up to the benefit of the partnership. Furthermore, each individual
benefit must be positive in order for ei, j to exist; i.e., if one of these
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is negative, then vi and vj should not rideshare2. In Figure 1, on
each edge ei, j between requests vi and vj , a label which encloses
two values in square brackets is noted: the value closest to request
vi (resp. request vj ) indicates the individual benefit of request vi
(resp. request vj ) in this shared trip.

A ridesharing plan (rsp), is a set S of edges in the ridesharing
graph, such that no request appears in different edges of S. Intu-
itively, each edge e represents a trip combining the endpoints of e,
thus the edges are selected such that no request belongs to more
than one edge. The benefit of the rsp is the total benefit of the benefit
of the edges in S.

If more than two requests can be combined, then we have a
ridesharing hyper-graph (RSH): nodes still represent requests and
hyper-edges represent a potential shared trip among the connected
(two or more) requests. Benefits and rsp are defined analogously to
the pairwise case.

Static and dynamic models in ridesharing. There are two
possible approaches to deal with group requests: the static and the
dynamic models. Within the static model, requests which specify
a pick-up time within a given interval are pooled together and
then assigned to empty vehicles. Hence, vehicles that are already
processing some other requests are not taken into account for this
assignment, i.e., their initial route is static and cannot be modified.
A practical scenario for this model is a taxi station, e.g. at an airport.
A person’s flight has landed at 10am, but she needs a ride to go
from the airport (hub) to her destination: the passenger registers
to a specific pool (e.g., “10:30-10:35” pool) so that there is time to
pick up her checked baggage [6]. Rides in a pool are combined, and
assigned to empty taxis waiting in a queue at the terminal. Since
empty vehicles are always available at zero-distance, a request or a
group of requests is never assigned to a vehicle that is in progress
of serving other requests.

Within the dynamic model, new requests can be combined and
then assigned to a vehicle; the vehicle may already be occupied, i.e.
serving some other requests. Thus, a new route has to be computed
in order to satisfy all the requests assigned to the vehicle. Hence,
the occupied vehicle’s route changes dynamically, i.e. while being
executed. In other words, in contrast to the static model, some of the
requests that are grouped may already be executing, i.e. ongoing.

The fair rsp.We employ the definition of fairness as introduced
in [12]. In particular, in a fair ridesharing plan, there is no pair of
unmatched requests which would both benefit more if they were
matched. In Figure 1 the rsp that combines A-B and C-D is fair,
providing an overall benefit of 14, but the rsp A-D and B-C is unfair
because A and B can both benefit more by ridesharing with each
other. Observe that fairness requires the pairing of A and B only
in the case of reciprocity; if A prefers B (i.e. A saves most when
partnered with B), but B prefers another partner, then it may be
fair to pair A with D. But since both A and B prefer each other over
other partners, it is unfair to pair them with other partners.

2The individual-benefit may consist simply of the dollars saved by combining the two
requests; or it may include other preference-criteria such as Facebook-friendship and
gender. Specifically, the benefit may be a weighted sum of dollar-saved and social-score
(as in [4]). And in turn, the social-score can be a weighted sum of values assigned
to preference-criteria such as gender and Facebook-friendship. Social-score can be
calculated as a matching score by Match.com.

For reasons of complexity and existence of a solution, we distin-
guish between an evenly split RSG, i.e. an RSG in which for each
edge ei, j , wi, j (i) = wi, j (j), as in Figure 1; and an unevenly-split
RSG, i.e. an RSG which is not evenly split. Both cases make prac-
tical sense. For example, the taxi attendant at O’Hare airport in
Chicago pairs passengers going to downtown Chicago, and if two
passengers are paired, then each one of them pays $25, regardless
of who gets dropped off first. This results in an evenly-split RSG.
On the other hand, it may make sense for the passenger who gets
dropped off first to save less. This results in an unevenly-split RSG.

The optimum rsp. Given an RSG, the optimum rsp is the rsp
that has the maximum-benefits among all rsp’s.

A
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D
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[2.5,2.5]

[4, 4]

Figure 1. Evenly-split Ridesharing graph

In Figure 1, the optimum rsp combines A-D and B-C, providing
the largest total benefit of 15; on the other hand, A and B benefit
more if matched together, so the fair plan combines A-B and C-D,
providing an overall benefit of 14.

Observe that changing the split of a single edge may produce
different fair rsp’s, even if the total benefit of the edge does not
change. For example, if in Figure 1 the edge (A,B) is labeled [3,6],
instead of [4.5,4.5], i.e. the benefit of A in ridesharing with B is 3,
then the optimum plan is also fair. Moreover, it is noteworthy that
in an unevenly split RSG, a fair rsp may not exist, even though
it always exists in an evenly split RSG (see [12]). In contrast, an
optimum rsp always exists.

The Price of Anarchy (PoA) is the ratio between the optimal
solution and the worst equilibrium, i.e. PoA =maxp∈P Bene f it(p)
/minp∈Equil Bene f it(p), where P is the set of all rsp’s, Equil ⊆ P
is the set of fair rsp’s, and Bene f it(p) is the benefit of rsp p.

Theorem 1. In an evenly split RSG, the PoA is bounded by 2.
(Proof:) The algorithm used to compute the fair rsp is described

in [12]. It selects edges of the RSG in decreasing order of benefit.
This algorithm is discussed in [3] in a different context than fairness,
and is shown to be a 2-approximation of the optimum.

Theorem 2. In an unevenly split RSG, the PoA is unbounded.
(Proof:) Assume that in fig. 1 passenger D’s individual benefit for

ridesharing with A is not 4, but an arbitrarily large value X (e.g., D’s
social score for A is very high). In this case the optimum rsp is A-D
and B-C, whereas the fair rsp is A-B and C-D. The ratio between
the two is a constant times X, i.e. arbitrarily large.

3 ALGORITHMS AND EXPERIMENTS
In this section we present the algorithms used to produce the opti-
mum and the fair ridesharing plans for our experiments conducted
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on the NYC taxi database. In the experiments we assume that a taxi
can hold at most 4 passengers. The focus is on the dynamic model,
since the algorithms for the static model are discussed in [12] with
the following main results: the ridesharing hypergraph (RSH) can
be computed in O(n4) road-network shortest path computations;
computing the optimum rsp is NP-complete in general, but since
the number of nodes in a hyperedge is limited to 4, the compu-
tation is manageable; the evenly split RSH fair rsp is computed
in O(n4 loд n), where n is the number of requests (nodes) in the
RSH; the unevenly split RSH fair rsp is NP-complete; thus in the
experiments we compute it only for the pairwise ridesharing.

In the dynamic model, in addition to grouping, the algorithm
for finding the rsp also needs to assign a taxi to a group of new
requests in a pool. The total number of taxis is fixed and limited,
thus the assigned taxi may already be occupied.

Computing the extended RSH: In this context, a combination
of new requests is meaningful when assigned to a taxi and, further-
more, different taxi assignments can provide different benefits. In
order to express this idea, we first compute the RSH with respect to
new requests only, as in the static case. Then we extend it as follows
to create the extended-RSH (e-RSH). The nodes of e-RSH are new
requests and taxis. For each pair of (taxi, RSH-hyperedge), such that
the taxi is feasible for the hyperedge (i.e. the taxi can satisfy the
delay bounds of all the requests involved (i.e. onboard and new)), we
create a new hyperedge in e-RSH. The weight of the hyperedge is
the distance saved by combining the new and the onboard requests.
Obviously, if the taxi is empty, then the weight is computed on the
new requests only as in the static case. If the taxi is occupied, then
the weight is difference S − L where S is the sum of the shortest
paths of the new requests and the remaining taxi path to satisfy the
onboard requests; and L is the shortest path to satisfy all the new
and onboard requests, from the current taxi location. If the weight
of the hyperedge is negative, then it is eliminated. If there exists no
taxi that is feasible for an RSH hyperedge, then no new hyperedge
is added to e-RSH. Thus, if some request is disconnected in e-RSH
(i.e., there is no new hyperedge involving the request), it cannot be
allocated a taxi in current pool, and is moved to the next one.

The optimum rsp: Starting from the e-RSH, we formulate an
adaptation of the Integer Linear Programming (ILP) problem pro-
vided in [1]: in contrast to [1], we aim to maximize overall benefits.
In order to speed up the process of finding the optimum rsp, we
start from an initial greedy solution: we sort the hyperedges of the
e-RSH by total benefit in decreasing order (i.e., from the heaviest
to the lightest weight); we add to the solution the hyperedges fol-
lowing this order and, as they are inserted, we remove nodes (i.e.,
new requests and taxi) and hyperedges they are related to from the
remaining e-RSH. Then, the ILP presented in Table 1 improves this
initial solution to find the optimal one.

In order to explain the objective function and the constraints of
the ILP, it is useful to refer, for each hyper-edge h of the e-RSH, to:
1. the set of new requests, or nr-set for short, in h; and, 2. the taxi
in h. Observe that the set of nr-sets, which the description below
indexes and uses, is actually the set of hyper-edges in the RSH (not
the e-RSH). The ILP assigns taxis to nr-sets optimally, i.e. in a way
that maximizes the total benefit.

Table 1. Dynamic model: ILP for maximummatching

(1) Initial guess:
∑
дreedy

(2)
∑
optim := argmax

X

C(X),

where C(X) =
∑

i, j ∈ETV
bi, jϵi, j −

∑
k={0, ...,n }

χk

(3) s.t.
∑

i ∈IVj

ϵi, j ≤ 1, ∀vj ∈ V

(4)
∑

i ∈IR
k , j ∈ITi

ϵi, j + χk = 1, ∀rk ∈ R

The constraints of this ILP problem are: (3) each taxi is assigned
to at most one nr-set; and (4) each new request is either a member
of some nr-set that is assigned to a taxi, or is not assigned at all.

The evenly split extended RSH fair rsp:We employ an algo-
rithm that is analogous to the one used in the static model. Specifi-
cally, we sort the hyperedges by individual benefit in decreasing
order and select the hyperedges according to this order, iteratively:
we remove those hyperedges that connect either a new request or a
taxi that has just been inserted in the solution. The solution consists
of the selected hyper-edges, in the sense that for each hyper-edge
in the solution, its nr-set is assigned to its single taxi.

The unevenly split extended RSH fair rsp: The problem of
finding a fair rsp in the unevenly split RSH is NP-complete. Thus
in the experiments only two requests can be processed at the same
time; i.e., if a taxi is empty, then at most two new requests can be
combined and assigned to the taxi, and if it is already occupied with
an ongoing request, at most one new request can be assigned. We
employ the same algorithm devised for the static model.

Dynamic model experimental settings.We have considered
the Manhattan road network, which is a directed graph consisting
of 3,933 road intersections and 8,400 road segments. Only requests
originating and terminating in Manhattan are considered. In partic-
ular, we have simulated two hours on January 25th 2013, from 10am
to noon. In this time span, about 40,000 requests have been issued.
We have analyzed pools of 30 seconds. On average about 167 new
requests are issued each 30 seconds in the two hours simulated.

We considered three scenarios in which all the pools are pro-
cessed by: a fair evenly split rsp, or a fair unevenly split rsp, or an
optimum plan. In the simulations, for simplicity we assume that
each request involves a single passenger. For the unevenly split
RSG, we distribute the total benefit proportionally to the increase
(compared to the shortest path) in the distance traveled by each
passenger in the combined path. If an unevenly-split rsp does not
exist, an evenly split one is used instead. If a request cannot be
satisfied in one pool due to an insufficient number of feasible taxis,
then it is propagated to the next pool. Consequently, in the fair and
optimum simulations, a pool, say 10:21:00-10:21:30, may consist of
different sets of requests. The reason is that the sets of requests
propagated from the 10:20:30-10:21:00 pool are different in the two
simulations. In turn, the latter two sets differ because the fair and
optimum plans combine and assign requests to taxis differently.

In contrast, in the static model, since empty taxis are always
available, no request is propagated from pool to pool; if a request
cannot find a rideshare partner, it rides alone in a taxi. Thus the set
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Figure 2. Dynamic model: comparison between evenly and unevenly split fair plans
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Figure 3. Dynamic model: % mileage savings
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Figure 4. Dynamic model: % satisfied requests

of requests in each time-interval pool is fixed, and identical in the
fair and optimum simulations.

Another implication of the propagation from pool to pool in
the dynamic model is that, if the delay tolerated is exceeded, then
the request is unsatisfied. Again, due to ample supply of taxis, this
cannot happen in the static model.

In the simulations, taxis are initialized as empty at random road
intersections. During the simulation, if a taxi is not assigned to
any request and does not have any passenger on board, then it
follows a shortest path from its current location to a random road
intersection.

The total distance saved, computed after the end of the 2-hour
simulation time, is given by:

(
∑

i={1, ...,n }
milessp,i ) − (

∑
j={1, ...,m }

miles_traveledj ), (1)

wheremilessp,i indicates the shortest path in miles for satisfying
request i alone, andmiles_traveledj indicates the miles traveled
by taxi j with some passengers on board. n and m are the numbers
of satisfied requests and taxis, respectively.

The results are summarized in figures 2, 3 and 4. Mileage savings
gives the decrease compared to the total distances of individual
requests; delay tolerated is the time increase (compared to the time
of each individual request) allowed to facilitate ridesharing (time
to traverse a link is taken as 70% of the time at maximum speed).
Indeed, the performances of the fair rsp’s (both even and uneven)
are almost equal to that of the optimum rsp’s.
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