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Abstract. AgreementMaker is one of the leading ontology matching
systems, thanks to its combination of a flexible and extensible frame-
work with a comprehensive user interface. In many domains, such as the
biomedical, ontologies are becoming increasingly large thus presenting
new challenges. We have developed a new core framework, Agreement-
MakerLight, focused on computational efficiency and designed to handle
very large ontologies, while preserving most of the flexibility and exten-
sibility of the original AgreementMaker framework. We evaluated the
efficiency of AgreementMakerLight in two OAEI tracks: Anatomy and
Large Biomedical Ontologies, obtaining excellent run time results. In
addition, for the Anatomy track, AgreementMakerLight is now the best
system as measured in terms of F-measure. Also in terms of F-measure,
AgreementMakerLight is competitive with the best OAEI performers in
two of the three tasks of the Large Biomedical Ontologies track that
match whole ontologies.

1 Introduction

Ontology matching is essential for a full realization of the Semantic Web vi-
sion, by providing a means to link concepts from different ontologies. The on-
tology matching process takes as input two ontologies and outputs a set of
correspondences between semantically related ontology concepts, also called an
alignment [13]. Ontologies are fast becoming an integral part of many domains,
such as biomedicine and geography, and in the last few years they have be-
come increasingly large and complex. As a consequence the more recent ontol-
ogy matching systems incorporate more elaborate approaches including scaling
strategies [14,15,18], ontology repair techniques to ensure the coherence of the
alignments [15], and the use of external resources and ontologies to increase the
amount of available knowledge to support matching [14].

AgreementMaker has been one of the leading systems in the field of ontol-
ogy and schema matching since the beginning of its development in 2001 [3,7].
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It combines a powerful, flexible and extensible framework with a comprehensive
user interface that enables alignment visualization and manual editing. However,
AgreementMaker was not originally designed to match ontologies with more than
a few thousand concepts. It relies on memory-intensive complex ontology repre-
sentations and similarity matrices that store the correspondence scores between
all concepts in both ontologies. These structures hinder the scalability of Agree-
mentMaker’s matching process. Furthermore, AgreementMaker is optimized for
visualization, which is critical to support user interaction for semi-automatic
ontology matching, but computationally intensive.

The Ontology Alignment Evaluation Initiative (OAEI) is an annual competi-
tion that provides a benchmark evaluation for ontology alignment systems [12].
In recent years the AgreementMaker system ranked among the top systems,
and in particular was the top system on the Anatomy track in 2010 and 2011,
with the best results ever for this track [9,10]. In 2012, reflecting the needs of
the biomedical domain, the OAEI competition introduced the Large Biomedical
Ontologies track. This track consists on matching ontologies with tens of thou-
sands of terms, which poses new challenges to ontology matching systems. While
AgreementMaker did not participate in OAEI 2012, it would have struggled to
match ontologies of this size.

Given the increasing importance of matching very large ontologies, particu-
larly in the biomedical domain, we have developed a novel ontology matching
framework, derived from AgreementMaker and focused on the efficient matching
of very large ontologies — the AgreementMakerLight (AML) framework. Unlike
AgreementMaker it is not designed to support user interaction, but it main-
tains the flexibility and extensibility of the original framework. In this paper,
we present the AML framework and its evaluation on the Anatomy and Large
Biomedical Ontologies tracks of the OAEI 2012.

This paper is organized as follows: Section 2 presents some basic concepts in
ontology matching, Section 3 presents the AML framework in depth, Section 4
shows the details of its evaluation, Section 5 presents and discusses the results
of the evaluation, and Section 6 presents the main conclusions of our work.

2 Ontology Matching Concepts

In this section, we introduce some of the nomenclature commonly used in ontol-
ogy matching, which we will use throughout this paper.

The process of matching or aligning two input ontologies (one source ontol-
ogy and one target ontology) consists in finding semantic relationships between
the classes of the source ontology and the classes of the target ontology. In the
context of this paper, these semantic relationships are restricted to equivalence
relationships, and are called mappings . The set of mappings between two on-
tologies is called an alignment [3].

Ontology matching systems use matching algorithms, called matchers, which
assign a numerical value to each mapping. This numerical value reflects the
semantic similarity between terms. These matchers can function at different
levels, including the element level and the structural level [13].
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Element-level matchers analyze concepts or their instances in isolation, ig-
noring their relations with other concepts or instances. These matchers can use
internal knowledge only, that is, information contained in the ontology itself,
or incorporate external knowledge in the form of reusable alignments, upper or
domain ontologies, and other linguistic resources. A popular internal-knowledge
element-level matching technique is based on the lexical matching of the labels
associated with ontology concepts.

Structure-level techniques compare ontology concepts or their instances based
on their relationships with other concepts or instances. They can also use exter-
nal knowledge, such as instances that are not part of the ontology or previous
alignments.

Most ontology systems aggregate several distinct matchers:

– sequential composition, where the results of one matcher are fed to the next
– parallel composition, where distinct matchers are run independently, and

their results are combined following specific criteria,
• homogeneous, in which the different kinds of data are processed by ap-
propriate matchers

• heterogeneous, in which the same input is used by distinct matchers

Furthermore, the similarity between two ontology concepts may involve the
ontologies as a whole, so that the final similarity between two concepts may
ultimately depend on all of them. Several approaches use this notion to propagate
similarities throughout the ontology [16,11,8].

After the similarities between ontology concepts have been computed, it is
necessary to use a global strategy to arrive at a final optimized alignment. These
techniques can include trimming, which applies thresholds to ensure only the
best matches are considered; or maximal weight matching (or weaker variants
like stable marriage), which optimize the global similarity [4].

Recently, ontology matching systems have begun to include approaches to
ensure the ontological quality of their outputs, such as the application of rules
to prune out illogical mappings [14] or the use of full-fledged repair approaches
that strive to ensure the coherence of the final alignment, that is, that all classes
are satisfiable [15].

3 AgreementMakerLight Framework

3.1 Overview

The AML framework was programmed in Java and developed in Eclipse. The
core framework includes two modules: the ontology loading module and the on-
tology matching module. The ontology loading module is responsible for loading
the input ontology files and constructing ontology objects (Figure 1). It is also
responsible for loading external ontologies used as background knowledge. The
ontology matching module is responsible for aligning ontology objects by combin-
ing one or more matching algorithms and one or more selection steps (Figure 2).
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Fig. 1. Schema of the AgreementMakerLight Ontology Loading Module

Like AgreementMaker, the AML ontology matching module was designed with
flexibility and extensibility in mind, and thus allows for the inclusion of virtually
any matching algorithm.

The AML framework also includes three key data structures: the Lexicon, the
RelationshipMap and the Alignment. The first two data structures are the main
components of Ontology Objects, i.e., representations of ontologies used in AML
to support the matching process. As their names suggest, the Lexicon stores the
lexical information of an ontology (i.e., the labels and synonyms of each term)
and the RelationshipMap stores the structural information of an ontology (i.e.,
the relationships between all terms). The Alignment stores the set of mappings
between two ontologies produced by one or more matching algorithms.

3.2 Ontology Loading Module

As is the case in AgreementMaker, the AML ontology loading module is cur-
rently based on the Jena2 ontology API (Jena), and the first step in the loading
process is to read the ontology file into memory as a Jena OntModel. The dif-
ference between the two systems is that AML stores in internal data structures
all the information from the OntModel that is necessary for ontology match-
ing, whereas AgreementMaker keeps the OntModel in memory throughout the
matching process.

After using Jena to read an input ontology file, the AML ontology loading
module extracts from the OntModel the following information, which is linked
together under an Ontology Object:

– The URI or the ontology.

– A list of URI of all named classes in the ontology that belong to the ontology’s
namespace.

– A list of local names of all listed classes.

– A list of the synonym properties used in the ontology (e.g., hasExactSyn-
onym, hasRelatedSynonym).
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Fig. 2. Schema of the AgreementMakerLight Ontology Matching Module

– A Lexicon that contains the local names of all listed classes (when they are
not alphanumeric codes), their labels, and all their synonyms (as declared
in synonym property statements).

– A RelationshipMap that contains the is a and part of relationships between
all listed classes (with transitive closure) plus all disjoint clauses between
the listed classes (without transitive closure).

Building the RelationshipMap is optional, since the relationships are unnecessary
for many matching algorithms, and this step takes approximately 60% of the
total ontology loading time. In particular, the RelationshipMap is not built when
loading external ontologies to use as background knowledge, as only their Lexicon
is necessary for this purpose.

Even when the RelationshipMap is built, the whole ontology loading process
is fairly quick: in our 4 core CPU server with 16 GB total RAM, small ontologies
(under 10,000 classes) are loaded in 1 or 2 seconds and even very large ontologies
(approximately 120,000 classes) are loaded in under 150 seconds.
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3.3 Data Structures

A key difference between AML and AgreementMaker is that in the former on-
tologies are represented exclusively by internal data structures, whereas in the
latter internal data structures are used in addition to the Jena OntModel. While
building the internal data structures from the OntModel takes time, if those
structures are designed with the efficiency of the matching process in mind, they
will reduce the total processing time considerably. Furthermore, the internal
data structures take up less memory than the OntModel, so in not keeping the
latter in memory, we effectively increase the available memory for the matching
process. Last but not least, this setup means that AML’s ontology matching
module is not tied to Jena or any specific ontology-reading API. Thus AML can
work with any ontology-reading API by simply changing the ontology loading
module.

Lexicon is a data structure that links each class in an ontology with its “names”
(i.e., local names, labels, and synonyms) and the provenance of those names
(i.e., whether they come from a local name or label, or from which type of syn-
onym property statement). While an equivalent data structure already existed in
AgreementMaker, it was built after the ontology loading process and only used
by some matching algorithms. In AML, the Lexicon is a primary data structure
used by all matching algorithms that require lexical information.

A novel aspect that was incorporated in the AML Lexicon was a system of
weights to reflect the reliability of each provenance. For instance, synonyms ob-
tained from hasExactSynonym statements are in principle more reliable than
synonyms obtained from hasRelatedSynonym statements, as they should be
closer in meaning to the concept described by a class. Thus, local names were
given a weight of 1.0, labels a weight of 0.95, exact synonyms a weight of 0.9 and
other synonyms a weight of 0.85. These weights may be used by any matching
algorithm that uses the Lexicon.

The internal structure of the Lexicon consists on two MultiMaps (which are
HashMaps of HashMaps) containing classes, names and provenances, with one
having the class as key and the other having the name as key. Thus, the Lexicon
can be queried by both class and name at virtually no computational cost.

RelationshipMap is a data structure that links each class to the classes related
to it through is a or part of relationships or disjoint clauses. It complements the
Lexicon, and is a very efficient alternative to the node-based tree structure used
in AgreementMaker to represent each ontology.

The RelationshipMap stores all is a and part of paths in an ontology with
transitive closure, and includes the distance of each path in number of edges. It
also stores all direct disjoint clauses in an ontology (without transitive closure).
Like the Lexicon, the RelationshipMap is based on MultiMaps. It includes two
MultiMaps for relationships which contain ancestors, descendents and relation-
ship (i.e., type and distance), with one having the ancestor as key and the other
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one having the descendent as key. It also includes a HashMap of Sets for disjoint
clauses, linking each class to all classes that are disjoint with it. Thus the Rela-
tionshipMap can be queried to obtain all descendents of a class, all ancestors of
a class, and all classes disjoint with a class at virtually no computational cost.

Alignment is a data structure used by the ontology matching module to store
mappings between the input ontologies. This structure was already used by
AgreementMaker, and was ported directly from it. However, in AgreementMaker,
Alignment was used only to store the final output of a matching algorithm or
combination of algorithms. During the matching procedure, the primary data
structure used by AgreementMaker is a matrix that stores the similarities be-
tween all concepts of the source ontology against all concepts of the target on-
tology, which we abbreviate in the rest of the paper as a all-against-all strategy.
The problem with this structure is that it takes O(m × n) memory (where m
and n are the number of concepts of the source and target ontologies, respec-
tively) and therefore does not scale for large ontologies. For instance, the matrix
that results from matching two ontologies with 50,000 classes would occupy 18.6
GB of memory, which is beyond the capacity of our server. Since the number of
mappings in a matching problem with cardinality one-to-one is O(min(m,n)),
the vast majority of the values in the similarity matrix is very small or zero,
thus making their storage unnecessary. In AML we opted for storing similari-
ties directly in the Alignment and discarding similarities that are below a given
threshold.

The internal structure of Alignment in AML is identical to that of Agreement-
Maker. It includes two MultiMaps that contain the source class, target class and
similarity, with one having the source class as key and the other one having the
target class as key. This enables efficient querying of mappings by class, and
means that Alignment corresponds to a sparse matrix. In addition, Alignment
also includes a list structure that enables sorting and thus facilitates selection.

3.4 Ontology Matching Module

The AML ontology matching module contains three components: Matchers (i.e.,
matching algorithms), Selectors (i.e., selection algorithms), and the previously
described Alignment data structure (see Figure 2).

Matchers are algorithms that compare two ontologies and return an Align-
ment between them. Like in AgreementMaker, any kind of matching algorithm
can be implemented as an AML Matcher, requiring only the implementation of
a matching algorithm (which receives as input two ontology objects and returns
an Alignment between them) and an extension method (which receives as input
two ontology objects and an Alignment between them, and extends that Align-
ment by mapping only unmapped classes). However, AML divides Matchers into
Primary Matchers and Secondary Matchers according to their efficiency.
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Primary Matchers are matching algorithms that rely on HashMap cross-
searches (i.e., searches where a key in a HashMap is used to query another
HashMap directly) and thus take O(n) time. Secondary Matchers are matching
algorithms that make non-literal comparisons between terms and thus require
explicitly comparing each term in an ontology with each term in the other on-
tology, which takes O(n2) time. This means that Secondary Matchers cannot
be used efficiently to match large ontologies. Taking this into account, we stip-
ulated that the extension method implemented by Secondary Matchers should
be less extensive than the one implemented by Primary Matchers. Thus, in Sec-
ondary Matchers the extension method only tries to map classes in the vicinity
of previously mapped ones (e.g., children, parents, siblings), whereas in Primary
Matchers the extension methods tries to map all unmapped classes. In general,
Primary Matchers in AML are used in match mode whereas Secondary Matchers
are used in extension mode.

One of the unique features of AgreementMaker is its strategy for combining
the output of multiple Matchers to obtain a better final alignment, the linear
weighted combination [3]. However, this strategy relies on the all-against-all
similarity matrix produced by each Matcher, and thus is not directly portable
to AML. Currently AML combines the output of multiple Matchers by simply
joining the alignments and keeping the highest similarity in case of repeated
mappings, which was a strategy previously used in AgreementMaker [5,6].

Selectors are algorithms used to trim an Alignment by excluding mappings
below a given similarity threshold and excluding competing mappings (i.e., mul-
tiple mappings that include the same class) to obtain the desired cardinality.
As already mentioned, the desired cardinality in ontology matching is typically
one-to-one. The problem of trimming a many-to-many Alignment to obtain a
one-to-one Alignment corresponds to a bipartite mapping problem. The selec-
tion algorithm implemented in AgreementMaker finds the maximum weighted
bipartite mapping, thus maximizing the sum of the similarities of the selected
mappings [4]. However, this algorithm relies on the all-against-all similarity ma-
trix, and thus is not directly portable to AML. Nevertheless, it is not clear that
the maximum mapping is the “optimal” mapping for an ontology alignment
problem, since the goal of the problem is to maximize the number of correct
mappings while minimizing the number of incorrect mappings. Thus, assum-
ing that the similarity value given by the matching algorithms is correlated
with the probability that they are correct, then selecting a high-quality align-
ment (90% similarity) might be better than selecting two competing medium-
quality alignments (60% similarity), but the maximum mapping would include
the latter.

Taking the above considerations into account, we developed a greedy Ranked
Selector algorithm for AML, that selects mappings based on their similarity. This
simple algorithm starts by sorting the mappings in the Alignment in descend-
ing order of their similarity values, then selects mappings in that order, as long as
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they do not include classes that were present in previously selected mappings.
This ensures that each class appears in at most one mapping, but favors stronger
individual mappings (in terms of similarity) instead of trying to maximize the
total similarity of the selected mappings.

3.5 Implemented Matchers

In porting matchers from AgreementMaker, a paramount idea was that, when-
ever possible, we would eliminate the need for an all-against-all comparison
and instead convert them into Primary Matchers whenever possible. We imple-
mented four matchers: the Lexical Matcher, the Mediating Matcher, the Word
Matcher and the Parametric String Matcher. The first three were implemented
as Primary Matchers and the last one was implemented as a Secondary Matcher.

Lexical Matcher is one of the simplest and most efficient matching algorithms,
which looks for literal name matches in the Lexicons of the input ontologies. It is
derived from the Lexical Synonym Weighted Matcher of AgreementMaker, but
uses a more streamlined weight system. For two input ontologies source and
target, the Lexical Matcher algorithm is as follows:

set A = empty alignment

set list = names(source)

for each name in list

if target contains name

set sourceList = sourceClasses(name)

set targetList = targetClasses(name)

for each sourceClass in sourceList

set weightSource = weight(name,sourceClass)

for each targetClass in targetList

set sim = weightSource * weight(name,targetClass)

add (sourceClass,targetClass,sim) to A

end

Note that, regardless of the order in which the input ontologies are given, the
Lexical Matcher always iterates through the Lexicon of the ontology that has
the smallest number of names, so as to minimize the number of iterations.

Mediating Matcher is also a simple and efficient matching algorithm based
on literal name matches, but it uses a third (external) ontology as a mediator
between the input ontologies. It uses the Lexical Matcher to compute “bridge”
alignments between the input ontologies and the mediating ontology, then cross-
searches the bridge alignments to map the input ontologies. For two input on-
tologies source and target and a mediating ontology med, the Mediating Matcher
algorithm is as follows:
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set A = empty alignment

compute Bs = LexicalMatcher(med,source)

compute Bt = LexicalMatcher(med,target)

for each medClass in Bs

if Bt contains medClass

for each sourceClass in Bs(medClass)

set simSource = similarity(medClass,sourceClass)

for each targetClass in Bt(medClass)

set sim = simSource * similarity(medClass,targetClass)

add (sourceClass,targetClass,sim) to A

end

Word Matcher is a word-based string similarity algorithm that measures the
similarity between two classes through a weighted Jaccard index between the
words present in their names. It is derived from the Vector-based Multi-word
Matcher of AgreementMaker, but is based on a lexical cross-search whereas the
latter requires an all-against-all comparison.

The first step in the Word Matcher is the derivation of a Word Lexicon from
the Lexicon of each ontology and computing the frequency and evidence content
(EC) of each word. The EC of each word is given by the inverse logarithm of its
frequency [2]. After computing the Word Lexicons, the Word Matcher algorithm
is as follows:

set A = empty alignment

set list = words(source)

for each word in list

if target contains word

set sourceList = sourceClasses(word)

set targetList = targetClasses(word)

for each sourceClass in sourceList

set weightS = sourceEC(word) * weight(word,sourceClass)

for each targetClass in targetList

set weightT = targetEC(word) * weight(word,targetClass)

set sim = sqrt(weightS * weightT)

if A contains (sourceClass,targetClass)

set A(sourceClass,targetClass) += sim

else

add (sourceClass,targetClass,similarity) to A

for each (sourceClass,targetClass) in A

set itr = similarity(sourceClass,targetClass)

set uni = weight(sourceClass) + weight(targetClass) - itr

set A(sourceClass,targetClass) = itr/uni

end

Despite also being based on a lexical cross-search, the Word Matcher has a
steeper memory requirement than the previous two matchers. The reason for
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this is that it needs to store temporary mappings between all classes that share
at least one word, since it can only filter out low similarity mappings after
iterating through all words. In the worst case, its memory requirement will be
O(n2) for very verbose ontologies. Thus, despite being a primary matcher, the
Word Matcher requires that very large ontologies be partitioned due to memory
constraints.

Parametric String Matcher is a string similarity algorithm that implements
a variety of similarity metrics and was directly ported from AgreementMaker.
Since it makes non-literal string comparisons, it requires an all-against-all com-
parison of the ontologies and therefore is a secondary matcher in AML.

4 Evaluation

We evaluated AML on the Anatomy and Large Biomedical Ontologies tracks of
the OAEI 2012 [1].

The Anatomy track consists on a medium-size ontology matching task be-
tween the Adult Mouse Anatomy Dictionary (with 2737 classes) and part of the
NCI thesaurus describing human anatomy (with 3298 classes). It is evaluated
using a manually created reference alignment that has been extensively tested.
We were interested in evaluating AML in this track given that AgreementMaker
was the top system in it, both in 2010 and 2011. Thus, we wanted to assess
whether the improvement in efficiency of AML came at the cost of performance
in terms of precision, recall, and F-measure. As such, we selected a configuration
for AML that is as close as possible to the configuration used by Agreement-
Maker in OAEI 2011. It combines the Lexical Matcher, the Mediating Matcher
using UBERON [17] as the background ontology, the Word Matcher and the
Parametric String Matcher in extension mode. All Matchers were used with
a minimum similarity threshold of 0.6 except the Parametric String Matcher,
which was used with a higher threshold of 0.7.

The Large Biomedical Ontologies track includes a total of 9 ontology matching
tasks between three ontologies: the Foundational Model of Anatomy (FMA), the
NCI thesaurus and the SNOMED Clinical Terms. For each pairwise combination
of these ontologies, there is a task for matching small overlapping fragments,
a task for matching extended fragments, and a task for matching the whole
ontologies. The reference alignments used in OAEI 2012 to evaluate these tasks
were obtained automatically from UMLS, and then repaired with ALCOMO
and/or LogMap. We were interested in evaluating AML on the three whole
ontologies tasks given that AgreementMaker was not able to handle them. Thus,
we wanted to assess whether the improvement in efficiency of AML was sufficient
for it to compete with the top systems in OAEI in terms of run time, and
what was its baseline performance. Thus we selected a simple configuration for
AML that combined only the Lexical Matcher (with a threshold of 0.7) with
the Parametric String Matcher in extension mode (with a threshold of 0.7). We
evaluated AML using the reference alignments repaired by ALCOMO for the
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FMA-NCI and FMA-SNOMED tasks, and the reference alignment repaired by
LogMap for the SNOMED-NCI task.

AML and AgreementMaker run times were measured in our local server, with
4 core CPU and 16 GB total RAM. They are not directly comparable to the run
times reported for the OAEI 2012 Anatomy track, which were measured on a less
powerful server (2 core CPU with 3 GB allocated RAM), but can be compared to
the run times for the Large Biomedical Ontologies track, which were measured on
a more powerful server (16 core CPU with 15 GB allocated RAM).

5 Results and Discussion

The AML results for the Anatomy track are presented in Table 1 together with
those of AgreementMaker and the top three systems in OAEI 2012 [1]. Sur-
prisingly, the performance of AML in terms of F-measure was slightly better
than that of AgreementMaker, and also slightly better than the top system in
OAEI 2012. The comparison with AgreementMaker is interesting because the
configuration of the systems was very similar, but AgreementMaker has a more
exaustive matching process (including the Parametric String Matcher used for
global matching and the LWC combination strategy [4]) and therefore we were
not expecting AML to perform better than AgreementMaker. While Agreement-
Maker did have a higher recall than AML, this was compensated by the higher
precision of the latter. The main reason behind this increase in precision is likely
the new weighting system used in the Lexicon, as this is the only substantial
change made over AgreementMaker. In any case, it is clear that the features of
AgreementMaker that were excluded from AML for the sake of efficiency did
not affect AML’s performance. They did, however, have a significant effect on
efficiency, as the run time of AML was only 5% of the run time of Agreement-
Maker on the same server and conditions. While we cannot compare our run
time directly with those reported for the Anatomy track in OAEI 2012 (since
our server is more powerful than the server used in this track) a run time of 10
seconds is nevertheless a clear indication of the efficiency of AML.

Regarding the three tasks of the Large Biomedical Ontologies track, AML was
able to match all ontologies in considerably less time than the best systems in
OAEI 2012 (see Table 2). Furthermore, the OAEI 2012 run times were obtained

Table 1. Evaluation of the AgreementMakerLight system in the OAEI 2012 Anatomy
track

System Precision Recall F-Measure Run Time (s)

AgreementMakerLight 96.1% 88.9% 92.4% 10*

GOMMA-bk 91.7% 92.8% 92.3% 15

AgreementMaker 95.2% 89.4% 92.2% 200*

YAM++ 94.3% 85.8% 89.8% 69

CODI 96.6% 82.7% 89.1% 880

* Run times obtained using a more powerful server than the one used for OAEI 2012.
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Table 2. Evaluation of the AgreementMakerLight system on the OAEI 2012 Large
Biomedical Ontologies Track

System Precision Recall F-Measure Run Time (s)

FMA-NCI

YAM++ 86.2% 83.8% 85.0% 1304

GOMMA 82.9% 83.6% 83.3% 217

ServOMapL 84.4% 80.8% 82.6% 251

AgreementMakerLight 84.7% 71.8% 78.0% 89*

FMA-SNOMED

ServOMapL 85.1% 69.1% 76.3% 517

ServOMap 84.2% 65.5% 73.7% 517

YAM++ 79.1% 68.5% 73.4% 23900

AgreementMakerLight 88.0% 18.8% 40.7% 224*

SNOMED-NCI

YAM++ 78.5% 60.4% 68.3% 30155

ServOMapL 78.5% 59.8% 67.9% 738

LogMap 81.2% 57.7% 67.4% 955

AgreementMakerLight 91.8% 49.1% 67.1% 231*

* Run times obtained using a less powerful server than the one used for OAEI 2012.

in a more powerful server, so the difference between AML and these systems
should be even greater than revealed by the results. In terms of quality (as mea-
sured by the F-measure), the results of AML are behind those of the top systems
in OAEI 2012. This was expected, since we used only a simple configuration with
two matching algorithms, as our main goal was assessing the efficiency of AML.
Nevertheless, the results obtained in the FMA-NCI and SNOMED-NCI tasks
are competitive, with a high precision (higher than the top OAEI 2012 systems,
in the case of the SNOMED-NCI task) and a reasonable recall. We expect to
improve these baseline results significantly once we focus on quality, namely by
introducing adequate external information, which is a common feature of all the
top OAEI 2012 systems. Given AML’s advantage in terms of run time, we expect
to obtain results comparable to those of the top OAEI 2012 systems in these
tasks, while taking less time.

The results for the FMA-SNOMED task were excellent in terms of run time
and precision, but not in terms of recall. However, we identified the problem
behind the low recall, which can be overcome without difficulty: we noticed
that SNOMED includes the word “structure” in the labels of most anatomical
structures (e.g., “structure of hair of trunk”, “spinal nerve structure”) whereas
FMA names the same structures directly (e.g., “hair of trunk”, “spinal nerve”).
Since our matching configuration for this task was based on the Lexical Matcher,
which is a literal name matcher, any such mappings will not be found (they
may be found by the Parametric String Matcher, but only if they lie in the
neighborhood of mappings found by the Lexical Matcher). One simple strategy
to circumvent this problem is to use a word matching algorithm such as our
Word Matcher. Thus, we expect to be able to obtain a significantly higher recall
once we optimize the Word Matcher.
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6 Conclusions

Overall, the AML framework has fulfilled the goals for which it was designed.
On the one hand, it was able to match very large ontologies efficiently, in a
competitive time when compared with top ontology matching systems. On the
other hand, it was able to produce high quality results in the Anatomy track,
that surpassed even those of AgreementMaker. In comparison with Agreement-
Maker, AML represents a substantial improvement in terms of efficiency without
sacrificing performance, as measured in terms of precision, recall, and F-measure.
Furthermore, AML shares the focus of AgreementMaker on flexibility and ex-
tensibility, which are part of its design strengths [3].

In the Anatomy track, the results obtained by AML place it above the systems
that competed in OAEI 2012. We believe that AML can improve even further
upon these results, considering that scalability to large and very large ontologies
has been, until now, the main focus of the work behind AML. Regarding the
Large Biomedical Ontologies track, AML obtained excellent run times, but it
is clear that performance can be improved—especially recall—once we enlarge
our focus. In fact, even without focusing on performance, the results obtained
by AML on the FMA-NCI and SNOMED-NCI tasks were competitive. Thus,
we expect AML to place among the very best systems in these tasks, with the
inclusion of suitable external data and a more complete matching configuration.
As for the FMA-SNOMED task, we identified that the cause for the low recall
obtained by AML was the unusual naming convention of the anatomical struc-
tures in SNOMED. We expect to circumvent this problem by using a word-based
matching algorithm, which together with the inclusion of external data, will en-
able AML to obtain competitive results in this task while remaining among the
fastest systems.

Further improvements to the AML framework will include innovative strate-
gies for using external resources, repairing alignments, and using semantic simi-
larity in the context of structural matching [19].
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