
Keyword Search on Spatial Databases*
Ian De Felipe Vagelis Hristidis Naphtali Rishe

School ofComputing and Information Sciences
Florida International University

Miami, FL 33199
{ian.de.felipe, vagelis, rishen}@cis.fiu.edu

Abstract- Many applications require finding objects closest to a
specified location that contains a set of keywords. For example,
online yellow pages allow users to specify an address and a set of
keywords. In return, the user obtains a list of businesses whose
description contains these keywords, ordered by their distance
from the specified address. The problems of nearest neighbor
search on spatial data and keyword search on text data have
been extensively studied separately. However, to the best of our
knowledge there is no efficient method to answer spatial keyword
queries, that is, queries that specify both a location and a set of
keywords.
In this work, we present an efficient method to answer top-k
spatial keyword queries. To do so, we introduce an indexing
structure called IR2-Tree (Information Retrieval R-Tree) which
combines an R-Tree with superimposed text signatures. We
present algorithms that construct and maintain an IR2-Tree, and
use it to answer top-k spatial keyword queries. Our algorithms
are experimentally compared to current methods and are shown
to have superior performance and excellent scalability.

I. INTRODUCTION
An increasing number of applications require the efficient

execution of nearest neighbor (NN) queries constrained by the
properties of the spatial objects. Due to the popularity of
keyword search, particularly on the Internet, many of these
applications allow the user to provide a list of keywords that
the spatial objects (henceforth referred to simply as objects)
should contain, in their description or other attribute. For
example, online yellow pages allow users to specify an
address and a set of keywords, and return businesses whose
description contains these keywords, ordered by their distance
to the specified address location. As another example, real
estate web sites allow users to search for properties with
specific keywords in their description and rank them
according to their distance from a specified location. We call
such queries spatial keyword queries.
A spatial keyword query consists of a query area and a set

of keywords. The answer is a list of objects ranked according
to a combination of their distance to the query area and the
relevance of their text description to the query keywords. A
simple yet popular variant, which is used in our running
example, is the distance-first spatial keyword query, where
objects are ranked by distance and keywords are applied as a
conjunctive filter to eliminate objects that do not contain
them.

Figure 1, which is our running example, displays a dataset
of fictitious hotels with their spatial coordinates and a set of
descriptive attributes (name, amenities). An example of a
spatial keyword query is "find the nearest hotels to point
[30.5, 100.0] that contain keywords internet and pool". The
top result of this query is the hotel object H7.

Unfortunately there is no efficient support for top-k spatial
keyword queries, where a prefix of the results list is required.
Instead, current systems use ad-hoc combinations of nearest
neighbor (NN) and keyword search techniques to tackle the
problem. For instance, an R-Tree is used to find the nearest
neighbors and for each neighbor an inverted index is used to
check if the query keywords are contained. We show that such
two-phase approaches are inefficient.
We present a method to efficiently answer top-k spatial

keyword queries, which is based on the tight integration of
data structures and algorithms used in spatial database search
and Information Retrieval (IR). In particular, our method
consists of building an Information Retrieval R-Tree (IR2-
Tree), which is a structure based on the R-Tree [Gut84]. At
query time an incremental algorithm is employed that uses the
IR -Tree to efficiently produce the top results of the query.

The I2-Tree is an R-Tree where a signature (Faloutsos and
Christodoulakis [FC84]) is added to each node v of the IR2-
Tree to denote the textual content of all spatial objects in the
subtree rooted at v. Our top-k spatial keyword search
algorithm, which is inspired by the work of Hjaltason and
Samet [HS99], exploits this information to locate the top
query results by accessing a minimal portion of the I2-Tree.
This work has the following contributions:
* The problem of top-k spatial keyword search is defined.
* The IR2-Tree is proposed as an efficient indexing

structure to store spatial and textual information for a set
of objects. Efficient algorithms are also presented to
maintain the IR2-Tree, that is, insert and delete objects.

* An efficient incremental algorithm is presented to answer
top-k spatial keyword queries using the IR2-Tree. Its
performance is evaluated and compared to current
approaches. Real datasets are used in our experiments
that show the significant improvement in execution times.

Note that our method can be applied to arbitrarily-shaped
and multi-dimensional objects and not just points on the two

This research was supported in part by NSF grants CNS-0320956, CNS-0220562, HRD-03 17692, and IIS-0534530

978-1-4244-1837-4/08/$25.00 ©D 2008 IEEE 656 ICDE 2008

dimensions, which are used in our running examples for
clarity.

This paper is organized as follows. Section 2 formally
defines the top-k spatial keyword search problem. Section 3
presents required background knowledge. Section 4 presents
the IR2-Tree and its maintenance algorithms. Section 5
presents our incremental search algorithm along with other
baseline algorithms. Section 6 experimentally compares our

search algorithm to baseline algorithms. Section 7 discusses
related work and we conclude in Section 8.

H1

H2

H3
H4
H5
H6

H7
H8

Name
Hotel A
Hotel B
Hotel C
Hotel D
Hotel E
Hotel F
Hotel G
Hotel H

Latitude Longitude Amenities
25.4 -80.1 tennis court, gift shop, spa, Internet

47.3 -122.2 wireless Internet, pool, golf course
35.5 139.4 spa, continental suites, pool
39.5 116.2 sauna, pool, conference rooms

51.3 -0.5 dry cleaning, free lunch, pets
40.4 -73.5 safe box, concierge, internet, pets
-33.2 -70.4 Internet, airport transportation, pool
-41.1 174.4 wake up service, no pets, pool

Figure 1: Sample dataset of hotel objects.

II. PROBLEM DEFINITION
In this work, a (spatial) object T is defined as a pair

(Tp, T t), where Tp is a location descriptor in the multi-
dimensional space, and T t is a text document (textual
description). Let D be the universe of all objects in a database.
In Figure 1, Tp is the point composed of "latitude" and
"longitude", while T.t is the concatenation of the "name" and
"amenities" attributes.
A top-k spatial query Qs searches through the multi-

dimensional space to find the k nearest objects to the specified
query point p. The spatial objects are ranked by distance such
that an object closer to p has a higher rank. In particular,
score(T) = distance(Tp, p). For example, in Figure 1, object
H4 is ranked first, givenp=[30.5, 100.0].
A keyword query Qw is a set of keywords wl,...,w. The

result of Qw is a list of objects ordered by the relevance
IRscore(T.t, Qw) of their textual descriptions to the query

keywords, as measured by an IR ranking function [SinO 1].
A special case, used in our running examples, is the

Boolean keyword query which returns the set of all objects
whose text document contains all of wI,. ..,wm. That is,

Ans(Qw) {=T D| Vwe Qw,we T.t}

For example, in Figure 1, objects H2, H7 are the results of
Boolean keyword query {"internet", "pool"}.
A top-k spatial keyword query Q is a combination of a top-

k spatial query and a keyword query. In particular, Q is
defined as a number Q.k of requested results, a point Q.p, a

set Q. t = tw1,...,Win of keywords, and a ranking function:
f(distance(Tp, Q.p), IRscore(Tt, Q.t))
The result of Q is a list of the top-k objects T ranked

according to the ranking functionf
A special case is the distance-first top-k spatial keyword

query Q, used in our running examples, which returns a

ranked list of the k objects that contain all of wl,...,wm and are
closest to Q.p. That is, distance-first top-k spatial keyword
query is a combination of a top-k spatial query and a Boolean
keyword query. It is,

As
Q.k first T E D ordered by distance (T.p, Q.p)

Ans() 1.k irs T VwE Q.t, wE T.t J
For example, in Figure 1, objects H7, H2 are the results of

a distance-first top-k spatial query with Q.k 2, Q.p =

[30.5,100.0] and Q.t = ["internet", "pool"]. Our work
tackles the problem of efficiently answering top-k spatial
keyword queries.

III. BACKGROUND ON INCREMENTAL NN
Figure 2 shows an example of an R-Tree using the hotel

dataset of Figure 1. An MBR is represented by its southwest
and its northeast points. An R-Tree is typically stored on disk
and each R-Tree node takes a whole disk block; hence access
to a node requires one disk I/0. The number of children each
node can reference is called node capacity.

Root Node Ni
[33.2,-122.21 [-41.1 0.5]

Inner Node N2 Inner Node N3
[40.4,-122.2] [-33.2,-80.1] [41.1,139.4] [39.5,-0.5]

. 47.3,-73.51 L2.,04 [35.5,174.41 [51.3,116.21

Le.afNode N4 Le.afNode Ns LeafNode N6 Leafode N7

F47.3_,-12_2._2rF40.4_j-73_.5][-33.2'70.41 F_P5.4_,-8_0.1V_ [41.1,174.41 -F35.5,139.4 1 513-.] 195162
47.3,-12.21 140 f73 5l 133.2,70.41 125.4,-80.1 [41.1,174.41 [35.5,139.41 5.,05]95162
PointetoH2 Pointe to H6 Point-rto H, Poite t H Pointer to H.s Pointer to H, Poine to H one oH

Figure 2: R-Tree for dataset of Figure 1.

The Incremental Nearest Neighbor algorithm presented by
Hjaltason and Samet [HS99] uses the structure of an R-Tree
to access a minimal number of R-Tree nodes and objects to
retrieve the objects nearest to a given point or area in an

incremental fashion. Figure 3 shows the Incremental Nearest
Neighbor algorithm for two-dimensional objects. The input
parameters are a point p, which is the query point (an area

could be used instead), and a priority queue U which is
initialized with the root of the R-Tree R. Line 2 returns the
queue element which has the smallest distance from the query

point.

Figure 3: Incremental Nearest Neighbor algorithm.

If the element is a leaf node, then each child object,
referenced by ObjPtr, is inserted in the queue based on its
distance. If it is a non-leaf node, each child node, referenced

657

NearestNeighbor (p, U)
/* priority queue U initially contains rootnode ofR with distance 0*!

1 whilenot u.IsEmpty()
2 E -- U.Dequeue()
3 if E is a non-Leaf Node
4 foreach (NodePtr,MBR) in E
5 U.Enqueue(LoadNode(NodePtr),Dist(p,MBR))
6 else if E is a Leaf Node
7 foreach (ObjPtr,MBR) in E
8 U.Enqueue(ObjPtr,Dist(p,MBR))
9 else /*E is an objectpointer*/
10 retum E asnextnearestobjectpointertop

by NodePtr, is inserted in the queue. Finally, if the element is
a pointer to a spatial object, it is reported as the next result of
the algorithm, as show in Line 10. The Dist function
computes the distance between the query point p and a MBR.
We assume that the R-Tree is disk resident, thus, the LoadNode
function loads the node from the disk block.

Example 1: Executing the Incremental Nearest Neighbor
algorithm on the R-Tree of Figure 2 for the query point [30.5,
100.01 results in thefollowing sequence ofsteps:

1. Enqueue N1; U=t(NI, 0.°0)
2. Dequeue N1; Enqueue N2, N3; U=t(N3, 0.0), (N2, 170.4)]
3. Dequeue N3; Enqueue N6, N7; U=t(N7, 9.0), (N6, 39.4), (N2, 170.4)]
4 Dequeue N7; Enqueue H5, H4; U=t(H4, 18.5), (N6, 39.4),

(H5, 102.6), (N2, 170.40)]
5. Dequeue andReturn H4

If we continue, objects H3, H5, H8, H6, HI, H7, H2 are
returned next. D

IV. IR -TREE
The IR2-Tree is a combination of an R-Tree and signature

files. In particular, each node of an IR2-Tree contains both
spatial and keyword information; the former in the form of a
minimum bounding area and the latter in the form of a
signature. An I2-Tree facilitates both top-k spatial queries
and top-k spatial keyword queries as we explain below.
More formally, an I2-Tree R is a height-balanced tree data

structure, where each leaf node has entries of the form
(ObjPtr, A, S). ObjPtr and A are defined as in the R-Tree
while S is the signature of the object referred by ObjPtr. A
non-leaf node has entries of the form (NodePtr, A, S).
NodePtr and A are defined as in the R-Tree while S is the
signature of the node. The signature of a node is the
superimposition (OR-ing) of all the signatures of its entries.
Thus a signature of a node is equivalent to a signature for all
the documents in its subtree. Figure 6 shows an IJ-Tree for
the sample dataset of Figure 1. To simplify the following
presentation we focus on the two-dimensional space.

Root Node Ni

[-33.2,-122.2] [41.1,-0.5]
14.r0451.3,174.41

Inner Node N2 Inner Node N3
10001111 11111111 10011001 01101101
00100011 10010110 01001011 10010011

[40.4 122.2] [-33.2 80.1] [41.1139.4] [39.5,-0.5]

LeafNode N, LeafNode Ns LeafNode N6 LeafNode N,
10001011 00001110 10000011 01111110 00011001 10011001 01100101 00001001
00000010 00100011 00010110 10000010 01001011 00001010 10000011 10010010

[47.3,122.2] [40.4,-73.5] [-33.2 70.4] [25.4,80.1] [41.1,174.4] [35.5,139.4] [51.3,-0.5] [39.5,116.2]
[47.3,-122.21 4 /7 l 13.f04 254-0 1 14-,174.41 [35.5,139.41 15.,0.51 3.,162

_one oH one oH one oH7 Pitrt l Pitrt g Pitrto H3oite to Hs] Poi ntertoH,

Figure 4: IR2-Tree for dataset of Figure 1.

The IR2-Tree is maintained through insert and delete
operations, which are modifications of the corresponding R-
Tree operations. Figures 7 and 8 show the Insert and Delete
algorithms respectively.

The Insert algorithm uses a standard R-Tree
implementation of ChooseLeaf, which can be found in [Gut84].

We use the standard Quadratic Split technique [Gut84] for
node splitting. We modify the standard AdjustTree method to
also maintain the signatures of the modified nodes. That is, if
a new bit is set to 1 in a node N, then it must be also set to 1
for N's ancestors. Finally, we assume that all tree related
algorithms have implicit access to the root node of the IR2-
Tree R.

The input of the Insert algorithm is a pointer to an object
T, its MBR, and its signature. Line 1 retrieves a leaf node N
which is best suited according to the MBR of T. Then Ts
pointer, MBR, and signature are stored in N. IfN has reached
its maximum node capacity then it will split. IfN is split into
nodes 0 and P, on Line 4, and it is the root node, a new node
M will be created. M becomes the parent 0 and P and stores
their pointer, MBR, and signature. Finally, M is declared the
new root node. IfN is not the root then its parent node has to
be updated as is the case on line 14 or 18. Finally, since we
assume that the IR -Tree is disk resident, the StoreNode
function stores the node to the corresponding disk block(s).

Standard implementation of FindLeaf is used in the
implementation of Delete. However, CondenseTree is modified
to maintain the signatures of updated nodes, similarly to
AdjustTree above. In Line 1 of Figure 8, a search for a leaf
node N containing an unwanted object T is performed. If such
N exists, T is removed from N, otherwise the algorithm stops.
If T is removed, the tree is condensed and proper tree
maintenance takes place.

Figure 5: Insert method for IR2-Tree.

Clearly, the complexity of the Insert and Delete algorithms
is the same as in an R-Tree, since the only additional
operation is the maintenance of the signatures of the updated
nodes and their ancestors. Note that the updating of the
signatures throughout a node and its ancestor is being done at
the same time the tree would normally update the MBR of a

node and its ancestors.
To account for the extra space needed to store the

signatures in an IR2-Tree node, and in order to have the same

number of children as in the corresponding R-tree, we allocate
additional disk block(s) to an I2-Tree node when needed.

658

Insert (ObjPtr,MBR, S)
1 N -- ChooseLeaf (MBR)
2 N.Add (Obj Ptr, MBR, S)
3 if N needs to be split
4 {O,P} -- N.Split() /*nodes o and P are retumed*/
5 if N.IsRoot()
6 initialize a new node M
7 M.Add(O.Ptr,O.MBR,O.S)
8 M.Add(P.Ptr,P.MBR,P.S)
9 StoreNode (M)
10 StoreNode (O)
11 StoreNode (P)
12 R.RootNode -- M
13 else
14 AdjustTree (N. ParentNode, O, P)
15 else
16 StoreNode (N)
17 if not N.IsRoot()
18 AdjustTree (N.ParentNode,N, null)

This fact has a minor impact on the performance of the IR2-
Tree algorithms as shown in Section 6.1.

Figure 6: Delete method for IR2-Tree.

Multilevel IR2-Tree
A drawback of the IR2-Tree described above is that the

same signature length is used for all levels which leads to
more false positives in the higher levels, which have more l's
(since they are the superimpositions of the lower levels). To
address this problem, we use varying signature lengths for
different levels. This is achieved using multi-level
superimposed coding [CS89,DR83,LKP95], which reduces
the number of false positives, particularly in non-leaf nodes.
In this case, we use the optimal signature length for each level
(we use the optimal signature length formula from [MC94]),
and superimpose the signatures of all objects in the subtree of
each node, instead of the signatures of the children nodes as

before. A drawback of this variant, called Multi-level IR2-Tree
(MIR2-Tree), is that it significantly increases the complexity
of the tree maintenance operations (Insert and Delete) since
for each object inserted or deleted, we have to recompute the
signatures of all ancestor nodes by accessing all underlying
objects and not just by superimposing the children's
signatures as before. We compare the performances of IR2-
Tree and MIR2-Tree in Section 6.

V. ALGORITHMS TO ANSWER Top-K SPATIAL KEYWORD
QUERIES

We consider two baseline algorithms, in Section 5.1, which
are named based on the underlying data structures they use:

the R-Tree, and the Inverted Index Only (IIO). In Section 5.2
we present the distance-first IR2 algorithm which uses the IR2-
Tree structure to answer distance-first top-k spatial keyword
queries. Then in Section 5.3 we present the general IR2
algorithm which uses the I2-Tree structure to answer general
top-k spatial keyword queries. Note that these last two
algorithms can also operate on MIR2-Trees with no

modification.

A. Current Baseline Algorithms
For simplicity we describe the R-Tree and the 110 baseline

algorithms for the simpler distance-first top-k spatial keyword
queries, which are also used in the experiments (Section 6).
Both algorithms can be extended to answer general top-k
spatial keyword queries.

R-Tree Algorithm
The first baseline algorithm, R-Tree, makes use of only an

R-Tree data structure. Given a distance-first top-k spatial
keyword query, the algorithm first finds the top-I nearest
neighbor object to the query point Q.p. Then it retrieves that
object (since the R-tree only contains object pointers) and
compares that object's textual description with the keywords
of the query. If the comparison fails then that object is
discarded, and the next nearest object is retrieved. The
incremental NN algorithm in Figure 3 ([HS99]) is used. This
process continues until an object is found whose textual
description contains the query keywords. Once a satisfying
object is found it is returned and the process repeats until k
objects have been returned.

The drawback of this algorithm is that it has to retrieve
every object returned by the NN algorithm until the top-k
result objects are found. This potentially can lead to the
retrieval of many "useless" objects. In the worst case (when
none of the objects satisfies the query's keywords) the entire
tree has to be traversed and every object has to be inspected.

110 Algorithm
The 110 baseline algorithm makes use of an inverted index.

It first finds all the objects (object ids) whose text document
contains the query keywords by intersecting the lists returned
by the inverted index. Let V be the set of objects in this
intersection. Then the objects in V are retrieved and the
distance between the query point Q.p and each of the objects
in V is computed. These objects are sorted and the top-k
objects are returned. Figure 9 shows the 110 algorithm. The
input parameters are the inverted index I and the distance-first
top-k spatial keyword query Q.
Example 2: Consider the query top-2 hotels from point [30.5,
100.01 containing the keywords ("internet", '~pool"} on the data of
Figure 1. The trace ofIIO algorithm is thefollowing:
1. H1, H2, H6, H7 are returnedby the inverted indexfor keyword

"internet"

2. H2, H3, H4, H7, H8 are returnedby the inverted indexfor keyword
'pool"

3. H2, H7 are the result after the intersection
4 Objects H2, H7 are accessed to get their coordinates
5. AddH2to listL=t(H2, 222.8)]
6 AddH7to listL=t(H7, 181.9), (H2, 222.8)]

return H7, H2 as the result. D

The performance of this algorithm deteriorates if many
objects contain the query keywords. In this case the inverted
index would return many objects, which are then retrieved and
inspected. Notice that 110 is the only non-incremental
algorithm presented in this paper. That is, 110 computes all
the query results and its performance is independent of k, as

shown in Section 6.

B. Distance-First IR'2-Tree Algorithm
In this section we present the distance-first version of the

IR -Tree algorithm, which outputs the objects that contain all

659

Delete (Obj Ptr)
1 N -- R.FindLeaf(ObjPtr)
2 if N was notfound
3 return
4 else
5 N. Remove (Obj Ptr)
6 CondenseTree (N)
7 if R. RootNode has only one child M
8 R.RootNode *- M

query keywords ordered by their distance from the query
point. In Section 5.3 we show how this algorithm is
generalized to handle general top-k spatial keyword queries.

IIOTopK(I, Q)

/* I is the inverted index */
1 foreach word wi in Q. t do
2 Li - I .RetrieveObjectPointersList (wi)
3 v - intersection of object pointers in Li'S
4 initialize a list L
5 foreach ObjPtr in v do
6 T *- LoadObject (ObjPtr)
7 d -- Dist(Q.p,T.p)
8 L.Add (T, d)
9 sort items in L by distance
10 retumfirst Q.k objectsin L

Figure 7: Inverted Index Only (110) algorithm.

The distance-first IR2-Tree algorithm exploits the structure
of the IR2-Tree to efficiently answer distance-first top-k
spatial keyword queries. The tree traversal is based on the
Incremental Nearest Neighbor algorithm (Figure 3). The key
advantage of this algorithm is that it prunes whole subtrees if
their root-node signature does not match the query signature
Signature(Q.t). This happens because the signature of an IRW-
Tree node is composed from all the signatures of its children.
This pruning occurs in addition to the spatial pruning
provided by the traditional Incremental Nearest Neighbor. By
tightly integrating these two pruning mechanisms, the
distance-first I2-Tree algorithm accesses a minimal set of
IR -Tree nodes and objects to answer a distance-first top-k
spatial keyword query.

Figure 10 shows the distance-first IR2-Tree algorithm
(IR2TopK) . The key methods is IR2NearestNeighbor(.), which
is based on the NearestNeighbor algorithm but inputs an
additional input parameter w, which is the signature of the
query. The signatures of nodes and objects are compared
against w and are skipped if their signatures do not match w
(i.e. they are dropped from the search queue). Notice that each
call to the IR2NearestNeighbor (.) method returns a candidate
result object, which is then checked (Line 21) to ensure it is
not a false positive.
Example 3: As an example we trace the execution ofthe algorithm
on the IR2-Tree ofFigure 6 to answer the query: top-2 hotelsfrom
point [30.5, 100.01 containing the keywords ("internet", '~pool"}.
1. EnqueueN1; U=t(N), 0.0)]
2. Dequeue N1; Enqueue N2; U=t(N2, 170.4)]
3. DequeueN2; Enqueue N4, N5; U= (N5, 170.5), (N4, 173.8)]
4 Dequeue N5; EnqueueH7; U= [(N4, 173.8), (H7, 181.9)]
5. Dequeue N4; Enqueue H2; U= (H7, 181.9), (H2, 222.8)]
6 Dequeue andreturn H7;
7. Dequeue andreturn H2;

Notice how the IR2-Tree signature pruning ability starts to
emerge in Line 2. Only one child ofN1 is enqueued. The other
child is discarded as it fails the signature check. Objects HI
and H6 also get pruned when their parent is visited (Lines 4
and 5).D

C. IR2-Tree Algorithm
In this section we present the general version of the IR2-

Tree algorithm, where objects are output ordered by a ranking
function f(distance(Tp, Q.p), IRscore(T t, Q. t)) as defined in
Section 2. The key differences to the distance-first version are
that:

(i) We do not create a single signature Signature(Q.t) for the
query, but instead we use the individual signatures,
Signature(w), we Q.t, of the query keywords. The reason is that
we do not use AND semantics, that is, an object containing
only some of the query keywords may be in the result.

(ii) We can no longer output an object as soon as we know
it is the next closest and contains all query keywords, because
a farther object may have a higher overall fo score. Hence,
the nodes v in the queue U are ordered by the maximum score
that an object T inside them may have, that is, by:

Upper(v)=UpperBoundT,(f(distance(T.p, Q.p), JRscore(T.t, Q.t))
Assuming that f(is decreasing with distanceo and

increasing with IRscoreo we have:
Upper(v) =LowerBoundT-(f(distance(v.MBR, Q.p), UpperBoundTrhas

signature-v.s(JRscore(T. t, Q. t)))

Figure 8: Distance-First IR2-Tree algorithm.

To compute the maximum possible IR score

UpperBoundT-has-signaturev.S(IRscore(T.t, Q.t)) of an object in
the MBR of v we can assume that v has an imaginary object T
that contains all keywords of Q specified by the signature of
v.S exactly once (term frequency tf=1), that is, we assume no

false positives. Hence, the document length (do) of Tt is the
number of such keywords. Then, we can use a traditional tfidf
IR ranking function [SinO 1]. This method facilitates
outputting result-objects as early as possible. Note that it is
not possible to estimate a tight maximum possible IR score if

660

IR2NearestNeighbor (p, W, U)
1 whilenot u.IsEmpty()
2 E -- U. Dequeue ()
3 if E is a non-Leaf Node
4 foreach (NodePtr,MBR,S) in E
5 if s matches w
6 U.Enqueue (LoadNode (NodePtr),Dist (p,MBR))
7 else if E is a Leaf Node
8 foreach (ObjPtr,MBR,S) in E
9 if s matches w
10 U.Enqueue(ObjPtr,Dist(p,MBR))
11 else /*E is an objectpointer*/
12 retum E as next nearest object pointerto p
IR2TopK(R, Q)
13 initialize a list L
14 Initialize a prorty queue u
15 U. Enqueue (R. RootNode, 0)
16 W *- Signature(Q.t)
17 c - 0
18 while c < Q. k
19 ObjtPtr *- IR2NearestNeighbor (Q.p,W,U)
20 T -- LoadObject(ObjPtr)
21 if T . t contains all keywords in Q. t
22 c - c + 1
23 L.add(T)
24 returm L

the IR function uses advanced features like thesaurus or

ontology.
We make the following specific changes to the distance-

first version of Figure 10:

1. Replace Line 16 with:
foreach keywordwi in Q.t do

Wi e- Signature (wi)

2. Replace Lines 21-23 with:
Score e- f (distance (T.p, Q.p), IRscore (T. t, Q. t))
if Score 2 Upper(U.topo)
r* check if actual score ofT is greater or equal to the max possible score
of the objects in the queue */

c e c + 1
L.add(T)

else
U.Enqueue(T,Score) /*to be considered later*/

3. Replace Lines 5-6 with:
Score (-UpperBoundT has-signature-s (IRscore (T. t, Q. t))
if Score > 0

U.Enqueue (LoadNode (NodePtr),Score)
/* check if there can be an object T with non-zero IR score. The "if'
condition can be removed ff results with 0 IR score are acceptable*/

4. Replace Lines 9-10 with:

VI. EXPERIMENTS
To measure the performance of the IR2-Tree, MIR -Tree,

and baseline algorithms, we have implemented all algorithms
and underlying data structures in Java. All index structures
(R-Tree, IR -Tree, MIR2-Tree and inverted index) are disk-
resident. We focus on the distance-first version of the top-k
spatial keyword query, since its results are easier to
comprehend and analyze. The spatial objects are stored in a

plain text file and the leaf nodes of the tree data structures
store pointers to the object locations in the file. We make
comparisons based on the disk accessed required to satisfy a

query and the execution time. An Athlon 64 3400+
(NewCastle) with 2GB of RAM and 74GB 1OOOORPM drive
was used for the experiments.
We present the results of two datasets provided by the High

Performance Database Research Center (http://hpdrc.fiu.edu/).
Both datasets are plain text files (tab delimited) where each
spatial object occupies a row. The first dataset contains
objects that represent hotels and will be referred as the Hotels
dataset. The second dataset will be referred as the Restaurants
dataset and contains restaurant data. Table 1 shows more

details of the two datasets.
In all experiments the disk block size is 4,096 KB. Also,

the number of children of a node of the R-Tree is computed
given the fact the each node is a disk block. This translates to

113 children per node in our implementation. We use this
same number of children for the IR2- and MIR2-Trees, which
typically requires two disk blocks per node. As the
experiments show, the extra disk block overhead adds to the
size of the IR2- and MIR2-Trees but has little effect on the
execution time.
We compare the performance of the IR -Tree and MIR2-

Tree algorithm with that of the R-Tree and 110 algorithms.
Three sets of experiments were carried out. The first measures
the performance of the algorithms for varying values of
requested results k (top-k). The second set measures the effect
of the number of query keywords. Finally, the third set of
experiments shows the effect of the signature length r.

TABLE 1: DATASET DETAILS

Dataset Size Total # of Average # Total # Average #
(MB) obj ects unique unique disk

words per words in blocks
object dataset per object

Hotels 55.2 129,319 349 53906 2

Restaurants 61.3 456,288 14 73855 1

Varying k (top-k)
In this experiment we fix the number of query keywords to

2 and the signature length to 189 bytes (for Hotels dataset)
and 8 bytes (for Restaurants dataset). Note that this signature
length is longer at the top levels of the MIR2-Tree, which uses

variable signature sizes. These signature lengths were chosen
to balance space requirements and performance. The results of
this experiment are shown in Figures 9 and 12 for Hotels and
Restaurants respectively. The graph y-axes have logarithmic
scale to illustrate the difference more clearly.

The graph shows that IR2-Tree and MIR2-Tree perform
better than R-Tree for all values of k. This is expected since
the R-Tree approach will have to access more objects and
potentially more tree nodes as well. In contrast, the IR -Tree
and MIR2-Tree use the signatures to prune whole subtrees. In
particular, the MIR2-Tree does a better job filtering inner
nodes since the optimal signature length is used for each tree
level, as described in Section 4.

Figures 9b and 12b show the disk block accesses for the
algorithms. The thick bars illustrate the number of random
disk block accesses while the thin lines on top of the thick
bars show the numbers of sequential disk block accesses. As
expected, the execution time is primarily proportional to the
random access numbers. Note that MIR2-Tree performs fewer
random disk block accesses than the IR2-Tree because of the
pruning effect, but performs more sequential disk block
accesses. This is mainly because the nodes of the top levels of
the MIR2-Tree occupy more disk blocks due to their longer
signatures. The 110 algorithm is insensitive to the k value
since it has to examine all objects that contain all keywords.

661

Score - upperBoundT has-signature-s (IRscore (T. t, Q. t))
if Score > 0

U.Enqueue (ObjPtr, Score)
/* check ifT has non-zero IR score. The "if' condition can be removed if
results with 0 IR score are acceptable*/

100000

10000

1000

100

10

10 20 50 100

top-k

O110 n R-TreeD IF2-Tree E MF2-Tree

(a) Execution Time

w

U)

100000

10000

1000

100-

10

10 20

top-k

50 100

in110 R-Tree o IF2-Tree o MF2-Tree

(b) Object Accesses

Figure 9: Results for varying k (top-k) searches for the Hotels dataset

Io

1 000000-

100000

1 0000

1000

100W

10

1W
2 3

of keywords

* IK0 * RTree 0 IF2-TreeD MF2-Tree

(a) Execution Time

2 3 4

of keywords

* IK0 * RTree 0 IF2-TreeD MF2-Tree

(b) Object Accesses

Figure 10: Results for varying number of keywords for the Hotels dataset

'I

100000

1W0000
1000

100

10

63 126 189 252

signature size

O110 n RTree o IF2-Tree o MF2-Tree

(a) Execution Time

Figure 11: Results for varying signature lengths (in bytes) for the Hotels dataset

Vary number of keywords
In this experiment we fix the number of requested objects k

to 10 and the signature lengths as above. Refer to Figures 10
and 13 for the results of this experiment. By increasing the
number of keywords we reduce the number of objects that
contain all of them (since distance-first top-k spatial keyword
queries are conjunctive). We note that the 110 algorithm
performs better as the number of keywords increases, since
the intersection of the inverted lists then becomes shorter and
hence the object accesses fewer.

Vary signature length
In this experiment we fix k to 10 and the number of

keywords to 2. Refer to Figures 11 and 14 for the results of
this experiment. First note, that the signatures chosen for the
Hotels dataset are different than those for the Restaurants

dataset. This is because a Hotel object contains more unique
words than a Restaurant object, as shown in Table 1. Note that
the displayed signature lengths are used for the leaf nodes of
MIR2-Tree. Longer signatures are used for the top nodes.
There is a trade-off in increasing the signature lengths for
IR2-Tree and MIR2-Tree. Increasing the signature length
decreases the false positives but increases the occupied space
of the tree structures, which can lead to more disk accesses.

Hence, there is no clear trend for varying the signature
lengths.

A. Space Requirements
Table 2 shows the total size (in MB) of each structure. For

IR -Tree and MIR -Tree we consider the instance used for the
"varying top-k" and "varying keywords" experiments above,

662

1i00000
10000

1i000

100

10

I

100000

10000

1000

100

10 -

I

25263 126 189

signature size

O110 n RTree o IF2-Tree o MF2-Tree

(b) Object Accesses

i.e., signature lengths of 189 and 8 bytes for the Hotels and
Restaurant dataset respectively.

Notice that the size of the 110 structure is significantly less
for the Restaurants dataset. This is because the Restaurant
dataset contains far less unique keywords per object than the
Hotels dataset as shown in Table 1. On the other hand, the
sizes of the tree structures are larger for the Restaurants
dataset because it has more objects than the Hotels dataset.

LSD-Tree, and PM quadtree respectively. All algorithms have
similar principles and mainly differ in the data structures used
during execution. Recently there has also been work on
continuous k-NN queries [TPS02,XMA05] which find
continuously the k nearest objects to a query point. Park and
Kim [PK03] independently developed a technique similar to
ours to answer NN queries using a combination of an R-tree
and multiple S-trees, one for every non-spatial attribute.

B. Discussion
As shown in the "vary signature length" experiment above,

by increasing the signature size we achieve fewer accesses to
spatial objects and inner nodes by eliminating false positives.
On the other hand, larger signatures also increase the size of
the IR2-Tree and MIR2-Tree. The larger signatures impact the
size of the I2-Tree more than that of the MIR2-Tree, since
the signature size is consistent thought all nodes of an IR2-
Tree. The signature size only impact the leaf nodes of the
MIR -Tree because the inner nodes are recalculated based on

the object that the subtree can reference.

TABLE 2: SIZES (MB) OF INDEXING STRUCTURES

Dataset
Hotels
Restaurants

|IO
31.4

7.2

R-Tree
6.9
23.9

IR2-Tree
34.5
47.2

MIR2-Tree
44.9
68.2

Also, in the rare case where every query keyword appears
in very few objects, the 110 method will be faster since the
inverted lists would be very short. On the other extreme, if the
query keywords appear in almost all objects, the R-Tree will
excel. Finally, the MIR-Tree generally performs better than
the IR2-Tree; however, the MIR-Tree is expensive to
maintain. Hence, for frequently updated datasets, I2-Tree is
the choice.

VII. RELATED WORK
Nearest Neighbor Queries

Answering k-nearest neighbor queries on a spatial database
is a classical database problem. Most methods use indices
built on the data to assist the k-NN search. Perhaps the most
widely used algorithm is the branch-and-bound algorithm
[RKV95] which traverses an R-tree [Gut84] while
maintaining a list of k potential nearest neighbors in a priority
queue. There have also been attempts to use range queries to
solve the k-NN search problem, such as the one proposed by
Korn et al. [KSF+96]. The basic idea is to use a range query
to retrieve the potential k-NNs. This algorithm is further
extended by improving the region estimation [CG99], and by
a better search technique of the k-NN in the region [SK98].

Before the incremental NN algorithm by Hjaltason and
Samet [HS99] for R-Trees, used in this paper was developed,
the problem of incremental NN was tackled for three different
data structures: [Bro9O,Hen94,HS95] operated on k-d trees,

Signature Files
Signature files were introduced by Faloutsos and

Christodoulakis [FC84,FC85,Fal85] as a method to efficiently
search a collection of text documents. Lee et al. [LKP95]
present methods to build structures on top of a signature file.
In this work we view the document describing a spatial object
as a text block in their notation and build similar structures on
top of this set of objects. In particular, we adopt the idea of an
indexed descriptor file structure [PBC80] (S-Tree [Dep86] is
a variant of an indexed descriptor), which is a tree where the
lowest level consists of block signatures. These are
superimposed codes obtained from the text blocks. A group of
b signatures at the i-th level is superimposed together to form
a signature at the (i-1)-th level. The signatures of each level
have the same length. Similarly, in our IR2-Tree, the parent
has a signature that superimposes (binary ORs) the signatures
of the children.

Finally, when building an indexed descriptor file, we
expect the top levels to have more l's due to the larger
number of words in their subtrees, which in turn leads to more
false positives. The principle of the multi-level superimposed
coding was proposed [CS89,DR83] as a solution to this
problem, where higher levels have longer signatures. This
principle allows fewer false positives by incurring a space
overhead. However, this makes updates on the underlying
documents expensive to maintain.

Top-k queries
Top-k query works [FagO 1, BGM02] handle the aggregation
of attribute values of objects in the case where the attribute
values lie in different sources. For example [BGM02]
consider the problem of ordering a set of restaurants by
distance and price. They present an optimal sequence of
random or sequential accesses on the sources (e.g., Zagat for
price and Mapquest for distance) in order to compute the top-
k restaurants. They view the sources as black boxes in contrast
to our work where we assume full access which allows us to
build an I2-Tree.

Zhou et al. [ZXW+05] present techniques to combine an
inverted index with an R* tree to answer Web queries with
spatial constraints on pages with spatial information. Their
experiments show that an inverted index whose keyword lists
are organized as R* trees has the best performance. However,
their algorithms are not top-k, that is, they require the spatial
area as an input.

663

'a

10 20 50 100

top-k

* IK0 * R-TreeO IF2-TreeD MF2-Tree

(a) Execution Time

1 000000-

100000

1 0000

1000

100W

10

1W
10 20

top-k

50 100

*OI0 * R-Tree o IF2-Tree o MF2-Tree

(b) Object Accesses

Figure 12: Results for varying k (top-k) searches for the Restaurants dataset

It

1 000000-

100000

1 0000

1000

100W

10

2 3 4

of keywords

* IK0 * R-Tree 0 IF2-TreeD MF2-Tree

(a) Execution Time

2 3 4

of keywords

El E0* R-Tree 0 IF2-TreeD MF2-Tree

(b) Object Accesses

Figure 13: Results for varying number of keywords for the Restaurants dataset

'I

100000

1W0000

1000

100

10

11

signature size

110 * R-Tree IF2-Tree MF2-Tree

(a) Execution Time

Figure 14: Results for varying signature lengths (in bytes) for the Restaurants dataset

Furthermore, they do not scale well for multiple keywords
since multiple R*-trees must be traversed and intersected (a
combining algorithm is not presented). Vaid et al. [VJJS05]
and Martins et al. [MSA05] present techniques to combine the
output of a text and a spatial index to answer a spatial
keyword query. These techniques are very similar to the
baseline algorithms we use. However, they do not consider
combining these indexes in a single structure like our IR2-tree.
Further, Vaid et al. [VJJS05] use a grid-based distribution of
the spatial objects.

VIII. CONCLUSIONS

In this paper we introduced the problem of spatial keyword
search and explained the performance limitations of current
approaches. We proposed a solution which is dramatically

faster than current approaches and is based on a combination
of R-Trees and signature files techniques. In particular we

introduced the IR2-Tree and showed how it is maintained in
the presence of data updates. An efficient incremental
algorithm was presented that uses the IR -Tree to answer

spatial keyword queries. We experimentally evaluated our

technique, which proved its superior performance.

IX. REFERENCES
[Bro9O] A. J. Broder. Strategies for efficient incremental nearest

neighbor search. In Pattern Recognition, 23(1-2):171-178,
January 1990.

[BGMO2] Nicolas Bruno, Luis Gravano, Amelie Marian. Evaluating Top-k
Queries over Web-Accessible Databases., ICDE 2002.

[CG99] S. Chaudhuri and L. Gravano. Evaluating top-k selection
queries. In VLDB, 1999.

664

1i00000

10X0

1i000

100

10

I
.E

1i00000

10X0 -

1000 -

100

10

I

10X0

1o000

100 -I

113 6 8

signature size

O110 * R-Tree o IF2-Tree o MF2-Tree

(b) Object Accesses

[CS89] W. W. Chang, Hans-Jorg Schek: A Signature Access Method for
the Starburst Database System. VLDB 1989: 145-153

[CSM06] Yen-Yu Chen, Torsten Suel, Alexander Markowetz. Efficient
Query Processing in Geographic Web Search Engines. SIGMOD
2006

[Dep86] U. Deppisch. S-Tree: A dynamic balanced signature index for
office retrieval. In Proc. of the ACM Conf. on Research and
Development in Information Retrieval, Pisa, 1986.

[DR83] Ron Sacks-Davis, Kotagiri Ramamohanarao: A two level
superimposed coding scheme for partial match retrieval. Inf.
Syst. 8(4): 273-289 (1983)

[FagO1] Ronald Fagin, Amnon Lotem, Moni Naor: Optimal Aggregation
Algorithms for Middleware. In PODS 2001

[Fal85] Christos Faloutsos: Signature files: Design and Performance
Comparison of Some Signature Extraction Methods. In
SIGMOD Conference 1985

[FC84] Christos Faloutsos, Stavros Christodoulakis: Signature Files: An
Access Method for Documents and Its Analytical Performance
Evaluation. In ACM Trans. Inf. Syst. 2(4): 267-288(1984)

[FC85] Christos Faloutsos, Stavros Christodoulakis: Design of a
Signature File Method that Accounts for Non-Uniform
Occurrence and Query Frequencies. In VLDB 1985: 165-170

[FO95] C. Faloutsos, D. W. Oard. A survey of information retrieval and
filtering methods. Technical Report. UMI Order Number: CS-
TR-3514., University of Maryland at College Park, 1995

[Gut84] A. Guttman. R-Trees: a dynamic index structure for spatial
searching. In SIGMOD Conference, 1984.

[Hen94] A. Henrich. A distance-scan algorithmfor spatial access
structures. In Proceedings of the Second ACM Workshop on
Geographic Information Systems, pages 136-143,
Gaithersburg,MD, December 1994.

[HS95] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In
Advances in Spatial Databases Fourth International
Symposium, pages 83-95, Portland, ME, August 1995.

[HS99] G.R. Hjaltason and H. Samet. Distance browsing in spatial
databases. In ACM Transactions on Database Systems, Vol. 24,
No. 2, 1999

[KSF+96] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z.
Protopapas. Fast nearest neighbor search in medical image
databases. In VLDB, 1996.

[LKP95] Dik Lun Lee, Young Man Kim, Gaurav Patel: Efficient
Signature File Methods for Text Retrieval. Pages 423-435.
TKDE Vol 7, Number 3, June 1995

[MC94] Malcolm Campbell. The Design of Text Signatures for Text
Retrieval Systems. Technical Reports 1994

[MSA05] B. Martins, M. Silva, and L. Andrade. Indexing and ranking in
Geo-IR systems. In Proc. of the 2nd Int. Workshop on Geo-IR
(GIR), November 2005.

[NMN+00] G. Navarro, E. Silva de Moura, M. S. Neubert, N. Ziviani, R. A.
Baeza-Yates: Adding Compression to Block Addressing
Inverted Indexes. Inf. Retrieval 3(1): 49-77 (2000), 2000

[PBC80] John L. Pfaltz, William J. Berman, Edgar M. Cagley: Partial-
Match Retrieval Using Indexed Descriptor Files. In Commun.
ACM 23(9): 522-528 (1980)

[PK03] D. Park, H. Kim: An Enhanced Technique for k-Nearest
Neighbor Queries with Non-Spatial Selection Predicates. In
Multimedia Tools and Applications archive, Volume 19, Issue
1 (January 2003), Pages: 79 - 103

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD Conference, 1995.

[Sal97] D. Salomon. Data Compression. The Complete Reference.
Springer, New York, 1997.

[SinOl] A. Singhal: Modern Information Retrieval: A Brief Overview,
Google, IEEE Data Eng. Bull, 2001

[SK98] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. In SIGMOD Conference, 1998.

[TPS02] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous
Nearest Neighbor Search. In VLDB, 2002.

[VJJS05] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual
indexing for geographical search on the web. SSTD 2005.

[XMA05] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref: SEA-
CNN: Scalable Processing of Continuous K-Nearest Neighbor
Queries in Spatio-temporal Databases. In ICDE 2005

[ZMR98] J. Zobel, A. Moffat, K. Ramamohanarao: Inverted Files Versus
Signature Files for Text Indexing. In ACM Trans. Database Syst.
23(4): 453-490 (1998)

[ZXW+05] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid index
structures for location-based web search. ACM CIKM 2005

665

