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Abstract 
Ontology matching is a growing field of research that is of critical importance for the 
semantic web initiative. The use of background knowledge for ontology matching is 
often a key factor for success, particularly in complex and lexically rich domains such as 
the life sciences. However, in most ontology matching systems, the background 
knowledge sources are either predefined by the system or have to be provided by the 
user. 
In this paper, we present a novel methodology for automatically selecting background 
knowledge sources for any given ontologies to match. This methodology measures the 
usefulness of each background knowledge source by assessing the fraction of classes 
mapped through it over those mapped directly, which we call the mapping gain. We 
implemented this methodology in the AgreementMakerLight ontology matching 
framework, and evaluate it using the benchmark biomedical ontology matching tasks 
from the Ontology Alignment Evaluation Initiative (OAEI) 2013. 
In each matching problem, our methodology consistently identified the sources of 
background knowledge that led to the highest improvements over the baseline alignment 
(i.e., without background knowledge). Furthermore, our proposed mapping gain 
parameter is strongly correlated with the F-measure of the produced alignments, thus 
making it a good estimator for ontology matching techniques based on background 
external sources. 

Introduction 

Ontology matching is a task of critical importance in the context of the semantic web that 
has applications in fields such as ontology engineering and information integration [1-9]. 
It has gained particular relevance in the life sciences domain due to the prominent role 
ontologies have taken in representing knowledge in this domain [10-11]. The substantial 
overlap between existing biomedical ontologies [12], makes ontology matching essential 
for integrating their information and ensuring interoperability between them. 



Ontology matching consists of finding mappings (i.e., correspondences) between 
semantically related entities belonging to different ontologies to produce an alignment 
(i.e., a set of mappings) between the ontologies [1]. There are various methods for finding 
these mappings, and they can be classified according to their granularity (entity-level vs. 
structural-level) or their interpretation of the input data (syntactic, external, or semantic) 
[1]. 

External ontology matching methods rely on the use of background knowledge sources to 
provide additional structural or lexical information that enables new mappings to be 
derived between the ontologies being matched [3]. Potential sources of background 
knowledge include other ontologies or thesauri [13-19], lexical databases [19-21], and 
even textual corpora [22] and websites [23]. Ontology matching systems explore these 
sources to find synonyms and spelling variants for the concepts being matched [16,19-
20], to support word sense disambiguation [21], to provide translations [24], or to 
perform indirect matching [13-15,17-19]. 

Indirect matching consists in matching each of the input ontologies to one or more 
external ontologies, then deriving mappings between concepts of the input ontologies that 
are mapped to a common concept (or to related concepts) in the external ontology. This 
strategy was first proposed by [13] to match anatomy ontologies, then extended by [14] 
to derive semantic relations other than equivalence. More recently [17] formalized the 
use of several external ontologies and the combination of direct and indirect matching 
strategies. Combining direct and indirect matching has since become a common and 
effective ontology matching strategy, particularly in the life sciences domain. Indeed, it is 
a strategy shared by many of the leading systems in the biomedical tasks of recent 
editions of the Ontology Alignment Evaluation Initiative (OAEI) [18-19,25]. 

Selecting adequate sources of background knowledge is a recognized challenge in 
ontology matching [26]. While selection has been carried out manually in most ontology 
matching systems [16-20], the ability to select background knowledge sources 
automatically would undoubtedly increase the applicability of those systems. Given a pair 
of input ontologies S and T (for source and target), the goal of an automated background 
knowledge selection algorithm is to select one or more sources of background knowledge 
Xi that enable the alignment of S to T. 

One approach previously proposed in this context consists of querying the semantic web 
for a background ontology Xi for each pair of concepts (CS,CT), then using that ontology 
to infer relationships between the concepts [27]. This strategy is interesting but 
inefficient, as it requires several millions or even billions of online queries for typical 
biomedical ontology matching problems (one query per pair of concepts). Furthermore, 
this strategy is likely to lead to a low precision in domains with complex and ambiguous 
terminology such as the life sciences, as selection is carried out by a search engine and 
based on popularity, and thus the background ontologies may not share the domain of the 
input ontologies. 



The approach proposed by [28] addresses both of these issues, as it consists on a more 
efficient single selection step per matching problem, and it ensures that the domains of 
the background ontologies overlap with those of the input ontologies by computing the 
similarities sim(S,Xi) and sim(T,Xi). However, this approach does not ensure that the 
background knowledge sources are effective for matching the input ontologies, which 
would require that Xi overlaps with S∩T, or more concretely that the background 
alignments A(S,Xi) and A(T,Xi) have common Xi concepts. 

The most recent approach to background knowledge selection addresses this drawback by 
using the effectiveness of the background knowledge sources as the criterion for selection 
[29]. The authors defined effectiveness as the number of common Xi concepts in the 
background knowledge alignments A(S,Xi) and A(T,Xi), divided by the average size of the 
ontologies [29]. Thus, this approach ensures not only that the background knowledge 
source overlaps with S and T individually, but also that it overlaps with both in a manner 
that enables their matching. In addition to the effectiveness measure, the authors also 
present two algorithms for combining multiple background knowledge sources [29]. Of 
these, the topKByComplement algorithm is particularly interesting in that it aims to select 
the best combination of background knowledge sources, taking into consideration how 
they complement each other, rather than the best individual sources.  

While effectiveness is perfectly suited for measuring the individual contribution of a 
background knowledge source, most ontology matching systems that use indirect 
matching strategies combine these with direct strategies. In such a setting, it is necessary 
to ensure that a background knowledge source Xi contains new knowledge (e.g., 
synonyms, relationships) beyond that contained in S and T, and therefore leads to new 
mappings between them that could not be derived directly. In other words, Xi should not 
only enable the matching of S and T (i.e., be effective), but do so in a way that 
complements their direct alignment (i.e., be useful).  

In this paper, we present a novel methodology for automated background knowledge 
selection that complements the strategies proposed by [28-29]. Given a set of background 
knowledge sources that share the domain of the matching problem, our methodology 
identifies and selects those that are most useful. Our methodology is based on the concept 
of mapping gain, which assesses the contribution of a source of background knowledge in 
an ontology matching problem by computing the fraction of mappings derived with the 
background knowledge source over those obtained by matching the ontologies directly. 
We implement this methodology in the AgreementMakerLight (AML) ontology 
matching framework [9,19], and evaluate it in seven benchmark biomedical ontology 
matching tasks from the OAEI competition, testing as background knowledge sources a 
portion of the Unified Medical Language System (UMLS) [30] and 22 biomedical 
ontologies selected from the OBO foundry [31]. We will show that the mapping gain of a 
background knowledge source is directly related to the quality of the results obtained 
with that source, and that our methodology is both effective and efficient in selecting 
background knowledge sources. 

Methods 



Mapping Gain 

A source of background knowledge is only useful as a mediator for a given matching 
problem if its use leads to new correct mappings between the ontologies that cannot be 
found by comparing them directly. While we do not know a priori the correctness of the 
mappings obtained with a given background knowledge source, if the source is reliable, 
the number of correct mappings should be a high fraction of the total number of 
mappings. Thus, we can expect the fraction of mappings that were obtained with a 
background knowledge source over those obtained directly to be correlated to (and thus a 
suitable estimator of) the usefulness of that source. 

Given ontologies S and T, their direct (baseline) alignment B, and their alignment A 
obtained using background knowledge source X, we define the mapping gain of A given 
B as the number of mappings (M) in A that are not in B, divided by the number of 
mappings in B: 
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We note that the mapping gain is deliberately asymmetrical, as it is intended to measure 
only the contribution of X, under the premise that the alignment A will be added to B to 
produce a final alignment. 

Note also that this definition of mapping gain is only suitable when the true alignment 
between the source ontology S and the target ontology T has a cardinality of many-to-
many. As we verified empirically, when the cardinality of the alignment is nearly or 
strictly 1-to-1 (which is common in ontology matching tasks such as those in the OAEI) 
this definition can lead to an overestimation of the usefulness of X. Thus, for such cases, 
we can define the mapping gain as:  

 ( ) ( )
( )

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ¬∩¬∩
=

B
BA

B
BA

BA
T

T

S

S

C
C,

C
C

min,MG'     (2) 

where CS and CT denote respectively the classes in the source and target ontologies. In 
addition to using the mapping gain to assess the individual usefulness of a background 
knowledge source, we can use it to assess the combined usefulness of multiple sources. 
Namely, after selecting the best background knowledge source X, we can assess the 
usefulness of a second source Y, by calculating the mapping gain of its alignment E given 
A ∪ B, where A is the alignment obtained with X and B is the direct alignment. This is 
precisely the basis of our methodology for automated selection of background knowledge 
sources. 

Automated Background Knowledge Selection Methodology 

Given a set of background knowledge sources, the goal of a selection procedure should 
be to find the smallest subset of background knowledge sources that leads to the 



maximum number of mapped classes. However, this problem is formally equivalent to 
the set cover problem, and thus NP-complete, making it necessary to use a heuristic 
procedure to produce a solution in useful time [32]. The heuristic we implemented in our 
methodology is based on the premise that the background knowledge sources with the 
largest individual mapping gain are more likely to be part of the optimal solution, and 
furthermore are expected to be more reliable. 

Our background knowledge selection methodology consists of two stages: (1) a ranking 
stage where background knowledge sources are evaluated individually and ranked 
according to their mapping gain; and (2) a selection stage where background knowledge 
sources are selected in ranking order, and reevaluated taking into account previously 
selected sources. The selection stage ensures that additional sources of background 
knowledge are selected only if they complement the sources previously selected. It makes 
use of the mapping gain for this end, but follows the same principle as the 
topKByComplement algorithm proposed in [29].  

Given two ontologies S and T, their direct baseline alignment B, a set of background 
knowledge sources X = {X1, ..., XN} and a minimum mapping gain threshold k, the 
algorithm for our background knowledge selection methodology is the following: 

for each Xi in X do 
 Ai = match(S,T,Xi) 
 MG'(Ai,B) 
 if MG(Ai,A) < k 
  remove Xi from X 
end for 
sort X by MG' in descending order 
B' = B 
for each Xi in X do 
 MG'(Ai,B') 
 if MG(Ai,B') < k 
  remove Xi from X 
 else 
  B' += Ai 
end for 
 
Implementation 

While our automated background knowledge selection methodology can theoretically 
employ any matching algorithm, there are two important requirements: precision and 
efficiency. The matching algorithm used must be reasonably precise in order for the 
mapping gain to be a good estimator of usefulness, and it must be efficient in order for 
our methodology to be applicable to large sets of background knowledge sources. 

We adopted a weighted full-name matching algorithm, the Lexical Matcher, which 
creates equivalence mappings between classes that have identical labels or synonyms 
[9,19]. This algorithm has O(n) time complexity, and generally leads to a high precision, 



so it satisfies our requirements. Furthermore, full-name matching is a standard first step 
in ontology matching, regardless of the overall matching strategy used, so we expect our 
implementation to have a wide applicability. 

We employed the Lexical Matcher both to match ontologies directly (i.e., to create the 
baseline alignment) and to match them using background knowledge sources. In the latter 
case, a mapping is considered between two classes of the input ontologies, if both classes 
have Lexical Matcher mappings to the same class of a background ontology. We assume 
mapping transitivity because the Lexical Matcher derives only equivalence mappings, 
though our approach could be extended for other mapping semantics by employing the 
compose operator [33]. 

Similarity Score 

One strategy previously proposed for automated selection of background knowledge was 
based on the similarity between the knowledge source and the ontologies being matched 
[28]. More concretely given a background knowledge source X and two ontologies S and 
T, the authors define the following metric for ranking the knowledge source, which we 
call the similarity score: 

 ( ) ( ) ( )),(),(),(),(,,SS XTsimXSsimbXTsimXSsimaTXS −−+=   (3) 

The authors state that b should be slightly lower than a, in order to ensure that the 
background knowledge source is similar to both ontologies rather than to only one of 
them. Thus, we assume a = 1 and b = 0.9. Additionally, the authors state that they use the 
Vector Space information retrieval model to estimate the similarities in equation (3), but 
provide no other details regarding their implementation. Thus, we adapt the similarity 
score to the context of our study. We use the Lexical Matcher algorithm [9] to estimate 
the intersection between each ontology and the background knowledge source, then 
calculate the similarities using the Jaccard index. 

Effectiveness 

Another previously proposed metric for ranking background knowledge was 
effectiveness, which measures the mapping overlap between each of the input ontologies, 
S and T, and a background knowledge source X, divided by the average size of S and T 
[29]. In the context of this study, and given that we're deriving only equivalence 
mappings, the effectiveness of a background knowledge source X can be given by the 
number of mappings (M) in the alignment A obtained with that source, divided by the 
average size (i.e., number of classes) of the input ontologies: 
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Evaluation Tasks 



We focus on the biomedical domain to evaluate our methodology due to the critical role 
that the use of background knowledge plays in ontology matching in this domain. We 
selected the 7 biomedical ontology matching tasks of the OAEI competition [34] to 
evaluate our methodology. 

The Mouse-Human task from the Anatomy track consists of matching the Mouse 
Anatomy (MA) ontology to a fragment of the NCI Thesaurus describing the human 
anatomy. The six tasks from the Large Biomedical Ontologies track consist on matching 
the FMA ontology to the NCI Thesaurus (FMA-NCI), the FMA ontology to the 
SNOMED-CT vocabulary (FMA-SNOMED), and the SNOMED-CT vocabulary to the 
NCI Thesaurus (SNOMED-NCI), in two modalities: a modality where small overlapping 
fragments of the ontologies are matched, and a modality in which the whole ontologies 
are matched. The SNOMED-NCI tasks span several life-science domains, whereas the 
domain of the other five tasks is anatomy. 

A reference alignment is publicly available for all seven tasks. However, it is important to 
note that, while the reference alignment for the Mouse-Human task was manually 
curated, those for the remaining tasks were automatically derived from the UMLS 
Metathesaurus [30]. This means that these reference alignments are likely not fully 
correct or complete, and that there is an inherent bias when using the UMLS 
Metathesaurus as a background knowledge source in these tasks. 

Background Knowledge Sources 

To evaluate our methodology, we collected 22 ontologies from the OBO foundry [31], 
which covers the domains of the evaluation tasks and are listed in Table 1. In addition to 
these ontologies, we also used a portion of the UMLS Metathesaurus [30] as a multi-
domain biomedical background knowledge source. 

In each matching task, we test only background knowledge sources that have a similarity 
score of at least 0.01%, to ensure that they had a minimal overlap with the ontologies 
being matched. We exclude the background knowledge sources that corresponded to the 
ontologies being matched (e.g., Mouse Anatomy and NCI Thesaurus in the Mouse-
Human task). We also evaluated the Large Biomedical Ontologies tasks both with and 
without the UMLS Metathesaurus, so as to account for the bias of using this background 
knowledge source. 

Evaluation 

Given that the reference alignments for the evaluation tasks have near 1-to-1 cardinality, 
we use a greedy selection algorithm, the Ranked Selector [9], to obtain 1-to-1 alignments 
prior to evaluating them. 

We evaluate the alignments produced by each background knowledge source individually 
(combined with the baseline alignment) as well as the alignments produced by the 
combination of background knowledge sources selected by our methodology. The 



alignments were evaluated in terms of F-measure, which is the harmonic mean of 
precision and recall, and thus accounts for both type I and type II errors. 

We assess the effectiveness of the mapping gain as a parameter for selecting background 
knowledge sources by measuring the correlation between the mapping gain and the F-
measure value. We compute both the mapping gain and the F-measure for each 
background knowledge source in each ontology matching task and then compute 
Pearson's correlation coefficient between the two parameters in each task. We also 
compute the correlation between the similarity score and F-measure, and between the 
effectiveness parameter and F-measure, to compare these two previously proposed 
parameters with the mapping gain. 

We assessed the performance of our methodology for automatic selection of background 
knowledge sources by comparing the F-measures of the alignments it produced against 
the baseline alignments and the optimal alignments (i.e., the alignments obtained with the 
optimal combination of background knowledge sources) for each task. We studied the 
effect of the mapping gain threshold on the quality of the results in order to identify a 
suitable threshold for our methodology.  

Results and Discussion 

Correlation with F-measure 

As we detailed in the Methods section, the mapping gain measures the fraction of indirect 
mappings derived from a background knowledge source over the direct mappings. Thus 
we know that, for a given baseline alignment B and a given background knowledge 
alignment A, the mapping gain multiplied by the precision of the new mappings in A 
gives us the fraction of correct new mappings, which is directly proportional to the recall 
obtained when combining A and B (as the recall of B is constant): 
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If we consider that the precision of the new mappings is not significantly different from 
the precision of A and the precision of B (which is reasonable considering that the same 
matching algorithm is employed in both alignments) the relation between mapping gain 
and F-measure is given by: 
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Thus the mapping gain is related to the F-measure through a non-linear but monotonic 
function, which means that a higher mapping gain should generally correspond to a 
higher F-measure if the precision doesn't vary significantly between background 
knowledge sources. Furthermore, this expression has approximately a linear behavior 
(with R2 ≥ 0.99) for F-measure intervals of up to 30%, so we can expect the mapping 
gain to have a strong linear correlation with the F-measure. 



As we can see in Table 2, the mapping gain is indeed strongly correlated with the F-
measure for six of the seven evaluation tasks. The one exception is the FMA-NCI whole 
ontologies task, in which we obtain a low correlation coefficient when including UMLS 
and a strongly negative correlation coefficient when excluding it. We find that, apart 
from UMLS, all background knowledge sources have either a neutral or a negative 
impact on the F-measure (as shown in Table S1), which suggests this result is an artifact. 
Given that the reference alignment is solely derived from the UMLS Metathesaurus, we 
can only conclude that it is incomplete, lacking many of the mappings derived from 
domain ontologies such as Uberon. Indeed, we verified that 17% of the mappings present 
in the Uberon cross-references (which are manually curated, and thus highly reliable) are 
absent from the reference alignment, and that this is the reason why Uberon has a 
negative impact when used as a background knowledge source. This issue is not felt in 
the corresponding small overlapping fragments task, despite using the same reference 
alignment, because the fragments are restricted to the regions of the ontologies covered 
by the reference alignment. 

If we disregard the FMA-NCI whole ontologies task, the mapping gain has an average 
correlation coefficient with the F-measure of 0.998 when including UMLS and of 0.981 
when excluding it, which clearly shows that the two parameters are strongly correlated. 
Nevertheless, it is interesting to note that, when excluding UMLS, the correlation 
coefficients for the whole ontologies tasks are slightly lower than the coefficients for the 
corresponding small overlapping fragments. This is due to the fact that the small 
overlapping fragments contain only overlapping regions of the ontologies whereas the 
whole ontologies are much larger and include non-overlapping regions. Consequently, 
erroneous matches are more likely in the whole ontologies matching tasks, which means 
that precision can vary more between background knowledge sources, leading to 
deviations from the linear behavior and to lower correlation coefficients. 

Comparison with Similarity Score and Effectiveness Parameters 

Regarding the effectiveness parameter, we know that the effectiveness of a background 
knowledge source X multiplied by the precision of its alignment A is proportional to the 
recall of A: 

 ( ) ( ) ( )AATXS RecPrc,,EF ∝×       (7) 

The key difference to the mapping gain is that the effectiveness doesn't account for the 
direct alignment B. In order to relate effectiveness to F-measure in a typical combined 
matching strategy, we need to exclude Rec(A∩B). But whereas the precision of (domain-
specific) background knowledge sources can be expected to be reasonably constant, the 
amount of new knowledge these sources contain for a given matching problem may vary 
substantially from source to source. A clear illustration of this is observed in the 
Anatomy task, where the FMA and Uberon have effectiveness scores of the same 
magnitude (28 and 22% respectively) but the contribution of FMA to the final F-measure 
is relatively small (1.3%) whereas the contribution of Uberon is high (9.6%). Thus, we 



can expect the correlation between effectiveness and F-measure to be lower than that of 
the mapping gain. 

As for the similarity score, its relation with the F-measure is even more distant, as it lies 
on the assumption that, if a background knowledge source X1 is more similar to both 
input ontologies than a second source X2, it should enable more mappings between them. 
While this assumption can generally be expected to be true (at least when the domain 
overlap of the input ontologies themselves is high), the relation between similarity and 
generated mappings may or may not be linear, and as we showed for the effectiveness 
parameter, the relation between all generated mappings and new generated mappings is 
certainly not linear. Thus, we can also expect the correlation between similarity score and 
F-measure to be lower than that of the mapping gain. 

This is precisely what we observe in Table 2, as the similarity score and effectiveness 
have lower correlation coefficients with the F-measure in all tasks (except for the 
aforementioned FMA-NCI whole ontologies task). Furthermore, whereas the mapping 
gain correctly identified the best background knowledge source in each task (both with 
and without UMLS), the similarity score and effectiveness failed to do so in several tasks 
(as shown in Table S1). These results lead to the conclusion that the mapping gain is 
better suited for identifying useful background knowledge sources than the similarity 
score or the effectiveness parameter, in a typical setting where direct and indirect 
matching strategies are combined. 

The similarity score has a particularly low average correlation coefficient of 0.632 when 
using UMLS, although it performs better without UMLS (average coefficient of 0.852). 
The reason for this is that the similarity score is negatively biased by size differences 
between the background knowledge source and the input ontologies. Thus, its correlation 
coefficient is particularly low in the FMA-NCI and FMA-SNOMED small overlapping 
fragments when using UMLS, because UMLS is substantially larger than the small 
ontology fragments, and thus has a low similarity score despite being the best background 
knowledge source (and in fact containing the ontology fragments integrally). 

By contrast, the effectiveness has a high average correlation coefficient of 0.929 when 
using UMLS, and a lower correlation without it (average coefficient of 0.734). The 
reason for the high correlation with F-measure when using UMLS is because in the 6 
tasks where the reference alignment is derived from UMLS, UMLS is unsurprisingly 
both the best background knowledge and the source that generates more mappings by a 
substantial margin. When we exclude UMLS, the correlation between effectiveness and 
F-measure drops significantly by comparison with the mapping gain. This is particularly 
notable in the case of the SNOMED-NCI tasks, in which several background knowledge 
sources make small but positive contributions, suggesting that the effectiveness 
parameter is not very suitable in such a scenario. 

Mapping Gain Threshold 



We evaluated our methodology for automated background knowledge selection in six of 
the seven benchmark biomedical ontology matching tasks, leaving out the whole FMA-
NCI matching task due to the incompleteness of its reference alignment. We excluded 
UMLS from the background knowledge sources in the tasks where the reference 
alignment was derived from it (i.e., all tasks except Mouse-Human) to avoid introducing 
that bias in our evaluation. 

The performance of our methodology (in terms of F-measure) as a function of the 
mapping gain threshold is shown in Figure 1. The figure shows that adding multiple 
background knowledge sources will often lead to better results than adding only the best 
one, which validates our automated background knowledge selected methodology. The 
SNOMED-NCI tasks are particularly interesting in that we see substantial contributions 
from multiple background knowledge sources, due to the fact that these ontologies cover 
various biomedical domains. However, we also witness that as the mapping gain 
threshold decreases, the contribution of additional background knowledge sources 
becomes negative in some tasks, which is tied to the fact that background knowledge 
sources may also introduce noise [13]. Thus, while the mapping gain varies 
approximately linearly with the F-measure, it deviates from this behavior at low mapping 
gain ranges as background knowledge sources become unreliable. This means that there 
is a practical lower limit for the mapping gain, below which the negative contributions of 
background knowledge sources outweigh the positive contributions. 

In the case of our study, we verified that the lower limit for the mapping gain is 0.3%, 
and this is the threshold we used in our methodology. However, determining this limit a 
priori for any ontology matching problems is all but impossible, as there is no way of 
knowing the precision of the new mappings generated by a background knowledge 
source without using a reference alignment. Thus, in general it will be necessary to 
employ a more conservative and "safer" threshold. 

We found empirically that 2% is a good general-purpose threshold using our matching 
setting. Moreover, the difference between the results with this threshold and results with 
the de facto optimal threshold are typically small, as lowering the mapping gain threshold 
brings diminishing returns (as a lower mapping gain implies a smaller contribution). In 
the case of our study, the difference in F-measure between results with the optimal 0.3% 
threshold and results with the safer 2% threshold range from 0 to at most 0.3%, which 
shows that the contributions of background knowledge sources below the 2% threshold 
are marginal. 

For matching settings that differ significantly from ours, it may be necessary to estimate 
the precision of the matching algorithms employed (or of the overall matching strategy) 
and adjust the mapping gain threshold accordingly (e.g., by raising it for lower precision 
algorithms). Additionally, when the background knowledge sources are less reliable (e.g., 
general purpose rather than domain-specific sources) the mapping gain threshold should 
also be adjusted. 

Automated Background Knowledge Selection Results 



Table 3 shows the performance of our automated background knowledge selection 
methodology using the 0.3% mapping gain threshold and compares it with the baseline 
alignment and with optimal manual background knowledge selection (i.e., the 
combination of background knowledge sources that leads effectively to the best results). 

We observe that our methodology leads to substantial improvements over the baseline 
alignment, and more importantly, leads to results that are identical to the optimal 
selection in four tasks and results that differ only by 0.1% in the other two tasks. 
Furthermore, in these two tasks (FMA-SNOMED whole ontologies, and SNOMED-NCI 
small fragments) our methodology would have matched the optimal selection at a slightly 
different threshold (0.31% and 0.29% respectively). These results validate the heuristic 
procedure behind our selection methodology, as they show that it can consistently find 
optimal or near-optimal solutions. 

In terms of performance, the run times of our methodology are within the range of times 
taken by ontology matching systems in the corresponding OAEI tasks, despite the fact 
that we are loading around 20 background ontologies per matching task (some of which 
are quite large). In fact, reading and processing the information in the input and 
background ontologies represents over 95% of the run time in each task, so the actual run 
time of the selection methodology is negligible. Thus, our methodology is in practice 
applicable to any ontology matching framework and should not create a bottleneck in its 
performance (other than the bottleneck caused by loading the background ontologies, 
which is transversal to any selection methodology). 

Conclusions 

We have shown that the mapping gain is more strongly correlated with the F-measure 
than the previously proposed similarity score and effectiveness parameters, in a typical 
matching setting where direct and indirect matching strategies are combined. We have 
also shown that, assuming approximately constant precision, there is a monotonic relation 
between mapping gain and F-measure which means that the mapping gain is indeed a 
suitable estimator of the usefulness of background knowledge sources. These results 
validate our premise that, although similarity and effectiveness are suitable for 
identifying domain-specific background knowledge sources, they are less effective than 
the mapping gain at ranking them and predicting their usefulness. 

The automated methodology that we propose for the selection of background knowledge 
sources uses the mapping gain not only to assess the individual usefulness of each 
background knowledge source, but also to assess the collective usefulness of combined 
sources, in a heuristic procedure that aims to select the optimal combination. 

We have shown that this heuristic procedure is effective, as it was able to consistently 
identify optimal combinations of background knowledge sources, with significant 
improvements over the baseline alignments. From the performance viewpoint, we also 
show that our methodology is efficient, with low run times considering the number and 



size of the background ontologies tested (as well as the size of the ontologies being 
matched). 

We based our methodology on a lexical matching algorithm because this is a standard 
first step in ontology matching, regardless of the overall matching strategy used. 
Furthermore, this algorithm meets two critical requirements: high precision and O(n) time 
complexity (where n is the size of the ontologies being matched). Finally, lexical 
matching is one of the most effective strategies for matching biomedical ontologies, and 
the main strategy used for indirect background knowledge matching [13,17-19]. Thus, we 
expect this strategy to be representative of the biomedical domain, and applicable in 
general to this domain. 

We acknowledge that using lexical matching only is limiting as an ontology matching 
strategy, but would like to note that, despite the focus of our evaluation, both the concept 
of mapping gain and our automated selection methodology are applicable with 
theoretically any ontology matching algorithm or combination of algorithms, and to any 
domain. The only necessary considerations are that the expected precision of the 
matching algorithms used needs to be taken into account to select a suitable mapping gain 
threshold, and that using matching algorithms that have O(n2) or higher time complexity 
will decrease the efficiency of the methodology. However, efficiency should not be a 
serious issue for real-world ontology matching problems, as ontology matching is a one-
shot offline process. 

Extending our methodology to account for matches between ontology properties in 
addition to classes is trivial, and extending it for cases where the desired alignment does 
not have 1-to-1 cardinality requires only adopting the broader definition of mapping gain 
we presented in equation (1). It should also be straightforward to implement our 
methodology with pre-computed mappings, such as those in BioPortal [35]. Finally, the 
mapping gain can also be used to assess the usefulness of specific direct matching 
strategies such as synonym-derivation [36]. 
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Figure Legends 
Figure 1. F-measure of the automated background knowledge selection methodology as 
function of the mapping gain threshold (in descending logarithmic scale) for six ontology 
matching tasks. The first shift in each line (left-to-right) corresponds to the transition 
between the baseline alignment and the selection of the best background knowledge 
source, and subsequent shifts correspond to the selection of additional background 
knowledge sources. The addition of some background knowledge sources has no visible 
effect on F-measure. 
 

Tables 
Table 1. Ontologies used as background knowledge sources. 
 
Ontology Name Acronym Domain 
Anatomical Entity Ontology AEO anatomy 
Bilateria Anatomy BILA anatomy 
Cell Type CL anatomy 
Chemical Entities of Biological Interest CHEBI biochemistry 
Common Anatomy Reference Ontology CARO anatomy 
Foundational Model of Anatomy FMA anatomy 
Human Disease Ontology DOID health 
Human Phenotype Ontology HP phenotype 
Infectious Disease IDO health 
Mouse Anatomy MA anatomy 
Minimal Anatomical Terminology MAT anatomy 
NCI Thesaurus NCI health 
NIF Cell NIFC neuroscience 
NIF Dysfunction NIFD neuroscience 
NIF Gross Anatomy NIFGA neuroscience 
Ontology for General Medical Science OGMS medicine 
Phenotypic Quality PATO phenotype 
Subcellular Anatomy Ontology SAO anatomy 
Symptom Ontology SYMP health 
Uber Anatomy Ontology Uberon anatomy 
Verteberate Homologous Organ Groups VHOG anatomy 
Vertebrate Skeletal Anatomy Ontology VSAO anatomy 
 
 
Table 2. Correlation between Mapping Gain and F-measure, between Similarity Score 
and F-measure, and between Effectiveness and F-measure. 
 

Evaluation Task 
Correlation with F-measure 
Mapping Gain Similarity Score Effectiveness 
All no UMLS All no UMLS All no UMLS 

Mouse-Human 0.998 1.000 0.830 0.884 0.628 0.688 



FMA-NCI small 0.997 0.988 0.168 0.716 0.965 0.783 
FMA-NCI whole 0.609 -0.985 0.800 -0.938 0.613 -0.840 
FMA-SNOMED small 1.000 0.994 0.135 0.925 0.997 0.901 
FMA-SNOMED whole 0.996 0.944 0.993 0.789 0.994 0.860 
SNOMED-NCI small 0.999 0.987 0.682 0.928 0.994 0.591 
SNOMED-NCI whole 0.999 0.972 0.982 0.867 0.993 0.581 
Average 0.998 0.981 0.632 0.852 0.929 0.734 
Correlation coefficients were computed with all background knowledge sources and with all sources except 
UMLS. The average was computed excluding the FMA-NCI whole task, as the reference alignment for this 
task is incomplete, resulting in the negative correlation coefficients observed without UMLS.  
  
 
Table 3. Run time and F-measure of our automated background knowledge selection 
methodology, and F-measure of the corresponding baseline and optimal alignments. 
 

Matching Task 
Automated Selection Baseline Optimal1 
Time (s)2 F-measure F-measure F-measure 

Mouse-Human 120 91.1% 81.2% 91.1% 
FMA-NCI small 140 86.1% 83.6% 86.1% 
FMA-SNOMED small 190 78.1% 76.3% 78.1% 
FMA-SNOMED whole 800 76.5% 75.6% 76.6% 
SNOMED-NCI small 600 72.7% 69.5% 72.8% 
SNOMED-NCI whole 1500 70.4% 68.2% 70.4% 

 
1Alignment obtained with the manually selected combination of background knowledge sources that leads 
effectively to the highest F-measure. 
2Experiments were run in a desktop computer with an Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz and 16 
GB RAM. 
 
Table S1. F-measure, Mapping Gain, Similarity Score and Effectiveness for each 
background knowledge source in each ontology matching task. 


