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Over the past few years, eeveral approaches have been proposed to assist in the early diagnosis of
Alzheimer’s disease (AD) end its prodromal stage of mild cognitive impairment (MCI). Using multi-
modal biomarkers for this high-dimensional classification problem, the widely used algorithms include
Support Vector Machines {S8VM), Sparse Representation-based classification (SRC), Deep Belief Net-
works (DBN) and Random Forest (RF). Thess widely used algorithms continue to yield unsatisfactory
performance for delineating the MCI participanta from the cognitively normal control (CN) group. A
novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective
and accurate classification performance than the aforementioned state-of-the-art algorithms. This study
makea use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional
decision spaces that reflect the structural measures of the two brain hemispheres. The data used include
180 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80%
data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and
an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 scare of
92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented

”TGorrenpoudlng suthor.
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on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a
sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improve-
ment over existing algorithms for discriminating the subtle differences between MCI participants and the

CN group.

Keywords: Gauwsgian discriminant analysis; mild cognitive impairment; Alzheimer’s disesss; machine
learning; classifiestion algorithms; computer-aided diagnosia.

1. Introduction

According to the National Institute on Aging (NIA),
before memory loss and other cognitive impairments
can be observed as evidence for Alszheimer’s Dis-
ease (AD), subtle changes to the brain have already
started for a decade or more'™ Although there is atill
no known cure for the disease, alleviation of specific
symptoms is possible through trestment for some
patients in the early or middle stages of AD 2 Thus,
accurate diagnosis of its prodromal stage, mild cog-
nitive impairment (MCI), with a high risk to convert
to AD is essentially important as means to facilitate
planning for early intervention and treatment

Multiple modalities of biomarkers have been
found to be significantly sensitive in assessing
the progression of AD. These include strue-
tural magnetic resonance imaging (MRI)! [0
positron emission tomography (PET): M5 oere-
brogpinal fluid (CSF (I3[ gleetroencephalographic
(EEG) rhytl:l.ms L2 and magnetoencephalography
(MEG) 272 Uging these modalities of biomarkers
and taking advantage of advances made in the devel-
opment of machine learning and deep learning algo-
rithms over the past few years, several approaches
have been proposed to assist in the early diagno-
sig of MCIZIEEEIE Ginee it does not matter
which modality or modalities of biomarkers are used,
there will always be multiple variables for predicting
the progression of the disease, which ultimately can
be generalized as a high-dimensional classification
problemm.,

Cwrently, many machine learning and deep
learning algorithms capable of dealing with high-
dimensional date. have been applied to classifica-
tion and regression snalysis in the context of dis-
ease diagnosis and transition predictions. The more
notable of these types of algorithms are Random For-
est (RF), Support Vector Machines (SVM), Sparse
Representation-based classification (SRC), and Deep
Belief Networks (DBN) HTELIIREN Among these

state-of-the-art algorithms, SVM continues to be one
of the most widely used for the classification of AD
and its prodromal stages. But SVM atill faces seri-
ous challenges, egpecially in the selection of the ker-
nel function parameters for nonlinear problems, even
under the so-called kernel trick, which remain essen-
tially difficult to overcome in view of the high vari-
ance in the main features that define the disease. In
particular, for discriminating MCI from elderly cog-
nitively normal control group (CN), the clasgification
performance of SVM remains insufficient, ranging
between 79% and 83% in accuracy, and the sensitiv-
ity is substantially lower than that for AD versus CN
(the easiest two groups to separate) and even not sig-
nificantly better than chance 5929 Although many
of the state-of-the-art strategies and techniques con-
tinue to advance our understanding of AD, there
remain many challenges in the different experimen-
tal stages at determining more conclusive evidence
for the accurate diagnosis and classification of AD,
as expresged in gtudieg ULl

As a way to overcome such challenges, this study
develops a machine learning classification algorithm
based on the Gaussian discriminant analysis (GDA),
introducing the use of dual decisional spaces, one
for each hemisphere. Among those modalities, struc-
tural MRI is currently widely used for analyzing the
gra.dual_‘progressmn of atrophy patterns in key brain
regions’? therefore, this study makea use of struc-
tural MRI as the unique input. To the best of our
knowledge, this study is the first to apply GDA to
the diagnosis of CN wersus MCI, with the CN ver-
sus AD classification results included here only for
comparative purposes.

2. Methodology

Several goftware pipelines are used to preprocess the
raw MRI data as a first step. After the pre-processing
step, morphometric {shape) data are derived from
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the images, including shape measures of all 25
labeled cortical regions. Then, a noise detection pro-
cedure and a feature selection method based on the
analysis of variance (ANOVA) are deployed to deter-
mine the statistical significance of each variable in
the classification outcome. Then, a GDA-based clas-
sifier applied on the dual decision spaces is proposed
for solving the boundaries between any two different
groups of subjects (i.e. CN versus MCI, CN versus
AD, and MCI versus AD). The general framework of
the proposed algorithm ig illustrated in Fig. [

2.1. Subjects

The deta used in preparation of this study were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, as part of the ADNII:
Complete 1Yr 1.5T collection and their assessments
at baseline, which includes 628 individuals (190 CN,
305 MCI, and 133 AD)"% The ADNI was launched
in 2003 as a public-—private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and
neuropsychological assessments can be combined to
measure the progression of MCI and early AD. The
primary phenotype is a diagnostic group and MMSE.
All gource imaging data congisted of 1.5 Tesla T1-
weighted MRI volumes in the NIfTT {nii.gz) format.
Summary statistics and patient counts are listed in
Table [

2.2. MRI data pre-processing

Using three neuroimaging software pipelines —
FreeSurfer ™ Advanced Normalization Tools
(ANTs) " and Mindboggle " — the original MRI
data were preprocessed following the instruction pro-
vided by Alzheimer’s Disease Big Data DREAM

=1

Challenge #1"" Tables of morphometric data were
derived from the images using the following seven
shape measures for all 25 FreeSurfer labeled corti-
cal regions for both left and right hemispheres of the
brain: (1) surface area; (2) travel depth; (3) geodesic
depth; (4) mean curvature; (5) convexity; (6) thick-
ness; and (7) volume. FreeSurfer pipeline (version
5.3) was applied to all T1-weighted images to gener-
ate labeled cortical surfaces and labeled cortical and
noncortical volumes. Templates and atlases used by

GDA for Optimal Delineation of MCI in AD

MRidata pre-proocessing
l.e., derive tables of
morphometric (shape) data
of all labeled cortical regions

Detect all abnormal variables
e.g., the measurements of
somereglons withthe value
of zero

................... i________________

Sort all features by p-value
___based on the ANOVA |
v

s

Choose features by the
incremental error analysis

................... 4________________

Train the proposed GDA-based dlassifierand
derive boundaries in dual decision spaces

- m——

Training and Cross Valldation | ' Flmnhluﬂan

Test the obtalned dual declsion
spaces using held-out data
.If. s T s

Fig. 1. QGeneral framework of the GDA-based dual high-
dimensional decision spaces.

2.3. Noise detection

The aforementioned preprocessed MRI data of the
25 labeled cortical regions were used to generate two
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Table 1. Summary statistics of subjects.

; Mean + SD
Patient
Group numbers MMSE Age Years of edu. Male % Female %
CN 190 2014+1.0 759451 16.14+ 2.7 b1.6 48.4
MCI 305 2r0+18 7494171 15,71 3.0 64.9 35.1
AD 133 23519 748178 1474+ 3.1 a8l.1 48.9
Total 628 26.9+2.6 75246.7 15.6 + 3.0 58.0 42.0

Notes: CN: cognitively mormal control, MCL mild cognitive impairment, AD:
Alzheimer’s diseass, MMSE: Mini-Mental State Examinstion, SD: standard

deviation.

175-variable (7 x 25) vector discriminators, for each
subject (i.e. one 175-variable vector per hemisphere).
This study reveals that separaiing the wariables for
each hemisphere of the brain yields a better clas-
sification performance than processing all features
together, with details in support of this assertion
provided in the results section. As for the few sub-
jects whose vector discriminator involved atypical
wariables, for example, some regions having measure-
mentg of sgome areag to be zero, these subjects were
removed from further investigation.

2.4, Feature selection

By the final stage of AD, brain tissue has atro-
phied significantly, so all shape measures mentioned
above could have changed as well. Some of the sub-
tle changes initially appear to take place in some
specific areas of the brain, so determination of the
key changed regions of interest (ROIs) can help to
discriminate more specifically MCI from CN.

24.1. ANOVA ranking

An ANOVA was carried out on each of the 175 vari-
ables of the two vectors between any two groups (i.e.
CN versus MCI, CN wversus AD, and MCI versus
AD) to determine the significance of each variable
in terme of classification outcome, and all variables
were thereafter ranked according to their p-values. It
should be noted that in the feature selection proce-
dure, the Shapirc—Wilk test was employed for testing
the normality of the shape measures and the aver-
age p-value iz 0.28, which indicates that the data
are from a normally distributed population” Fur-
thermore, equal weights are assigned to each of the
shape measures 50 as to eliminate any bias.

2.4.2. Incremental error analysis

In order to maintain only few key variables and
still ensure good classification performance, an incre-
mental error analysis was performed to determine
how meny of the top-ranked veriables ought to be
included in the classifier'” In the initial phase, the
proposed GDA-based classifier only uses the firat-
ranked variable. The error analysis was employed
whereby introducing the next top-ranked variable in
the claagifier at each subsequent phase, and record-
ing the corresponding classification statistics (i.e. F1
BcoTe, accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value
(NPV)), would be compared with the previous phage.
‘When the performance in terms of its classification
statistics can no longer be improved, the optimal set
of variables iz obtained.

2.5. GDA-based classifier

Since there may be ag many as 175 variables to be
taken into consideration, the classifier must be able
to resolve this high-dimensional classification prob-
lem. For this reagon, and by using GDA, an impor-
tant supervised machine learning algorithm for such
classification problems, the proposed classifier is able
to solve the boundaries between any two groups (i.e.
CN versus MCI, CN versus AD, and MCI wversus
AD). The proposed classification problem can then
be formalized by having the machine learn to distin-
guish among CN (y = 0), MCI (y = 1), and AD
(y = 2), based on the selected features x € R".
Then, given a training set, the proposed algorithm
can model p(x|y), the condition distribution of the
n-dimensional vector x given y € {0, 1,2}, assumed
to be diatributed according to a multivariate
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Gaussian distribution (or multivariate normal distri-
bution), whose density function is given by
1 1 Ty—1
T = —— —x—p) T (x—p) 1
p(x; 4, 1) omh (D
where ¢ € R"™ is the mean vector, & € R™*" is
the covariance mairix, the same as the one used in
other regression analysis methods (e.g. the principal
component analysis), and || and Z~! denote the
determinant and inverse matrix of ¥, respectively.
Note that n is the dimension of vector x, i.e. the
number of features included in the classifier. After
modeling p(x | ), the proposed algorithm uses Bayes
rule to derive subsequent digtribution on y given x
as follows:
p{x|y)o(y)
oy |x) o(x) (2)
Here, p(y) is the class prior distribution, which could
not be determined when given a certain subject, so
it ig assumed to be absolutely random (i.e. for all
i # j, p(y = i) = p(y = j)). Furthermore, in order
to make a prediction, it is not necessary to calculate
the denominator p(x), since

argmaxp(y|x) = arg max P—(";{yg ©

= exgmaxp(x|y)p(y)- (3)

Therefore, for the purpose of classification, it only
needs

srgmax p(y|x) = srgmaxp(xly). (4

The classifier was applied to each hemisphere of the
brain (using the two 175-variable vectors), and if
either one of the two sides had been classified to be
positive, the corresponding subject should be posi-
tive as well.

The performance of the proposed classifier was
measured using the F1 score, accuracy, sensitivity,
specificity, PPV, and NPV based on a 10-fold eross-
validation process. For selecting the optimal set of
variables, 80% of the noise-free detected subjects’
data was used as the training set in a 10-fold cross-
validation process, which were randomly assigned to
10 subsets do, di,...,ds, 80 that all subsets were
of equal size. Then one of each of the 10 sets was
retained ag the validation dataget, while the remain-
ing nine datasets were used as training data; thus,
every data point was used for both training and

GDA for Optimal Delineation of MCT in AD

/ New Data /

v v

| Left Decision Space HRight Decision Spacel
1 |

Both hemispheres
are Negative
Left or right is positive

/ Output: CAD Screening Result /4—

v

Fig. 2. Flowchart of the GDA-based dual decision space
classification.

validation on each fold. Once the optimal set of
variables was penerated, the classification perfor-
mance was evaluated by using the remaining 20%
of the noise-free detected subject data points as the
held-out test set.

As demonstrated in Fig. [2] data of the left and
right hemispheres of the brain were processed aepa-
rately, which means, for the final classification, each
bemisphere had its own decision space, and a3 long as
one decision space produces the positive result (i.e.
MCI in CN versus MCI, AD in CN versus AD, and
AD in MCI versus AD), the tested subject is clas-
gified as such. Thig innovative process resulted in a
significant improvement of the classification petfor-
mence 85 demonstrated in the results section, espe-
cially for the moset challenging classification of CN
versus MCL

3. Results

In this secticn, the experimental results of the fea-
ture selection process reveal the significance of dif-
ferent ROIs in patients for the three classification
types: (1) CN versus MCI; (2) CN versus AD; and
(3) MCI versus AD. Evolution in the statisties during
the incremental error analysis and the classification
performance of the GDA-based algorithm using the

proposed dual decisional spaces are provided.

3.1. Ranking of the variables

After the noise detection process was applied, nine
subjects were removed because of the noisy data,

1850017-5
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Table 2. Number of significant variables selected for
each comparison.

CN versus OCN versus MCI versus

Groups MCI AD AD

Side of brain Number of sighificant vatiables
(p-value < 0.01)

Left 50 79 51

Right 44 68 41

Notes: CN: cognitively normal control, MCT: mild cog-
nitive impairment, AD: Alzheimer’s disease.

which included measurements with zero values, so
the final data used in the classification experiment
included 619 individuals, among them, 187 CN, 301
MCI, and 131 AD. As mentioned earlier, ANOVA
was performed for CN versus MCI, CN versus AD,
and MCI versus AD} using two 175-variable vectors
corresponding to the left and right hemispheres of
the brain. For each group, all variables found at 0.01
level of significance {(LOS) out of all 175 variables
for each side of the brain (i.e. those variables with
p-values less than 0.01) were used for the classifica-
tion as shown in Table (2]

The top 10 ranked variables and their correspond-
ing measurements are given in Table [J] where it can
be observed that the entorhinal cortex is the most
significant (first-ranked) cortical region for discrim-
inating either MCI or AD from CN. This obser-
vation is consistent with recent studies indicating
that indeed the entorhinal cortex is the first area
to be implicated in AD""" providing credence to
the validity of our feature selection method. More-
over, the entorhinal cortex has been proven to be a
major source of projections to the hippocampus /™
which plays an important role in converting short-
term memory (algo known as working memory) to
long-term memory. Interestingly, for discriminating
MCI from AD, the entorhinal cortex is relegated to
the second top-ranked region.

Although the hippocampus area does not appear
to be of higher significance than the entorhinal cor-
tex in the feature selection process, it could still serve
as an explanation for the symptom of AD in that
the short-term memory loss occurs earlier than the
long-term memory loss. Since, at the very beginning,
direct connections to the hippocampus seem to have
been affected, the second top-ranked cortical region,
the middle temporal, is also critical for long-term

memory, to which the disrupted hippocampal con-
nectivity has been found in the early stages of AD"Y
Moreover, in the human brain, all top three-ranked
cortical regions, including the entorhinal, the middle
temporal, and the inferior temporal are very close to
the hippocampus as shown in Fig.[Z] From Table[2] it
also can be observed that for discriminating between
MCI and AD, the significant variables are now much
different to others. Hence, for the 10-fold cross-
validation and the incremental error analysis, all
three classifications were trained and validated sep-
arately in order to achieve the best performance.

3.2. Optimal sets of variables

To generate the optimal set of variables, in the
10-fold cross-validation, the aforementioned 80% of
the noise-free detected data points included 500 indi-
vidualg (150 CN, 240 MCI, and 110 AD), where all
numbers were rounded to the nearest number divisi-
ble by 10 for the 10-fold croas-validation of the noise-
free detected subjects included in this study (i.e.
619 = 187 CN+ 301 MCI+131 AD).

The purpose of applying the incremental error
analysis was to obtain the best classification per-
formance with the optimal number of variables (i.e.
the number of dimensions in the decisional spaces).
For each hemisphere, some classification statistics
are illustrated in Fig. [l where the horizontal axis
indicates the number of significant variables included
in each iteration.

In the 10-fold cross-validation and in the sub-
sequent true test, four important parameters were
computed, including the number of True Positives
(TP) (i.e. the correctly classified positive subjects),
the number of True Negatives (TN) (i.e. the cor-
rectly classified negative subjects), the number of
False Positive (FP) (i.e. the negative subjects incor-
rectly classified as positive), and the number of False
Negative (FN) (i.e. the positive subjects incorrectly
classified as negative). For evaluating the classifica-
tion performance, the following commonly used mea-
sures are computed for determining accuracy ([,
sensitivity ([0), specificity (1), PPV [E), and NPV

[@)-
TP + TN
Accwracy = p T rINT IR O
_— TP
Sensitivity = TP+ N 6
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Table 3.

Top-10 significant variables for each comparison.

Groups CN wversus MCI CN versus AD MCI versus AD

Side of brain Rank Measurements pvalue Measurements p-valus Measurements p-value
Left 1  Thickness of entorhinal <107 Thickness of entorhinal <1073  Thickness of inferior parietal  <10~%
2 Curvaturs of entorhinal <10~  Curvature of entorhinal <10~28  Thickness of entorhinal <10~7

8  Thickness of middle temporal <1012 Thickness of middle temporal  «10~%%  Thickness of middle temporal <10~ %

4  Thickness of inferior temporal <1070  Thickness of inferior temporal  <10722  Thickness of inferior temporal — «<10~%

5  Curvature of middle temporal  <10~?  Curvature of middle temporal <10~2! Volume of inferior parietal <10—%

6  Thickness of fusiform <10~ Thickness of inferior parietal <107 **  Curvature of middle temporal <10~ %

7 Curvature of insula <10™®  Curvature of inferior temporal <1071 Curvature of inferior perietal <108

8  Curvature of parahippocampal <10™®  Thickness of fusiform <10~'®  Volume of inferior temporal <1078

g Curvature of inferior temporal <108  Curvature of parahippocampal <10~'® Curvature of entorhinal <1078

10 Thickness of superior temporal  <10~° Curvature of inferior parietal <10~ Volume of middle temporal <1075

Right 1  Thickness of entorhinal <1073 Thickness of entorhinal <1073 Curvature of middle temporal ~ <10~%
2 Thickness of middle temporal ~ <107°  Thickness of middle temporal ~ <1072%  Thickness of enforhinal <1078

3  Thickness of fusiform <1071%  Curvature of middle temporal ~ <10722  Thickness of middle temporal <1077

4 Curvature of middle temporal <1078 Curvature of entorhinal <10™#  Volume of inferior parietal <1078

5 Curvature of superior temporal <10™®  Thickness of inferior parietal <107 Curvature of inferior temporal <10~

6  Curvature of entorhinal <107®  Curvature of inferior temporal <107'®  Curvature of entorhinal <107®

7  Curvature of fusiform <10~%  Thickness of inferior temporal  <10~'7  Thickness of inferior parietal <10~

8  Thickness of superior frontal <10~7  Thickness of fusiform <10~17  Volume of middle temporal <108

9  Thickness of inferior temporal  <10~7  Curvature of inferior parietal ~ <10~1%  Volume of inferior temporal <10~

10  Curvature of superior frontal «10~7  Curvature of fusiform <10~16  Thickness of inferior temporal <10~

Notes: CN: cognitively normal control, MCI: mild cognitive impairment, AD: Alzheimer’s diseass.

aV © [ Jo vongrausp e jrwgdey Jof vao
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Fig. 3. _Relative location of hippocampus and the top-three-ranked cortical regions (visuaslized with the BrainNet

Viewsetd)
Specificity = o5 (7}
TP
PPV = o 7 (®)
™
NPV = oy EN )

But due to the effect of imbalanced data, and as
& clinical application, the classification performance
was not only measured by the accuracy, which actu-
ally relies more on the sensitivity or recall and the
PPV or precision, but also by using the F1 score, as
expressed below, in order to select the optimal sets
of variables,
Fl= 2 x Sensitivity x PPV _ 2TP .
Sensitivity + PPV 2TP +FP + FN
(10}
As the harmonic mean of sensitivity and PPV, the F1
geore or balanced F-geore is the widely used measure
of performance in statistical analysis of binary clas-
sification. For the incremental error analysis (IEA),

the set with the highest I'l score was selected, when
several sets had the game F1 gcore, the one with the
highest accuracy was chosen, then if gtill multiple
choices were found, the one having the minimum size
was finally selected.

As demonstrated in Fig.[l a), for either one of the
two hemispheres of the brain, the classification per-
formance for CN versus MCI yielded better than the
average resulis obtained from other studies reported
in Ref. 4| where the sensitivity is 78.75% and 77.50%
for each decision space (i.e. each hemisphere), respec-
tively. After combining the results of the two deci-
gional spaces together and implementing the incre-
mental error analysis again, the evolution of the F1
geore is as illustrated in Fig.[5]

It can bhe observed that the final optimal sets
are different from the ones obtained for each hemi-
sphere before combining the two decision spaces
together. For all comparigons, the performance was
improved aignificantly as shown in Table [I] More-
over, for the moat difficult two groups to delineate,

1850017-8



Left Hemisphere CN vs. MCI
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Right Hemisphere CN vs. MCI
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Fig. 4. Incremsatal error analysis performance of classification statistics (a) CN versus MCI, {b) CN versus AD, and (c)
MCT versuy AD.

CN versus MCI, significant enhancements in classifi-
cation statistics were achieved, including an increase
in F1 score average from 73.82% to 92.08% and
increments of 24.37% for accuracy, 13.96% for sen-
sitivity, 41.00% for specificity, 22.11% for PPV, and
30.37% for NPV, respectively. Compared to the more
recently reported cross-validation performances of
some of the state-of-the-art- approaches T2I2IL32IHE]
the proposed study achieves remarkable improve-
ments in performance, especially in delineating MCI
from CN, even when MRI is the only modality used
for this study. As shown in Table [] except for

the specificity of the CN versus MCI classification
and the sensitivity of the MCI versus AD classifi-
cation, the proposed method yielded the best cross-

to all other methods.

3.8. Classification performance

In order to obtain a relinble measure of the clagsifi-
cation performance, the remaining 20% of the noise-
free detected data points were used as the held-out
teat data (37 CN, 61 MCI, and 21 AD) using the
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obtained optimal sets of variables. The resulta are
presented in Table[Gl Although the classification per-
formance was not as good as that obtained in the
10-fold cross validation, the results are still better
than state-of-the-art-algorithm reviewed in Ref. [1]
and the recently proposed state-of-the-art approach
in Ref. [12] as shown in Table [7] Since not all stud-
ies implemented the held-out data true test, only the
results from Refs. (1 and [1Z were considered for com-
parison to our proposed method, which also used
ADNI data. For discriminating AD from CN, the
proposed GDA-based algorithm achieved an accu-
racy of 93.10%, sensitivity of 90.48%, specificity of
94.59%, PPV of 90.48%, and NPV of 94.59%; these
results for these two groups were expected. But more
importantly, an accuracy of 80.61%, sensitivity of
81.97%, specificity of 78.38%, PPV of 86.21%, and
NPV of 72.50% were obtained for discriminating
MCI from CN; these results are considered as the
best classification performance obtained so far using
the GDA method.

4. Discussion

The merits of the proposed GDA-based dual decision
space algorithm not only reflected the good classifi-
cation performance it achieved, but also the strate-
gic way it looked at the two hemispheres of the
brain separately. The classification was performed
using two decision spaces (ie. the left and right
hemigpheres of the brain), respectively, then as long
a8 one of them produces a positive result (MCI or
AD), the given subject is classified as a positive one.
Since the boundaries have been obtained, it would
be very effective to classify a subject. A normal-
ity test was conducted, which proved that the origi-
nal data were normally distributed; therefore, GDA
wos the method of choice used as a more efficient
way to address the anticipated nonlinear boundaries
between the different groups (CN, MCI and AD).
Empirical evaluations demonstrated that the pro-
posed GDA-based algorithm, as illustrated in Fig. [6]
proved to be easier for implementation and pro-
vided better results than logistic regression snd SVM
with Gaussian or RBF kernel. And taking advantage
of the covariance matrix, the correlation of differ-
ent variables i taken into account by the proposed
GDA-based classifier, which is deemed essentially
important and often ignored in some probabilistic
classification algorithms like Naive Bayes.
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Table 4. Summary of 10-fold ¢ross validation performance improved after combining the dual decision apaces.

Groups CN versuy MCI CN wversus AD MCI versus AD
Decision space Left Right Comb. Left Right Comb. Left Right Comb.
F1% 73.83 73.81 92.08 82.03 83.18 95.89 56.59 55.00 8141
ACC% 65.64 66.15 90.26 85.00 86.15 96.54 68.00 69.14 89.43
SEN% 78.75 77.50 92.08 80.91 80.91 95.45 66.36 60.00 73.64
SPE% 4467 48.00 87.33 §8.00 90.00 97.33 68.75 73.33 96.67
PPV% 69.49 70.45 92.08 83.18 85.58 96.33 49,32 50.7T 91.01
NPV% B56.78 57.14 87.33 86.27 86.54 96.69 81.68 80.00 88.89
Number of the 36 34 L: 5 6 1 L: 10 2 2 L: 48
optimal variables R: 44 R: 44 R: 4

Table 5. Comparison of cross validation performance with some recent studies.

CN versus MCI CN versus AD MOI versus AD
Group Source of data
references Modalities Classifier (CN+MCI+AD) ACCY% SEN% SPE% ACC% SENY% SPE% ACC% SEN% SPE%
Liu et al’ MRI SRC (229 + 225 + 198) 87.85 85.26 950.40 90.80 86.32 94.76 — — —
ADNI
Khedher et alY MRI SVM (229 4 401 4 188) 81.89 82.61 81.62 88.49 91.27 85.11 85.41 87.03 83.78
Ye et al’ MRI + PET SVvM {52 + 99 4 51) 82.13 a7.68 71.54 095.92 94.71 9T7.12 — — —
= ADNI
Tong et al MRI + PET + RF (85+75+-37) 70.50 8510 67.10 91.80 88.80 9470
___ CS8F + Genetic ADNI
Khedher et ol MRI SVM (-) 79.00 82.00 76.00 88.00 92.00 86.00 85.00 85.00 86.00
- ADNI
Ortiz et a0 MRI DBN (-) 83.00 — o 90.00 — — 84.00 - —
ADNI
Proposed atudy MRI GDA (190 4+ 305 + 133) 90.28 92.08 87.33 98.54 95,45 97.33 B89.64 8429 90.87

Notes: CN: cognitively normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease, Corb.: combining left and right, ACC: accuracy, SEN:
sengitivity, SPE: specificity, PPV: positive predictive value, NPV: negative predictive value.
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Table 6. Summary of the proposed GIDDA-basged dual high-dimensional decision spaces classification performance.

Groups CN veraus MCI CN versus AD MCI versus AD

Decision space Left Right Comb. Left Right Comb. Left Right Comb.
ACC % 55.10 52.04 80.61 75.88 70.69 93.10 65.85 87.07 85.37
SEN % 73.77 65.57 81.97 71.43 66.67 90.48 42.86 38.10 52.38
8PE % 24.32 29.73 78.38 78.38 72.94 94.59 T73.77 77.06 96.72
PPV % 61.64 60.61 86.21 65.22 b8.33 90.48 36.00 36.36 84.62
NPV % 36.00 34.38 72.50 82.86 79.41 04.58 78.95 78.33 85.51

Table 7. Comparison of classification performance with other studies using true test with held-out data.

_— CN versus MCI CN versus AD

references Modalities Classifier ACC% SEN% SPE% PPV¥% NPV% ACC% SEN% SPE% PPV% NPV%
Cuingnet ¢f o/! ~ MRI SVM — 7300 7400 5600 86,00 — 8200 80.00 8600  86.00
Aidos et i/l PET SVM 6190 5470 6920 — 8440 7690 9190  — —
Proposed study MRI CDA  80.61 81.97 78.38 86.21 7250 93.10 90.48 9450 9048 94.59

Notes: CN: cognitively normal control, MCIL: mild cognitive impairment, AD: Alzheimer’s disease, Comb.: combining left and right, ACC:

accuracy, SEN: sensitivity, SPE: specificity, PPV: positive predictive value, NPV: negative predictive value.
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It ought to be noted that in this atudy, the classi-
fication performance has been improved significantly
by uging only structural MRI data. Evidently, there
are many other sensitive biomarkers including PET,
CSF, EEG, among others, and some cognitive mark-
ers like failure to recover from proactive interference
(&rPSI)“C that could be integrated in the proposed
analysis that made use of only MRI measurements.
In a multimodal neuroimaging approach, diagno-
sis, prediction and classification of AD sare all pro-
cesses that would be greatly enhanced, with a focus
placed on the early detection of the M stage and
hence timely planning of therapeutic interventions
and treatment

So Iar, most of the current investigations assumed
only binary or two-way classification, where vali-
dation experiments were based on two-group com-
parisons, i.e. CN weraus MCI, CN versus AD, and

MCI versus AD. Such binary classifications limit the
clinical diagnosis for a given patient, which could
belong in any of the three groups. In those three-
way classification studies, the performance is still
not sufficient, which can achieve the overall accuracy
sround 60%.!® The proposed algorithm is not able
to implement three-way classification yet, therefore,
more efforts and further investigations need to be
concentrated on the multi-modal multi-class classifi-
cation of different stages of AD for our future work.

6. Conclusion

Thizs study proposed GDA-based dual high-
dimensional decision apaces for the diagnosis of MCI
in AD using structural MRI data as the unique input.
The feature selection in this study demonstrates that
the entorhinal cortex is the most significant cortical
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region for distinguishing CN from MCI and more evi-
dently for AD, which is consistent with recent stud-
ies that concluded that the entorhinal cortex, deep
in the brain, is the first area to be implicated in AD.
As a clinical application, when selecting the opti-
mal sets of variables, the clagsification performance
is meagured by the F1 score instead of the accuracy in
consideration of the imbalanced data. Another major
contribution of this study is that by performing the
feature selection and training process to both left
and right hemispheres of the brain separately, then
generating dual decision spaces instead of typically
using only one decision space, the classification per-
formance is shown to improve significantly.

Availability of data and material

Data are available to researchers by applying
to the respective organization, ADNI. Application
is required to protect participant confidentiality.
The ADNI data are available at (http://adni.loni.
usc.edu/).
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