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ABSTRACT

This work tackles the management of novel types of inconsisten-

cies in Spatio-Temporal Databases, different from traditional da-

tabase settings where integrity constraints pertain to the explicitly

stored (or, defined via views and aggregates) values. We observe

that spatio-temporal data has its specific types of ßemanticcons-

traints and we aim at minimization of the changes needed for re-

pairing their violations.
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H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-

mation Search and Retrieval—Query Processing
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1. INTRODUCTION
Advances in networking and communications, along with mi-

niaturization of computing and sensing devices and GPS and RFID

technologies, have provided a foundation for generating extreme-

ly large volumes of location-in-time data [5]. Managing (locati-

on,time) data is crucial in many applications domains: from naviga-

tion and efficient traffic management, through emergency/disaster

rescue management, environmental monitoring, fly-through visua-

lization, and various military applications (e.g., radar data, troops

tracking) [7]. Efficient techniques for storage, retrieval and query

processing of spatio-temporal data are main research topics in the

field of Moving Objects Databases (MOD) [4].
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Physical factors (imprecision of sensing devices, communicati-

on links) often cause the location data to be inaccurate and noisy.

However, even with perfect sampling accuracy – the data intended

to capture a continuous motion can be represented in MOD only

for discrete time-instants. A complementary observation is that da-

ta sources may be various heterogeneous devices: roadside-sensors,

weather stations, satellite imagery, (mobile) weather radar, citizen

supplied (crowd-sourced) observations, ground and aerial LIDAR,

etc.

Uncertainty in moving objects locations due to sources-

imprecision has been tackled from the perspectives of modelling,

capturing it in syntactic expressions and query processing [11]. Ho-

wever, we identify other types of (semantic) inconsistencies that

have not been addressed so far. As an example, a user posing a con-

tinuous k-Nearest Neighbor (k-NN) query, may be presented with

an answer containing two (or more) vehicles that "have collided".

However, this violates the semantic constraint: “two objects cannot

be at the same place at the same time”. In addition to imprecise

location-samples – such violations may also arise due to the use of

interpolation (linear, Bezier, etc.) [4] in-between actual samples.

The main objective of this work is to provide techniques for de-

tection and “fixing” of such inconsistencies, which will also ha-

ve some desirable properties (repair-constraints) such as minimi-

zing the distance between the original and the repaired trajecto-

ries/databases. The main contribution of this work can be summa-

rized as follows:

• We identify and formalize the problem of semantic inconsisten-

cies in spatio-temporal data. This formalization identifies a wide

class of problems that have been largely neglected in moving ob-

ject and trajectory database literature.

• We present certain desirable properties that any approach for fi-

xing inconsistency in a given spatio-temporal dataset should satisfy.

• We propose an approximate solutions to this problem, a greedy

algorithm.

After a brief overview of some representative related works in

Section 2, we present our main results in Section 3: formalizati-

on of the MOD inconsistencies problem, identifying the desirable

properties of the repair-approaches, and proposing an algorithmic

solution. Section 4 concludes the paper and outlines directions for

future work.

2. RELATED WORK
Several bodies of research are related to the problems addressed

in this paper – however, although each of them has generated inte-

resting results, none has addressed the specific problems tackled by

our work.

Traditional database approaches [1, 2, 12] repair the identified

inconsistencies by removing objects or by changing attribute va-
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lues – however, this is not directly applicable to spatio-temporal

data. Arbitrarily changing a (location, time) pair is likely to yield

other/new inconsistencies, as the changed trajectory may reach an

unreachable state, or may have an unrealistically high speed in the

repaired version of the database. Our main challenge is in incorpo-

rating rules for semantically meaningful repairs.

MOD researchers have often used linear interpolation for mo-

delling the motion of spatio-temporal objects [6, 8, 10]. However,

other approaches have been proposed – e.g., [9] introduced a fra-

mework that allows the future motion of objects to be described in

a more complex manner than linear interpolation. Interestingly, the

problem of dead reckoning can be viewed as a special case of the

problem defined in this paper: Inconsistencies are given by objects

not having a (location, time) in the time intervals defined by their

discrete observations, and they are fixed by incurring a minimal de-

viation from the expected position of a moving objects. Many of the

consistency-violations in trajectory databases are a consequence of

the interpolation model, as any applications requires some form of

interpolation between discrete measurements. The unique challen-

ge we address is to go a step further and repair inconsistencies

incurred by an imperfect interpolation model. Recent approaches

model the motion of a spatio-temporal object by a stochastic pro-

cess, where each possible world is associated with a probability [3].

However, more complex constraints, e.g., prohibiting objects from

being at the same state at the same time, can not be straightforward-

ly incorporated.

3. INCONSISTENCIES AND REPAIRS
We now present the novel types of inconsistencies and desira-

ble properties of (methodologies for) enforcing the semantic cons-

traints in a given MOD.

A trajectory database D stores triples (oid, location, time), whe-

re oid ∈ {o1, ..., o|D|} is a unique object identifier, location ∈ S
is a spatial position in space and time ∈ T is a point in time. Se-

mantically, each such triple corresponds to the location of object

oi at some time. In D, an object can be described by a function

troi : T → S that maps each point in time to a location in space1

S; this function is called trajectory.

Knowing the location of an object oi at any time requires

some “balance” with the reality, since it can only be measu-

red/determined at discrete time-instants. The frequency of location-

samplings is also bounded by physical constraints, such as the

availability of a GPS signal. Between discrete observations, the po-

sition of a moving object has to be estimated, which yields another

type imprecision and introduce particular inconsistencies.

We assume a discrete and finite space of possible states S =
{s1, ..., s|S|} and a discrete and finite space of points of time

T = {0, ..., s|T |−1}. This assumption, common in MOD litera-

ture, allows a finite representation of arbitrary trajectories. Hence,

we have inconsistencies in trajectory data that are consequences of

the model based on discrete approximation of continuous pheno-

mena (motion).

Generally, a spatio-temporal constraint can be thought of as any

information describing some (semantic) constraint related to the

trajectories in a given database D. An example of such semantic

constraints is “Exit 233 from road number 421 can hold a maxi-

mum flow of ten vehicles every 30 seconds”. The focus of this work

is on the constraints pertaining to (co)locations of objects like, e.g.,

two objects must be within certain distance from each other or two

objects can not be at the same location at the same time. D is consi-

1Most often the Euclidian 2D space – although extensions to higher
dimensions and road-network constraints have been considered.

dered to be inconsistent with respect to a constraint c, if c is violated

by (some trajectories in) D. The predicate c(D) yields true if and

only if D satisfies c.

Since we are considering historical data, there is no option of

improving the information, e.g., by requesting the objects to give a

more accurate position update. Thus, the only viable approach is to

repair [1, 2, 12] the trajectories in order to mitigate the symptoms

of this lack of information. More specifically we are interested in a

repair which yields the minimal difference from the initial database

D.

DEFINITION 1 ((MINIMAL) DATABASE REPAIR). Let D be

a trajectory database inconsistent with respect to a set of semantic

constraints C. Let DR be a trajectory database derived from D
which satisfies C, i.e., such that D |= C holds. Database DR is

called a database repair of D.

Let dist(D,DR) be a dissimilarity function between databases.

A minimal repair DR
min is defined as

DR
min = argMin

DR∈DR,D|=C

dist(D,DR),

where DR represents the set of all possible repairs of D.

The goal of this work is to efficiently compute, for a given tra-

jectory database D and a set of semantic constraints C, a minimal

repair DR
min of D.

The above statement are broad and they intend to provide a glo-

bal categorization of our objectives. In order to provide a more

grounded version and a sound problem formulation, we need to

formalize a few modules.

3.1 Database Repairs
We now introduce two categories of repairs that are focal to the

current work: time-distorting repairs and space-distorting repairs.

3.1.1 Time Distorting Repairs

A time distorting repair allows a trajectory to avoid inconsisten-

cies by increasing or decreasing its velocity when traversing its se-

quence of states (i.e., arriving earlier or later in a given location). A

waiting-based database repair allows a trajectory to avoid inconsi-

stency by repeating, thus semantically waiting at, any state.

DEFINITION 2 (WAITING-BASED TRAJECTORY, DB REPAIR).

Let T = [s1, ..., s|T |], T ∈ D be a trajectory. A waiting-based

repair of T is a trajectory TR ∈ T
wait

:= [s+1 , ...s
+

|T |]. Here, the

notation s+i corresponds to a sequence of k ∈ N repeats of state

si. The set T
wait

denotes the infinite set of possible wait-based

repairs of T .

Let D be a trajectory database inconsistent with respect to a se-

mantic constraint C and let dist(D,DR) be a dissimilarity functi-

on between databases. A minimal repair Dwait
min is defined as:

Dwait
min =

argMin
Dwait={T1∈T

wait

1
,...,TN∈T

wait

N
},Dwait|=C

dist(D,Dwait).

3.1.2 Space-Distorting repairs

A space distorting repair allows a trajectory to avoid inconsisten-

cies by replacing transitions by any spatial detour leading to the sa-

me state. A detour between two to states si and sj is a path starting

at si and leading to sj . A trajectory repair that uses detour-based

repairs only is defined as follows:
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DEFINITION 3 (DETOUR-BASED TRAJECTORY, DB REPAIR).

Let T = [s1, ..., s|T |] ∈ D denote a trajectory. A

detour-based repair of T is a trajectory TR ∈ T
dtr

:=
[s1, D(s1, s2), ..., D(s|T |−1, s|T |)]. The notation D(si, sj) cor-

responds to a detour between state si and state sj . The set T
dtr

denotes the infinite set of detour-based repairs of T .

Let D be a trajectory database inconsistent with respect to a

semantic constraint C. Let dist(D,DR) be a dissimilarity function

between databases. A minimal repair Ddtr
min is defined as

Ddtr
min = argMin

Ddtr={T1∈T
dtr

1
,...,TN∈T

dtr

N
},Ddtr|=C

dist(D,Ddtr).

Clearly, the quality of a repair TR of a trajectory T depends on

the quality of the selected detour. To begin with, a detour should

be feasible (e.g., possible to follow in a given underlying road net-

work) and should have similar “cost” in time and space. The as-

sessment of the quality of a detour, has to be performed by the

dissimilarity function dist(D,DR).
Additional restrictions on the database repairs can be defined in

similar fashion, depending on the given application. In particular, a

database repair can be both time- and space-distorting. In the above

definitions, the set of semantic constraints C and the dissimilarity

function dist(D,DR) have been used in an abstract manner. The

following two section will formalize these concepts.

3.2 Spatio-Temporal Constraints
Each violation of a constraint c ∈ C corresponds to an (instance

of some) inconsistency. A database repair DR of D is required to

satisfy all constraints. Formally, we have:

DEFINITION 4 ((INTER-)OBJECT CONSTRAINTS). Let D
be a trajectory database and let T ∈ D.

The set of object-specific constraints CT is defined as:

T
R ∈ DR ⇒ T

R |= CT

The set CT of inter-object constraints on trajectories in T is

defined such that

T ⊆ DR ⇒ DR |= CT

The first category of constraints that we consider pertains to indi-

vidual trajectories only, without any consideration of the other tra-

jectories in D. Examples of such constraints are rules like: “An ob-

ject must not enter a specified area on Sunday 2am and 5am.” which

can be used to specify road blocks and “An object must travel some

minimum (maximum) distance in a given time interval” which can

be used to model knowledge about minimum (maximum) speed of

objects. Further rules may include “An object may not visit a state

it has previously visited”, or “a certain state must be visited in any

repair”. Formally, this type of object-specific constraints is defined

as follows.

An important property of object-specific constraints CT of a tra-

jectory T is the independence between CT and other trajectories

T ′ ∈ D. This, in turn, allows to optimize each trajectory indivi-

dually, without considering whether it may incur new inconsisten-

cies in other trajectories.

The second, and computationally more complex class of cons-

traints are inter-object dependencies. For example, a constraint may

require two objects to be within some maximum spatial vicinity.

Such objects may correspond to two vehicles of a group of friends

continuously travelling together. Analogously, two objects T1 and

T2 may be constrained to spatially co-locate at a given time t, cor-

responding to the information that “T1 has seen T2 at time t”. Fur-

thermore, an important type of inter-object constraints results from

knowledge such as “two objects must not be at the same state at the

same time”. Formally, inter-object constraints are defined as fol-

lows.

In practice, inter-object constraints lead to hard optimization pro-

blems, as a single repair of one trajectory may have a large number

of consequences for constraints involving other objects.

3.3 Quality of a Repair
To measure the quality of a repair, a dissimilarity function

dist(D,DR) is needed which, in accordance with Definition 1, will

be minimized. Thus, this function defines semantic of a “good” da-

tabase repair. Semantically, a good database repair should consider

the following three properties:

(1) The number of changes between D and DR should be minimi-

zed, to minimize the distortion of the initial database D.

(2) All trajectories should be treated equally-fair, in the sense that

the number of changes should be divided evenly among all the tra-

jectories.

(3) The changes within a trajectory should be divided fairly, such in

order to avoid particular unnatural motion, such as extremely long

waits and far-distance teleportations.

The choice of a proper dissimilarity function is highly applica-

tion dependent. In trajectory databases, dissimilarity may be mea-

sured by some kind of edit-distance between two trajectories. The

time-warping allowed by edit-distance however will be inappro-

priate for spatio-temporal data resulting from GPS measurements,

where a single change such as the remove of a state of a trajecto-

ry will distort the whole trajectory at the time of the removal and

thereafter. This will yield trajectory having a large distance from

the observed (location, time) pairs. In the later case, Manhattan or

Euclidean distance may be more appropriate. Clearly, mixtures of

dissimilarity functions may also be appropriate in some applicati-

ons.

In addition to the choice of a global dissimilarity function, many

application require some fairness properties to be satisfied for a

database repair to be considered “good”. This can be achieved by

adding additional dissimilarity functions such as

dist(T, TR) =
∑

t

f(dist(T (t), TR(t))),

dist(T (t), TR(t)) denotes a function describing the discrepancy

between both trajectories T and TR at time t and f(x) is a func-

tion to weight this distance. For instance, f(x) can be chosen as

f(x) = x2. In this case, the error at each individual point of ti-

me is given quadratic weight, such that three discrepancies of one

will yield a total dissimilarity of three, while a single discrepan-

cy of two will yield a larger total dissimilarity of four. Thus, the

weighting function f(x) ensures that larger discrepancies are gi-

ven a larger impact, thus ensuring a degree of intra-object-fairness

of changes within a trajectory.

Given a dissimilarity function dist(T, TR) defined on pairs of

trajectories, the total dissimilarity dist(D,DR) is defined as fol-

lows

dist(D,DR) =
∑

T∈D

g(dist(T, TR)),

where g(x) is a function to weight the distances of individual tra-

jectories. Again, a meaningful value of this function is g(x) = x2.

In this case, each individual trajectory is given quadratic weight,

such that a fair distribution of distortions among trajectories is en-

couraged. For example, having an distance of two in a single tra-

jectory yields a total dissimilarity twice as large as having two tra-

jectories with a dissimilarity of one each. The weighting function
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g(x) allows to specify a degree of inter-object fairness of changes

between trajectories.
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Figure 1: Search space to repair a database D.

Figure 1 illustrates the main ideas of this work – possible repairs

of a trajectory database D. Each non-root node of the depicted tree

corresponds to a possible repair DR, and the root node corresponds

to the initial database D. Edges between nodes indicate that a possi-

ble repair rule can be used to transform the instance of the trajectory

database represented by the parent node into the trajectory database

represented by the child node. Each edge is labelled with the cost

incurred to perform this repair. Dotted edges, which are omitted for

brevity, are assumed to have an excessively large cost. The total

cost of each database repair is given by the cost of the path leading

to it.

3.4 Computing Minimal Repairs
It can be shown that the problem of finding the optimal repair of

a trajectory database D is generally NP-hard in the number of da-

tabase objects N . Therefore we propose a greedy algorithm which,

essentially, probes all repairs possible at a given stage (time), and

iteratively chooses the best one. Clearly, this approach may “con-

verge” into some local minima.

Algorithm 1 Greedy(D, A, C, dist(.,.))

1: DR = D
2: while DR 6|= C do

3: aopt = null

4: min_cost = ∞
5: for all a ∈ PR(DR

H , A) do

6: if dist(D, a) < min_cost then

7: aopt = a

8: min_cost = dist(D, a)
9: end if

10: end for

11: DR = a

12: end while

13: RETURN DR

The main idea of the greedy approach is to make a locally opti-

mal decision at each node of the decision tree corresponding to the

problem of choosing the correct repair rule. The local optimality is

based on the number of inconsistencies at a an intermediate repair.

Starting at the root node, this algorithm iteratively probes all possi-

ble repair rules, and chooses to use the rule which yields minimum

number of inconsistencies. The pseudo-code for this approach is

presented in Algorithm 1.

4. CONCLUSIONS
In this work, we have formalized a category of problems that has

been largely neglected in the MOD literature – repairing inconsi-

stencies in historical trajectory databases. This is an important pro-

blem since such databases are inherently uncertain for a number of

reasons and, in addition, attempt to capture continuous phenomena

via discrete values.

We presented two types of distorting-based repairs (in spatial and

temporal dimensions), and we identified quality criteria that a par-

ticular repair-approach should exhibit. This was formalized by in-

troducing a corresponding distance function. We also presented a

an algorithmic solution (albeit, not necessarily optimal) as a first

step towards computing repairs of spatio-temporal database.

We note that it was not the objective of this work to tackle any

efficiency/optimality aspects – we aimed at identifying and forma-

lizing a novel problem and presenting a generic technique for ad-

dressing it. It is likely that much better efficiency can be achieved

by exploiting specific (semantic) properties of a particular applica-

tion, as well as specific repair rules and constraints. Moreover, it

is also possible that some computationally efficient heuristics can

be generated under special set of constraints, which are likely to

produce solution within acceptable bounds from the optima one.

However, these topics are subject of our future works.
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