IEEE TRANSACTIONS ON 02 - SE
DATA ENGINEERING

A publication of the IEEE Computer Society

NOVEMBER/DECEMBER 2002 VOLUME 14 NUMBER 6 ITKEEH (ISSN 1041-4347)

REGULAR PAPERS
Agent-Based Systems
Causal Maps: Theory, Implementation, and Practical Applications in Multiagent Environments
B. CREID-AAR ...ttt ettt e oo eeeeeenee 1201
Artificial Intelligence
Differential A*
KL TIOVALO AN L. DOTS ... e sessssss e e e e oo e eeeseeeesseene . 1218

Local Reasoning and Knowledge Compilation for Efficient Temporal Abduction
L. Console, P. Terenziani, and D.T. DUPIEoooooorvvvvvcuviummsrienesseesssesessessssssssssssssasssseeseesssssssssssesssseeeoosoooooesooseeseeeeee 1230
Databases .
Specifying and Enforcing Association Semantics via ORN in the Presence of Association Cycles
B.K. Ehlmann, G.A. Riccardi, N.D. Rishe, and J. Sic.cc..ce:Xurreeeeeeommmooeseeeoeeoeeeeeeeeeeeeee oo oo 1249
Data Mining and Discovery ‘
Binary Rule Generation via Hamming Clustering L
M. MUSEIli AN D. LIDEIALceeoeoeeeviseeisessinense st ssssscssss e sessssssss s sessss s cesasesemeeemesmsssseseessnsesseeeeeeeseeeeessen 1258
Data Mining and Knowledge Discovery :
Algorithms for Finding Attribute Value Group for Binary Segmentation of Categorical Databases

Y. Morimoto, T. Fukuda, 8nd T. TOKUYAMA.........ccvvvveeeeeeemsssssansaeeeseesesssssssmsassmsssssoessseeseeeeoseoeseseeeeeeeseoooooooeooooeeoss 1269
Efficient Queries over Web Views

G. Mecca, A.O. Mendelzon, aNd P MEIIAIGOooeecccerereeesemseeersssmeeeseseeeee e eees oo oo ooooeeeeeeoeeeeeo 1280
Parallel Star Join + Datalndexes: Efficient Query Processing in Data Warehouses and OLAP

A. Datta, D. VanderMeer, and K. RAMAMMANAMoouuuiiiuireeeeeesseee oo oeooeeoeooee 1299

Data Structures and Algorithms
Coordinated Placement and Replacement for Large-Scale Distributed Caches
M.R. KOrUpOIU @nd M. DERNNooooiiit et sse s ee oo eeoeeeeeeeeeeeeeee 1317
Distributed Databases
Transaction Processing in Mobile, Heterogeneous Database Systems
B LM BN AR, HUISOM «coocvctinninecimsenimssse s sonssssassssesssccssniassssassonsismmmanassssssanessssssasesestassssssases omieseetmme o senns s 1330
Information Retrieval .
A Methodology to Retrieve Text Documents from Multiple Databases
C.Yu, K.-L. Liu, W. Meng, Z. WU, @Nnd N. RISNEcooeeeeeeerrmereereeeeeseceesessoeeeees oo 1347
Knowledge Base
Applications of Abduction: Testing Very Long Qualitative Simulations

T. Menzies, R.F. Cohen, S.Waugh, 8nd 8. GOSSwwuuuuceuueeremierieeseeeseeeeeeeese oo seoeeoeeoeoeoeoeooeoeeoeeoeoeooeeeeooeeeeooee 1362
Knowledge-Based Systems
An Approach of Implementing General Learning Companions for Problem Solving
C.-Y. Chou, T-W. Chan, and C.-d. LiN.........coocccereeeerereessseerermsesoeoeeessoessssssseoooooeoooooooooooooeooei 1376

e

(Contents continued on back cover)

Naphtali D. Rishe AUTO™*3- DiaiT 331
FLORIDA INTERNATIONAL UNIVERSITY 3584331
HIGH - PERFORMANCE DATABASE RESEARCH CENTER

11200 S.W. 8TH STREET

MIAMI FL 331990001
COMPUTER @ IEEE

SOCIETY

http://computer.org
tkde @ computer.org

e N s e

CEMBER 2002

ndefinite In-
pp. 325-339,

Igorithms for
itelligence 86,

Propagation
ort,” Readings
Teld and J. de

professor of
ento di Infor-
e is active in
ng and diag-
<ing on both
liagnosis and
for diagnosis
ation aspects
reral projects,
‘unded by the
mpanies). He
ied diagnosis
1 Kaufman in
national Joint
1ore than 90
2d the annual |
7 and he has
i of several |

the Laurea
) degree in
he Universita |
full professor
atica of the
ile "Amedeo
{is research
tment of time

in different
ral relational
iral language,
t propagation
iese topics in

«d the PhD in
Universitd di
ate professor [
:a, Universita |
> Avogadro,” ;
srests include |
1osis, abduc- |
: action and |
nic systems, |
ed on such
Vorkshop on

, please visit
J.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO.6, NOVEMBER/DECEMBER 2002

1249

Specifying and Enforcing Association
Semantics via ORN in the Presence
of Association Cycles

Bryon K. Ehimann, Member, IEEE Computer Society, Gregory A. Riccardi, Member, IEEE,
Naphtali D. Rishe, Member, IEEE Computer Society, and Jinyu Shi

Abstract—Object Relationship Notation (ORN) is a declarative scheme that allows a variety of common relationship types to be
conveniently specified to a Database Management System (DBMS), thereby allowing their semantics to be automatically enforced by
the DBMS. ORN can be integrated into any data model that represents binary associations or DBMS that implements them. In this
paper, we give a brief description of ORN syntax and semantics and provide algorithms that can be used to implement ORN. These
algorithms must deal with the presence of association cycles in the database. We explore in detail the problems caused by such cycles
and how ORN and its implementation deal with them, and we show that ORN semantics are noncircular and unambiguous.

Index Terms—ORN, relationship semantics, association cycle, data modeling, object databases, complex objects.

S+

1 INTRODUCTION

HE Object Relationship Notation (ORN) is a declarative

scheme for defining a variety of common relationship
types, i.e., the “is part of,” “is defined by,” “is owned by,"”
and “is associated with” types of relationships and their
many variations. These relationships are termed associations
in the Unified Modeling Language (UML) [1], define the
class-composition hierarchy in an object database [2], and are
the glue that binds together a complex object.

A complex object is a collection of closely interrelated
objects whose associations are often constrained. It is typical
of such objects that the lack of or removal of related objects
or association instances, i.e., links, may violate the object’s
integrity. The benefit of ORN is that it allows database
designers to define the proper bindings between the
components of complex objects, and allows the Database
Management System (DBMS) to enforce these bindings.

ORN can be used during system analysis and design to
capture and document in a data model the semantics of
complex object associations. The same notation can then be
used during implementation to define these semantics to
the DBMS. This allows the early detection of association
subtleties and inconsistencies and the automatic mainte-
nance of consistent association semantics by the DBMS,

e B.K. Ehlmann is with the Department of Computer Science, Southern
Illinois University at Edwardsville, Edwardsville, IL 62026.

E-mail: behlman@siue.edu.

¢ G.A. Riccardi is with the Department of Computer Science, Florida State
University, Tallahassee, FL 32306. E-mail: riccardi@cs.fsu.edu.

o N.D. Rishe is with the High-Performance Database Research Center,
Florida International University, 11200 S.W. 8th Street, Miami, FL 33199.
E-mail: rishen@cs.fiu.edu.

o J. Shi is with Bank of America, 9000 Southside Bluvd., Jacksonville, FL
32256. E-mail: jinyu.shi@bankofamerica.com.

Manuscript received 10 Aug. 1999; revised 21 Dec. 2001; accepted 12 July
2002.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110404.

thereby~improving database integrity. Significantly, this is
achieved without programming or without the specification
of complex SQL constraints and triggers [3], [4].

In a previous paper [5], ORN was compared to other
declarative schemes for specifying association seman-
tics—those proposed for various object models [6], [7], [8]
as well as the REFERENCES clause of SQL [3], [9]. The
comparison revealed that the most unique aspect of ORN
and what accounts for its ability to specify a larger variety
of association types is that it provides for the enforcement of
upper and lower bound cardinality constraints and allows
delete propagation based on these constraints. It is
noteworthy that to our knowledge none of the declarative
schemes for object models proposed in the late 1980’s and
early 1990’s have been adopted in commercial DBMSs, and
little work in this area has occurred since then. This is
regrettable since a significant increase in productivity can
result from having a powerful declarative capability, like
ORN, for specifying association semantics.

Other papers have explored various aspects of ORN. In
[10], an integrated methodology based on ORN is presented
for developing associations in a database. The paper shows
how ORN, unlike the declarative scheme of SQL, can be
incorporated into ER-like Diagrams [11]. Hardeman [12]
shows how, with ORN, subtleties and inconsistencies in
association behavior can be identified and automatically
detected during analysis and design. Ehlmann and Riccardi
[13] discuss an extensible, ODMG-93 compatible [14] Object
DBMS prototype, called Object Relater Plus (OR+), which
implements ORN as an extension to Object Store [15].
Ehlmann [16] presents the features and benefits of the ORN
Simulator, a prototype database modeling tool, which is
supported by OR+ and available on the Web [17]. A formal
specification of ORN semantics is given in [18]. Ehlmann
and Yu [19] discuss the integration of ORN into UML class
diagrams and, finally, Ehlmann and Stewart [4] describe the

1041-4347/02/$17.00 © 2002 IEEE

1250
<association>:
<binding> < <multiplicity-association> > <binding> __y
<binding>:
—»
| t a :j —[:Tb - —
= >~
- L} -
<multiplicity-association> :
<multiplicity> -to- <multiplicity> — g
<multiplicity>:
<minimum> . . ﬁl:: <maximum> ———p
*
S
<number> >
* -

Fig. 1. ORN syntax.

syntax, semantics, and pragmatics for incorporating ORN
into SQL as well as the benefits.

The primary contribution of this paper is to present the -~

algorithms used to implement ORN semantics. They are
given at an object-association level of abstraction and
outline the code that translation tools must generate to
implement ORN. In OR+, this code is implemented as
methods on abstract, persistent classes. In a relational
database system, the code would be implemented, at least
partially, as constraints and triggers on related tables.

A secondary contribution is to show that ORN semantics
as implemented by these algorithms are noncircular and
unambiguous, in spite of association cycles. An association
cycle occurs in a database when a object is related to itself,
directly or indirectly. The problems posed by such cycles in
specifying ORN semantics—infinite and alternative proces-
sing paths, which can result in circularity and ambigui-
ty—are inherent in any scheme that defines association
semantics recursively, as does ORN. o

The remainder of this paper is organized as follows: We
first briefly describe ORN syntax and semantics in Section 2.
(A more detailed description can be found in [18].) In
Section 3, we present and explain the algorithms used in
OR+ to implement ORN semantics, and in Section 4, we
explore their operation in the context of association cycles.
We conclude the paper in Section 5 with some summary
remarks. An appendix provides a proof that ORN semantics
are independent of the order in which associations are
processed and are therefore unambiguous, provided one
specific type of specification is restricted.

2 DESCRIPTION OF SYNTAX AND SEMANTICS

The syntax and semantics of ORN define a taxonomy of
binary associations, i.e., association types, that are common
to databases. In a nutshell, Fig. 1 gives the syntax of ORN
and Table 1 gives its semantics. Fig. 2 shows how ORN is
incorporated into a UML class diagram.

Modeled in this diagram is an association between
employees and car pools. This association is often used for
illustration in the remainder of this paper. An employee
may belong to a car pool and a car pool is defined by at least
two riders, without which there would be no car pool.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO.6, NOVEMBER/DECEMBER 2002

TABLE 1
Meaning of ORN Symbols

< > - Distinguish an <association> from a <multiplicity-association>

Multiplicity Symbols:
<minimum> - integer 20 <maximum> - integer> 0
- “t0” asin 2. . 6, meaning two to six

- - “to many” (unbounded)asin 1. .*, meaning 1 to many
<number> - integer > 0, same as <number> . . <number>

* - “many” (unbounded), same as 0. . *

Binding Symbols:

Binding symbols are described in terms of an object class C in an association
A having the given binding. Deletion of a C object succeeds only if all exist-
ing association links involving that object are implicitly destructible, i.e., can
be cut. Also, the deletion of a C object or explicit destruction of an A link
succeeds only if all required implicit deletions succeed. The “none” given
below indicates no applicable binding symbol is given.

none - Default implicit destructibility binding. On delete of a C object, an
existing A link is implicitly destructible provided implicit destruction
does not violate the multiplicity of C.*

|- - Minus implicit destructibility binding. On delete of a C object, an
existing A link is never implicitly destructible. Implicit link destruc-
tion is denoted by the |, symbolizing a cut in the link.

|~ - Plopagate implicit destructibility binding. On delete of a C object, an
existing A link is always implicitly destructible. The related object is
implicitly deleted when implicit destruction violates the multiplicity of
C.

none - Default explicit destructibility binding. An A link is explicitly
destructible provided explicit destruction does not violate the multi-
plicity of C.*

X- - Minus explicit destructibility binding. An A link is never explicitly
destructible. Explicit link destruction is denoted by the X.

X~ - Propagate explicit destructibility binding. An A link is always explic-
itly destructible. The object related to the C object is implicitly
deleted when explicit destruction violates the multiplicity of C.

' - Prime implicit and explicit destructibility binding. On delete of a C
object, an existing A link is implicitly destructible. An implicit delete
is done on the related, i.e., subordinate, object. Also, an A link is al-
ways explicitly destructible. Again, an implicit delete is done on the
subordinate object. The implicit deletion of a subordinate object is re-
quired, and thus must succeed, if and only if link destruction, implicit
or explicit, violates the multiplicity of C.*

* The check for a violation caused by the link destruction is deferred until the

end of the current complex object operation.

Fig. 3 shows how ORN is incorporated into the Object
Database Definition Language (ODDL) of OR+ [13]. This
partial specification defines the employee-car pool associa-
tion to OR+. The Object Database Manipulation Language
(ODML) of OR+ provides for database creation, access, and
manipulation based on an ODDL specification.

As shown by Fig. 1 and Table 1, associations in ORN are
described on two levels. A <multiplicity-association> defines
a binary association type solely by classes and multiplicities,
or cardinality constraints. Bindings are then added to both
ends of an <association> to indicate the level of binding
between the related objects. The level of binding determines
the implicit and explicit destructibility of association links
and whether link destruction can result in the implicit
deletion of related objects. Implicit destructibility of
associations is important since all existing links involving
an object must be implicitly destroyed, or cut, before an
object can be deleted. Implicit deletions of related objects,
which may result from link destructions, enforce multi-
plicities and define the extent of complex objects and

EHLM

Fig.

VBER 2002

ssociation
"all exist-
;, i.e., can
an A link
ne” given

object, an
estruction

object, an
k destruc-

object, an
1 object is
iplicity of

explicitly
the multi- | |

explicitly

ys explic-
implicitly
(&

e of a C
icit delete
link is al-
ne on the
yect is re-
1, implicit

3 until the

1e Object
13]. This
| associa-
.anguage
cess, and

ORN are
> defines
tiplicities,
i to both
" binding
termines
ion links
implicit
bility of
nvolving
efore an |
1 objects,
ce multi-
ects and |

EHLMANN ET AL.: SPECIFYING AND ENFORCING ASSOCIATION SEMANTICS VIA ORN IN THE PRESENCE OF ASSOCIATION CYCLES 1251
Project Department Car Pool Position
= 1 0.1 1
belongs assigned
defined works for to A
by A A
2.5 S~
* , Riders L ~
0..1 Spouse
Assignment + definedby > | Employee :r;arr:d
- 0..1 Spouse
o T g
>< - *1..:2
Parents
Customer s has —
v 4 v
e . i
a1 ! Children
1 Payroll
A .
has P ddress Record Child

Fig. 2. Class diagram for a company database.

composite objects. Composite objects, or aggregate objects in
UML terminology, are complex objects whose component
objects are more tightly bound by the semantics of an “is a
part of” association.

In a <multiplicity-association>, the <multiplicity> before
the -to- describes the multiplicity for the subject class; the
<multiplicity> after the -to- describes the multiplicity for the
related class. The subject class multiplicity is the number of
objects of the subject class that can relate to a single object of
the related class. Likewise, the related class multiplicity is
the number of objects of the related class that can relate to a
single object of the subject class. For example, the <multi-
plicity-association> for the employee-car pool association is
2.*-to-0..1. Each object of type employee, the subject class,
relates to zero or one car pool. Each object of type car pool,
the related class, relates to two to many employees.

In an <association>, the <binding> before the < indicates
the binding for the subject class; the one after the > indicates
the binding for the related class. Association semantics are
derived from the multiplicity semantics and the semantics
of the given bindings. For example, in the <association> for
employees and car pools, |~X~<2..*-to-0..1>, the | ~ symbol
of the <binding> for the employee subject class means
(applying Table 1): On delete of an employee object, an

class employee {
car_pool CarPool inverse Riders |-X~<2..#-t0-0..1>;

o

class car_pool {

§Et<employee> Riders inverse CarPool;

5

Partial ODDL for the employee-car pool association.

Fig. 3.

existing ~employee-car pool link is always implicitly
destructible, and the car pool object is implicitly deleted
when implicit destruction violates the multiplicity 2..*. The
X~ symbol means: An employee-car pool link is always
explicitly destructible, and the related object is implicitly
deleted when explicit destruction violates the multiplicity
2.*. The 2..* multiplicity is violated when the link to the
second last employee is destroyed. The default <binding>
for the related car pool class means (again, applying
Table 1): On delete of a car pool object, an existing
employee-car pool link is implicitly destructible provided
implicit destruction does not violate the multiplicity 0..1,
and an employee-car pool link is explicitly destructible
provided explicit destruction does not violate the multi-
plicity 0..1. A 0.1 multiplicity is never violated by link
destruction. :

Every association has an inverse where the subject class
becomes the related class, and vice versa. The inverse of the
employee-car pool association is a car pool-employee
association, which can be described as <0..1-to-2..*> | ~X~.

Below are more of the association semantics involving
employees that are defined in Fig. 2 by ORN.

e Ifanemployeeisdeleted, his link with a department is
implicitly destroyed (default binding and * multi-
plicity), and his assignments are implicitly deleted, as
is his payroll record (|~ binding and 1 multiplicity).

e If an employee is deleted, her address is deleted

(" binding), unless it is also the address of another
employee (|- binding) or customer (default binding
and 1 multiplicity). Her position is also deleted
(" binding), unless it is also held by another employee
(default binding and 1 multiplicity), and all of her
children are deleted (’ binding), unless a child’s other
parent also works for the company (|- binding).

e Anemployee’s link to a payroll record can never be
explicitly destroyed (X- binding). It can only be

1252

Begin nested transaction on database d
Invoke CreateLink, DeleteObject, DestroyLink, or ChangeLink algorithm
if exception then Abort ¢
else Commit(t, d)
if exception then Abort ¢

Fig. 4. Invocation of complex object operation in nested transaction.

destroyed implicitly as a result of the employee’s
deletion (again, |~ binding and 1 multiplicity).
As can be seen, the association semantics involving an
employee object make it a very complex object.

3 IMPLEMENTING ALGORITHMS

Implementation of ORN semantics can be described by
algorithms that create objects and association links, delete
objects, and destroy and change association links. These
operations become complex object operations in the context
of ORN. In this section, we describe the impact of ORN
semantics on the implementation of object creation and give
algorithms for implementing object deletion and link
creation, destruction, and change.

When an object of a specific class is created (or
instantiated)—e.g., via a primitive object creation operator,
like new in C++ or Java—the implementation of ORN must
ensure that the complex object is properly constructed. In
particular, this means that all lower bound multiplicities for
any related classes are satisfied before the transaction
containing the object creation can commit. In OR+, all
classes for which associations are defined are derived from
a common base class d_rObject, meaning “database relatable
object.” This class has a constructor that is implicitly called
whenever any such object is created. The constructor adds a
reference to the object to a set called LbChecks, which is
associated with the current application-defined transaetion.
Creation and modification of relatable objects must take
place within such a transaction. When it commits, checks
are made on each existing object referenced in LbChecks to
ensure that lower bound multiplicities for related classes
are not violated.

Figs. 4,5, 6, 7, 8, and 9 show algorithms for the other
complex object operations. These algorithms provide an
abstract view of the actual OR+ implementation of ORN.
They do not, for instance, show the details for handling
association inheritance. The algorithms are given in a
pseudocode where control structure is indicated by
indentation. Those given in Figs. 6, 7, 8, and 9 are invoked

Algorithm Commit(t: Transaction, d- Database)
/* Commit transaction ¢ on database d.
for each object x in t.LbChecks — 1. Deletes do
C =type(x);
for each association A where C is the subject class do
if lower bound multiplicity for related class of A is violated then
exit(exception);
Perform other commit functions;
if exception then exit(exception);
if # is a nested transaction then

Add objects in 1.Deletes to Deletes of parent transaction;
exit(successful);

Fig. 5. Algorithm for committing a transaction.

B e

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Algorithm CreateLink(A: Association, sO: Object, rO: Object,
t: Transaction, d: Database)
/* Create a link of type A between subject object sO and related object r0. */
sC = type(sO);
rC = type(rO);
sUb = upper bound multiplicity for sC of A,
rUb = upper bound multiplicity for rC of A,
Create link sO ¢ rO of type A;
if sUb or rUb is violated then exit(exception);
exit(successful);

Fig. 6. Algorithm for creating an association link.

within a system-supplied nested transaction as shown in
Fig. 4. This nested transaction results when a complex object
operation is executed within an application-defined trans-
action. The complex object operations are syntactic variants
of CreateLink, DeleteObject, DestroyLink, or ChangeLink as
defined by their signatures. The nested transaction ensures
that these operations are atomic.

The “Begin” of a transaction initializes two object sets,
Deletes and LbChecks, to empty. These sets are associated
with every transaction. Deletes is the set of all objects
marked for deletion so far by the transaction, including
objects marked for deletion by any committed nested
transactions. LbChecks, discussed previously, is the set of
all objects whose association lower bound multiplicities
must be checked at the commit, provided that the object is
not also in Deletes. Fig. 5 describes how these sets are
processed when a transaction commits.

The abstract nature of the algorithms given in Figs. 6,7,
8, and 9 make them independent of a particular imple-
mentation, object or relational. A link between objects x and
Y is represented in the algorithms as an ordered pairz <y,

Algorithm DeleteObject(x: Object, r: Transaction, d- Database)
/* Delete complex object x, i.e., x and appropriate related objects as defined
by ORN. Does recursive, depth first traversal of d. ¢ is assumed begun and
initialized on the first, non-recursive call.*/
if x in t. Deletes or the Deletes of any ancestor transaction then
exit(successful);
Insert x into ¢. Deletes;
C =type(x);
for each association A defined where class C is the subject class (in the
order defined) do
impB = implicit destructibility binding for class C of A;
IB = lower bound multiplicity for C of A;
for each link / = x > rO of type A where x is the subject object
and rO is a related object do
Destroy link /;
case impB
none: if /B is violated then insert rO into t.LbChecks:
“| =" exit(exception);
“|~™ if IB is violated then
DeleteObject(ro, t, d),
if exception then exit(exception);
if IB is violated then insert rO into t.LbChecks;
Begin nested transaction n7T on database d;
DeleteObject(rO, nT, d);

Wy,

if exception then Abort nT
else Commit(nT, dy,
if exception then Abort nT:
end case
end for
end for

Delete primitive object x;
exit(successful);

Fig. 7. Algorithm for deleting an object.

EHLMANN

Algorithr
/* Explici
A=ty
Destrc
for e:
C =
ex;
IB
ca

en
end fi
exit(s

Fig. 8. Alg

where x
type of
The obje
Every a:
the roles
exists as
In object
an objec
and an
car_poo
In Cr
means t
objects.
insertin
attribut
to creat
defined
be set t
employ:
car_poc
In D
object x
for eac
referenc
databas
related
when d
related
the low
none, ¢
result;
t.LbChe
operati
be imp
The
treating
The
destroy

:MBER 2002

sect rO. */

shown in
lex object
ed trans-
¢ variants
geLink as
n ensures

bject sets,
1ssociated
11 objects
including
d nested
‘he set of
ltiplicities
> object is
+ sets are

Figs. 6, 7,
ar imple-
>cts x and
air z < y,

as defined
segun and

1ss (in the

bject

EHLMANN ET AL.: SPECIFYING AND ENFORCING ASSOCIATION SEMANTICS VIA ORN IN THE PRESENCE OF ASSOCIATION CYCLES

Algorithm DestroyLink(l: Link, r: Transaction, d: Database)
/* Explicitly destroy link [=x <> yin d. tis as defined for DeleteObject. */
A =type(l);
Destroy link /;
for each object 0 inx <> ydo
C =type(0); rO = related object of 0
expB = explicit destructibility binding for class C of A;
1B = lower bound multiplicity for C of A;
case expB
none: if /B is violated then insert rO into t. LbChecks;
“X-": exit(exception);
“x~": if IB is violated then
DeleteObject(rO, t, d),
if exception then exit(exception);
«ijif IB is violated then insert rO into t.LbChecks;
Begin nested transaction nT on database d,
DeleteObject(rO, nT, d),
if exception then Abort nT
else Commit(nT, d);
if exception then Abort nT;
end case
end for
uxil(succcssful);

Fig. 8. Algorithm for destroying an association link.

where x is the subject object and y is the related object. The - -

type of a link is the association of which it is an instance.
The objects of a link, together with its type, make it unique.
Every association A has an inverse association, A~!, where
the roles of subject and related class are reversed. If z < y
exists as a link of type A, y < z exists as a link of type A~
In object database terms, every association is represented by
an object-based attribute, e.g., CarPool in class employee,
and an inverse object-based attribute, e.g., Riders in class
car_pool (see Fig. 3).

In CreateLink, Fig. 6, “Create link sO < rO of type A"
means to create the necessary reference(s) between the two
objects. In an object database, this involves setting or
inserting appropriate references into the object-based
attributes of the subject and related objects. For example,
to create a link of the employee-car pool association as
defined in Fig. 3, the CarPool attribute of an employee must
be set to reference a car_pool object and a reference to this
employee must be inserted into the Riders attribute of the
car_pool object.

In DeleteObject, Fig. 7, every association involving the
object x is traversed by the outer for each loop. In the inner
for each, a link is implicitly destroyed (by destroying
references to and from the related object in an object
database) before any implicit delete is attempted on the
related object. Thus, the destroyed link is not considered
when determining whether or not an implicit delete of the
related object is possible. Within the case statement, when
the lower bound multiplicity is violated on a default, i.e.,
none, or a ’ binding, an exception does not immediately
result; rather, the related object is inserted into the set
t.LbChecks, deferring any exception until the end of the
operation, i.e., the nested transaction commit. This fact will
be important to remember in the next section.

The loop in DestroyLink, Fig. 8, has two iterations,
treating in turn each object in the link as the subject object.

The ChangeLink algorithm, Fig. 9, is essentially an explicit
destroy of a link for some association A between a subject

1253

Algorithm ChangeLink(l: Link, z: Object, r: Transaction, d: Database)
/* Change link [= x ¢ y replacing the related object y with z. 1 is as defined
for DeleteObject. */

A =type(l); € =type(x);

// Destroy the link between x and y.
Destroy link /;
expB = explicit destructibility binding for class C of A;
IB = lower bound multiplicity for C of A;
case expB
none: if /B is violated then insert y into t. LbChecks,
“x-": exit(exception);
“x." if IB is violated then
DeleteObject(y, t, d),
if exception then exit(exception);
«1”.jf [B is violated then insert y into t.LbChecks;
Begin nested transaction n7T on database d,
DeleteObject(y, nT, d);
if exception then Abort nT
else Commit(nT, d);
if exception then Abort nT;
end case

// Create a link between x and z.

uB = upper bound multiplicity for C of A;
Create link x ¢ z of type A;

if uB is violated then exit(exception);
exit(successful);

Fig. 9. Algorithm for changing an association link.

class object x and related class object y, followed by the
creation of a new A link between x and a different object z of
the related class. The only difference is that the explicit
destructibility binding, expD, for the related class is not
processed. Lower bound multiplicities for this class will not
have been violated since one related class object is simply

* being replaced by another. Any X- binding for the related

class will have already been detected since it applies to both
ends of an association if given. Any ’ binding for the related
class will not result in the implicit deletion of the subject
object. In this case, the subject object is simply being made
subordinate to a different prime object.

4 ASSOCIATION CYCLES

Others have studied the problems posed by association
cycles within relational databases and SQL [20], [21], [22]. In
the context of SQL, such cycles are called referential cycles,
and the concern is not in maintaining cardinality constraints
as with ORN, but rather in maintaining referential integrity.
Some of this previous work, however, is germane to our
exploration of association cycles in this section, where we
deal at the entity or object level.

To investigate the problems caused by association cycles,
we will study some simple examples of such cycles. Fig. 10
depicts one example. There are just two objects in the
database, y1 and z1, and two links, y1 « z1 of association
Aland yl « z1 of A2. In this and subsequent examples, we
assume ORN semantics as implemented by the algorithms
given in the previous section and examine what happens
when an attempt is made to delete z1.

In Fig. 10, there are two possible scenarios.

o If Al (or more precisely its inverse Al7') is
processed first, trying to delete z1 causes an implicit

1254

Al »

~

* Yl<->z1

=<
N f—

yl z1

1 A2 p

L]

——

Yl<->21

Fig. 10. Association cycle z1 « y1,y1 « z1.

destruction of the y1 « z1 link of A1 (or the z1 « yl
link of A17") and an implicit delete on y1. This is
based on the |~ binding and 1 multiplicity for class
Z in the A1 association. The implicit delete of y1 will
result in the implicit destruction of the y1 « z1 link
of A2 and an implicit delete of z1, which will be
successful since z1 has previously been marked for
deletion (i.e., the recursive call to DeleteObject will
exit successful since x is already in t.Deletes). Thus,
the deletion of z1 is successful.

® If A2is processed first, trying to delete z1 causes an

implicit destruction of the y1 «» z1 link of A2. Next,
Al is processed, which causes an implicit destruc-
tion of the y1 « z1 link of A1 and an implicit delete
on y1, which will be successful. Thus, the deletion of
z1 is again successful.

One problem with association cycles is that the recursion
inherent in the semantics of ORN and often in those of
similar declarative schemes is circular unless there is some
means to detect an association cycle. As the first scenario
above shows, the DeleteObject algorithm for ORN detects a
cycle and terminates recursion by means of the set ¢.Deletes.
Objects are marked for deletion by placing them into this
set. Then, recursive propagation of implicit deletes is
terminated when an object to be deleted is found in this
set, i.e., when an association cycle is detected.

Note that in deleting z1 via the DeleteObject algorithm, as
described above, the order in which the associations were
processed did not matter. Unfortunately, this is not always
the case.

Figs. 11 and 12 depict two more association cycles. Fig. 11
is a simplified nonrelational version of an example given in
[20]. For both figures, we again examine what happens
when an attempt is made to delete z1. In Fig. 11, the “?”
indicates a possible implicit destructibility binding. We look
at two cases.

For Fig. 11, Case 1, assume the “?” is replaced by a |-
binding. Again, there are two scenarios.

e If Alis processed first, trying to delete z1 causes an
implicit destruction of the y2 « z1 link of A1 and an
implicit delete on y2. This will be successful and
result in the implicit destruction of the y2 « z1 link
of A2. Now, when A2 is processed for z1 to see if
links exist that require implicit destruction, none is
found. Thus, the delete of z1 is successful.

e If A2 is processed first, trying to delete z1 will be
unsuccessful because the |- binding prevents the
destruction of the y2 « z1 link of A2.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Al b
—+=
* Y2<->zl = 1
Y zZ
y2 z1

A2 p

* ? 1
Y2<->z1

Fig. 11. Assocation cycle z1 « y2, y2 « zl.

Note that'changing the multiplicity for Z in the A2
association from 1 to 0..1, would not change the above
scenarios. Also, if the binding for Y in association A2 was |-
instead of default, the delete of z1 would always be
unsuccessful.

For Fig. 11, Case 2, assume the “?” is replaced by a
default implicit destructibility binding.

e "If Al is processed first, trying to delete z1 again

causes an implicit destruction of the y2 < z1 link of

Al and an implicit delete on y2. This will again be

successful and result in the implicit destruction of

the y2 z1 link of A2. Now, when A2 is processed

to see if any links require implicit destruction, again

none is found. Thus, the deletion of z1 is successful.

e If A2 is processed first, trying to delete z1 causes an

implicit destruction of the y2 « z1 link of A2. This

would seem to result in a multiplicity violation of

the lower bound 1. However, no action is taken on

this violation at this time, instead another check on

this constraint is deferred to the end of the complex

object operation, i.e., the commit of its encompassing

nested transaction. (The related object y2 is inserted

into t.LbChecks.) Next, Al is processed, which causes

an implicit destruction of the y2 « z1 link of A1 and

an implicit delete on y2, which will be successful. At

. commit of the complex object operation, no con-

straint violation for A2 is found since y2 does not

exist (i.e., since y2 is not in t.LbChecks - t.Deletes) and,
thus, the deletion of z1 is successful.

Fig. 12 is an example of an association cycle involving
links of the same association.

e If the y1 & z1 link of Al is processed first, trying to
delete z1 causes an implicit destruction of this link
and an implicit delete on y1, which will be successful
and result in the implicit destruction of the y1 « y2
link of A2. Now, when the y2 <zl link of Al is
processed, this link is implicitly destroyed, and an
attempt is made to delete y2, which will succeed

Y * Al p | 1 7
¥l y2 Yl<->2z1 '~ 21
* 0 1 Y2<->z1
A2 p)
Yic->y2

Fig. 12. Assocation cycle 71 «, ¥1, y1 & y2, y2 s z1.

EHLMANN E1

sin
del
o Ift
del
anc
un:
des
obj
Again,
A2 was |-
A secor
the above
complex ¢
which ass
because ¢
one objec
semantics
dependen
processec
dependen
associatic
unspecifie
definition
ving itera
lies can
ordering
There :
following

1. Id
SO

ab

4. Ce
be

The re
each of t
used solt
Fortur
of ORN ¢
is so only
involved
previous
The 1-]
integrity
however,
attack” b
associati¢
for both
order of
always u
Use o!
ended | -,
presence
disallow
associati

EMBER 2002

in the A2
the above
A2 was |-
ilways be

aced by a

» z1 again
- z1 link of
(I again be
ruction of
processed
tion, again
successful.

causes an
f A2. This
iolation of
s taken on
r check on
e complex
>mpassing
is inserted
iich causes
of Al and
cessful. At
1, NO con-
2 does not
eletes) and,

involving

t, trying to
>f this link
successful
eyl & y2
k of Al is
>d, and an
ill succeed

|

EHLMANN ET AL SPECIFYING AND ENFORCING ASSOCIATION SEMANTICS VIA ORN IN THE PRESENGE OF ASSOCIATION CYCLES

since the yl < y2 link no longer exists. Thus, the
deletion of z1 is successful.

e If the y2 « z1 link of Al is processed first, trying to
delete z1 causes an implicit destruction of this link
and an implicit delete on y2, which will be
unsuccessful because the |- binding prevents the
destruction of the y1 « y2 link of A2. The complex
object operation will be rolled back.

Again, note that, if the binding on the * end of association
A2 was |-, the delete of z1 would always be unsuccessful.

A second problem with association cycles is evident from
the above examples. They can cause the outcome of a
complex object operation to be dependent on the order in
which associations and links are processed. This can occur
pecause cycles provide two alternate processing paths from
one object to another and those paths can have different
semantics. Fig. 11, Case 1, shows that outcomes can be
dependent on the order in which different associations are
processed, and Fig. 12 shows that outcomes can be
dependent on the order in which the links of a single
association are processed. When processing order is
unspecified or indeterminate—as it is in relational database:
definitions and formal mathematical notations, both invol-
ving iterations over (unordered) sets—undesirable anoma-
lies can occur when within an implementation and an
ordering must be selected [20].

There are many ways to avoid this unpredictability. The
following list borrows from [20].

1. Ideally, we could redesign the language or notation
so that there is no loss in functionality and the
processing order does not matter.

2. We could somehow allow the user to specify the
processing order when it matters.

3. The system could try all possible processing orders
at runtime and always fail if any of them fail (or
always succeed if any succeed).

4. Cases where the processing order may matter could
be detected at definition time and be disallowed.

The reader can probably discern the relative merits of
each of these solutions. In the evolution of ORN, we have
used solution 1 and currently employ 2 in a minor role.

Fortunately, only the |- (no implicit destruction) binding
of ORN can cause processing order dependencies, and this
is so only when it is given for just one end of an association
involved in an association cycle. This is evident in the
previous scenarios and is formally proven in the appendix .
The |- binding is similar to the RESTRICT referential
integrity rule in SQL [21], [22]. Unlike the RESTRICT,
however, the |- binding can be protected from a “rear
attack” by specifying this same binding for both ends of an
association. In Figs. 11 and 12, when the |- binding is given
for both ends of the A2 association, dependencies on the
order of processing are eliminated, and the delete of z1 is
always unsuccessful.

Use of the |- on only one end of an association, i.e., a one-
ended |-, is often desirable and harmless, even in the
presence of association cycles, which is why it is not simply
disallowed. In Fig. 2, a one-ended |- is used for two
associations, where no unpredictability results even though

1

1255

cycles are possible. For example, employee el supports
child c1, who is also supported by €2, who is married to el
(el & cl,cl & ¢2, €2 < el). When a one-ended |- results in
unpredictability, solution 4 above could be adopted to
disallow it, but this was not done in OR+ since possible
cycles are not inevitable and a warning can be issued.

Also, solution 2 can be employed when a one-ended | -
results in processing order dependencies, which is hope-
fully rare. In OR+, a user can indirectly specify and predict
the ordering in which associations and links are to be
processed. Associations for an object are processed in the
order in which their associated object-valued attributes are
declared in the object’s class (Fig. 3), and links for an
association are processed in the order in which an iterator
over a multivalued, object-valued attribute (or collection)
returns references to the related objects. To control this
ordering, the user must use an ordered collection, e.g., a List
versus a Set, to implement the association.

This solution, however, is not highly desirable; hence,
cases of processing order dependencies should be
avoided. Sometimes they can be avoided by replacing a

“one-ended |- binding with a default implicit destruct-

ibility binding and 1 multiplicity. In some respects, this
combination is similar to the NO ACTION referential
integrity rule in SQL [21] and, as seen in the previous
scenarios, avoids any order dependency problems.

5 CONCLUSION

ORN is a simple yet powerful notation for declaring
association semantics at a very high level of abstraction,
the entity-relationship, or object-association level. The use
of this notation can enhance database development pro-
ductivity and database integrity.

This paper has presented algorithms that can be used to
implement ORN. We have given them at a level of
abstraction that is independent of the type of database
system, object or relational, and have successfully imple-
mented them in OR+, an object DBMS prototype.

This paper has also explored the problems posed by
association cycles. We have shown how circularity is
avoided by the detection of such cycles in the given
algorithms and that ORN semantics are predictable, and
thus unambiguous, in their presence. That is, the outcomes
of complex object operations are independent of the order
in which association links are processed, except for one
problematic specification. This is the one-ended |- binding
given for an association that may have links that are part of
an association cycle which may cause processing order
dependencies. When such dependencies cannot be avoided,
a user can control the processing order of links in the OR+
implementation of ORN, thus eliminating any ambiguity.

APPENDIX

Here, we state and prove the theorem that ORN semantics
are unambiguous assuming a restriction on the | - binding.
The theorem is stated and proven only in terms of object
deletion; however, the corresponding theorems and proofs
for association destruction and change are similar.

1256

Theorem. If no one-ended |- bindings are given for associations
having links that are part of an association cycle, then the
outcome of deleting an object under ORN is independent of the
order in which links are processed.

Proof. If the object being deleted and all objects linked to it
directly or indirectly are not part of any association cycle,
then there is only one processing path to any related
object or link and thus only one possible outcome.

If, however, the object being deleted or any object
linked to it directly or indirectly is part of one or more
association cycles, then there can be multiple proces-
sing paths to related objects and links. We must show
that the result of a complex object delete will be
unaffected by the order in which links are processed.
We do this by showing that the result of executing the
DeleteObject algorithm, invoked in a nested transaction ¢
to delete an object x in database d (as described in
Section 3), is unaffected by the order in which the links
of x or any related object are processed. This result,
denoted by R, is defined by whether or not exit was
with exception, and if not, the set of links that have
been destroyed, denoted by t.Destroys; the set of objects
that have been deleted, t.Deletes; and the set of objects
remaining that must have lower bound multiplicities
checked at commit, t.LbChecks - t.Deletes.

Let o0 be x or any object that is related to x directly or
indirectly. Assume that prior to the invocation of
DeleteObject(z,t,d), o has n links to related objects,
0 01,0 0y,...,0 < 0,. The links may involve one or
more association types, the n related objects may not all
be unique and may in fact be o, and o may be part of one
or more association cycles.

If 0 is being explicitly deleted (o = z), then prior to
DeleteObject(o,t,d), none of o’s links have been impli-
citly destroyed. If, however, o is being implicitly deleted,
then one of its links, the entry link, has already been
implicitly destroyed—e.g., in Fig. 11, Case 1, when A1 is
processed first, the y2 « z1 link of Al for object y2.
Furthermore, if o is part of one or more association
cycles, then before a link can be processed by
DeleteObject(o,t,d), it may have become a return link.
A return link is one that has already been implicitly
destroyed as the result of the attempted deletion of a
related object in an association cycle—e.g., in Fig. 11,
Case 1, when A1 is processed first, the y2 « z1 link of A2
for object z1. Without association cycles, the entry link
does not change and there are no return links. With
association cycles, whether or not a specific link is a entry
or return link and, thus, has already been destroyed before
its normal processing in DeleteObject (o, t, d) is processing
order dependent. Therefore, to show processing order
independence, we must show that R will be unaffected if
any link, 0 <> 04, 1 < k< n, has already been destroyed
before it can be processed by DeleteObject(o, t, d). We
consider below each component of R and in DeleteObject,
all possible cases of impB, the implicit destructibility
binding for the 0 object class in the association of which
0 « 0 is a link.

Exit with exception. The only situation in which
DeleteObject exits with an exception is when a |- is
detected. This occurs in case “|-” when detected in the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO.6, NOVEMBER/DECEMBER 2002

immediate invocation and case “ ! ~” when detected in a
recursive invocation. First, assume the |- binding. If 0 <
o has already been destroyed, then an exception has
already occurred because of the |- binding for the o
object class. Here, we have applied the theorem’s
hypothesis. Now, assume the |~ binding, an IB violation,
and that invocation of DeleteObject on o results in an
exception. If 0 « o, has already been destroyed, then a
DeleteObject has already been invoked on o, resulting in
the same exception. Note that, if o, has been implicity
deleted as a result of a * binding, is uncommitted, and
will subsequently be undone (i.e, we are in an nT
transaction that will be aborted), then the results of
DeleteObject(o, t, d) will also be undone.

t.Destroys. In all cases, o« o is destroyed. Thus,
t.Destroys is unaffected if o« o; has already been
destroyed.

t.Deletes. Cases “ | ~” and “”” may implicitly delete o,
thus adding it to t.Deletes; however, if 0 < o has already
been destroyed, then a DeleteObject has already been
invoked on object o, and o is already in t.Deletes.

t.LbChecks - t.Deletes. Cases “none” and “’” add o to
t.LbChecks if IB is violated. If, however, o« o, has
already been destroyed, then oy is already in t.Deletes
and, therefore, it is immaterial that ok is not added to
t.LbChecks since it will not be in t.LbChecks - t.Deletes. We
have already shown that the t.Delefes component of R is
unaffected by the order in which links are processed.

Since we have shown that all components of R, the
result of executing DeleteObject(z, t, d), are unaffected by
the order in which links are processed, the theorem is
proven. o

ACKNOWLEDGMENTS

This work was partially supported by the US National
Science Foundation under grant CDA-9313299 and co-
operative agreement HRD-9707076. Portions of Section 2
are reprinted from [12] with permission from the publisher,
© 1996 ACM 0-89791-826-6. All rights reserved.

REFERENCES

[1] OMG Unified Modeling Language Specification, Version 1.3,
Object Management Group, www.omg.org, Mar. 2000.

[2] W. Kim, “Object-Oriented Databases: Definition and Research
Directions,” IEEE Trans. Knowledge and Data Eng., vol. 2, no. 3,

pp. 327-341, Sept. 1990.

[3] Database Language SQL, Am. Nat’l Standards Inst., Inc., New
York, www.ansi.org, 1999.

[4] B.XK. Ehlmann and M.A. Stewart, “Incorporating Object Relation-
ship Notation (ORN) into SQL,” Proc. 35th ACM Southeast Conf.,
pp- 282-289, Apr. 1997.

[5] B.K.Ehlmannand G.A. Riccardi, “A Comparison of ORN to Other
Declarative Schemes for Specifying Association Semantics,”
Information and Software Technology, vol. 38, no. 7, pp- 455-465,
July 199.

[6] A. Albano, G. Ghelli, and B. Orsini, “A Relationship Mechanism
for a Strongly Typed Object-Oriented Database Programming
%g;lguage," Proc. 17th Int'l Very Large Data Bases Conf., pp. 565-575,

M VM Markowitz, “Referential Integrity Revisited: An Object-
Oriented Perspective,” Proc. 16th Int'] Very Large Data Bases Conf.,
pp. 578-589, 1990,

[8] J. Rumbaugh, “Controlling Propagation of Operations Using

f;tégibutes on Relations,” Proc. ACM OOPSLA, pp. 285-296, Sept.

EHLMANN ET AL.

9] CJ. Date, “
Bases Conf.,

[10] B.K. Ehlmz
Methodolo
tions,” J. (
May 1997.

(11) P.P. Chen,
View of Da
1976.

[12] SK.Harde
Object Dat:
Southeast C

[13] B.K. Ehlma
Tool for De
Conf. Data

[14] RG.G. Ca
Gamerman
The Object
Morgan K

[15] ObjectStore
www.excel

[16] B.K. Ehlmz
Alive,” Prc
Control, pp

[17] B.K. Ehlm:

(18] B.K. Ehlm:
ORN Sema
pp- 159-17

[19] B.K. Ehlm
Capture A
Applied Inf

[20] C.J. Date, .
Addison-V
[21] CJ. Date &
Reading, N
[22] B.M. Horc
Integrity M
556, 1992.

a8
an associate
University at Ec
for a number
research and ¢
query language
science at Ch
research intere
and software ¢
Computer Socil

CEMBER 2002

stected in a
ling. If 0 &
:eption has
for the o
theorem’s
B violation,
sults in an
sed, then a
‘esulting in
n implicity
nitted, and
in an nT
results of

yed. Thus,
2ady been

y delete o,
1as already
eady been
Zletes.
” add oy to
) <+ o has
in t.Deletes
t added to
Deletes. We
ent of R is
ocessed.
5 of R, the
affected by
theorem is
]

> National
) and co-
Section 2
publisher,

Version 1.3,
0.

1d Research
‘ol. 2, no. 3,

., Inc., New

2ct Relation-
ttheast Conf.,

RN to Other
Semantics,”
pp. 455-465,

Mechanism
‘ogramming
pp- 565-575,

An Object-
Bases Conf.,

tions Using
35-296, Sept.

EHLMANN ET AL.: SPECIFYING AND ENFORCING ASSOGIATION SEMANTICS VIA ORN IN THE PRESENCE OF ASSOCIATION CYCLES

9] C.J.Date, “Referential Integrity,” Proc. Seventh Int’l Very Large Data
Bases Conf., pp. 2-12, 1981.

(10] B.K. Ehlmann and G.A. Riccardi, “An Integrated and Enhanced
Methodology for Modeling and Implementing Object Associa-
tions,” J. Object-Oriented Programming, vol. 10, no. 2, pp. 47-55,
May 1997.

(11] P.P. Chen, “The Entity-Association Model: Towards a Unified
View of Data,” ACM Trans. Database Systems, vol. 1, no. 1, pp. 1-36,
1976.

(121 SK. Hardeman (B.K. Ehlmann, advisor), “Association Behavior in
Object Databases: Subtleties and Inconsistencies,” Proc. 34th ACM
Southeast Conf., pp. 224-229, 1996.

(13] B.K. Ehlmann and G.A. Riccardi, “Object Relater Plus: A Practical
Tool for Developing Enhanced Object Databases,” Proc. 13th Int'l
Conf. Data Eng., pp. 412-421, Apr. 1997.

[14] RG.G. Cattel, D. Barry, D. Bartels, M. Berler, J. Eastman, S.
Gamerman, D. Jordan, A. Springer, H. Strickland, and D. Wade,
The Object Database Standard: ODMG 2.0. San Mateo, Cailf.:
Morgan Kaufmann, 1997.

[15] ObjectStore C++, Release 5, eXcelon Corp., Burlington, Mass.,
www.exceloncorp.com, 2000.

(16] B.K. Ehlmann, “A Data Modeling Tool Where Associations Come
Alive,” Proc. 21st IASTED Int'l Conf. Modelling, Identification, and
Control, pp. 66-72, 2002.

(171 B.K. Ehlmann ORN Simulator, www .siue.edu/~behlman, 2001.

(18] B.K. Ehlmann, N. Rishe, and J. Shi, “The Formal Specification of
ORN Semantics,” Information and Software Technology, vol. 42, no. 3,
pp- 159-170, Elsevier Science, 2000. :

(19] BK. Ehlmann and X. Yu, “Extending UML Class Diagrams to.

Capture Additional Semantics,” Proc. 20th IASTED Int’l Conf.
Applied Informatics, pp. 395-401, 2002.

[20] CJ. Date, Relational Database Writings 1985-1989. Reading, Mass.:
Addison-Wesley, pp. 119-125, 143-147, 1990.

[21] CJ. Date and H. Darwen, A Guide to the SQL Standard, third ed.
Reading, Mass.: Addison-Wesley, pp. 399-401, 1994.

[22] B.M. Horowitz, “A Run-Time Execution Model for Referential
Integrity Maintenance,” Proc. Eighth Int’l Data Eng. Conf., pp. 548-
556, 1992.

Bryon K. Ehimann received the BS and MS
degrees in computer science from the University
of Missouri at Rolla in 1970 and 1971, respec-
tively, and the PhD degree in computer science
from Florida State University in 1992. He was
formerly a full professor in the Department of
Computer Information Sciences at Florida A&M
University and a visiting researcher at the
\ ‘ Supercomputer Computations Research Insti-
3 A- tute at Florida State University. Currently, he is
an associate professor of computer science at Southern lllinois
University at Edwardsville. Before earning the PhD degree, he worked
for a number of years for Burroughs/Unisys Corp., where he did
research and development on semantic data models, DBMSs, and
query languages, and was also an assistant professor of computer
science at Chapman University in Orange, California. His current
research interests include data modeling, object-oriented databases,
and software engineering. He a member of the ACM and the IEEE
Computer Society.

1257

Gregory A. Riccardi received the PhD degree
in computer science from the State University at
New York in Buffalo. He is a full professor of
computer science at Florida State University and
a recipient of the University Teaching Award. He
is also currently a visiting research scientist at
the UK National e-Science Centre in Edinburgh,
Scotland, a faculty associate of the School of
Computational Science and Information Tech-
nology at Florida State University, and a
member of the Hall B Collaboration at the Thomas Jefferson National
Accelerator Facility. He has published numerous research papers and
three books. His Database Management with Web Site Development
Applications was published in August 2002 by Addison Wesley. He is a
member of IEEE and the IEEE Computer Society.

Naphtali D. Rishe received the PhD degree
from Tel Aviv University in 1984. From 1984 to
1987, he was an assistant professor at the
University of California, Santa Barbara. He is
currently a full professor in the School of
Computer Science at Florida International Uni-
versity (FIU) and director of the High Perfor-
mance Database Research Center (HPDRC).
He has published two books on database
design, more than 120 papers, and holds three
patents. He has been awarded over $17M in research grants by
government agencies and industry. His current research focuses on

- efficlency and flexibility of database systems, distributed DBMSs, high-

performance systems, database design tools, and Internet access to
databases. He is a member of ACM and IEEE Computer Society.

Jinyu Shi received the BS degree in information
engineering from Xidian University, Xian, China,
in 1991. In 1999, he received the MS degree in
software engineering science from Florida A&M
University. He is currently a senior programmer/
analyst in the Department of Direct Banking at
Bank of America, Jacksonville, Florida. Before
coming to the US, he worked for a number of
years as a network engineer for several compu-
ter companies in P.R. China. His current
research interests include component software, object-oriented analysis
and design, software engineering, middleware technology, and En-
terprise Application Integration (EAI).

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

