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Abstract

Object Relationship Notation (ORN) is a declarative scheme that permits a variety of cornmon rypes of relationships to be conveniently
defned to a Database Management System @BMS), thereby allowing the DBMS to automatically enforce their semantics. Though fust
lroposed for object DBMSs, ORN is applicable to any data model that represents binary entiry-relationships or to any DBMS tirat
iurplements them- In this paper, we first descritre ORN semantics informally as has been done in previous papers. We then provide a formal
specification of these semantics using the Z-notation. Specifying ORN semantics via formal methods gives ORN a solid mathematical
foundation. The semantics are defined in the context of an abstract database of sets and relations in a recursive matner that is precise,
unambiguous, and noncircuiar. @ 2000 Elsevier Science B.V. AII rights reserved.

Key'words: Object relationsbip notation; Data modeling; Fonnal methods

l. Introduction

Object Relationship Notation (ORN) is a declarative
scheme for defining a variety of common aggregation, or
non-inheritance, relationship types-i.e. the "is part of," "is
defined by;" "is owned by," and "is associated with" types
of relationships and their many variations. These relation-
ships define tbe class-composition hierarchy in an object
database [1]- ORN allows their semantics to be distin-
guished and documented during system analysis and design
at an entity (or object)-relationship level of abstraction and
then defined to a DBMS during implementarion. This allows
the early detection of relationship subtleties and inconsis-
tencies and the automatic maintenance of relationship
semantics by the DBMS, thereby improving database integ-
rity- Significantly, this is achieved without DBMS user
having to develop any programming code or any complex
constraint and trigger specifications [2].

Previous papers have explored various aspects of ORN.
In Ref. [3] ORN was compared to other declarative schemes
for specifying relationship semantics-e.g. the REFER-
ENCES clause of SQL, which is given for foreign keys in
relational databases. This paper showed that the most unique
aspects of ORN are that it provides for the enforcement of

* Corresponding author. Tel. : + I - 8 50- 599 -3022; fax. + t -8 50-599 -3221.
E - mail addre s s : ehlmann @cis.famu-edu (B.K. Ehlmann).

0950-5849/00/$ - see front matter @ 2000 Elsevier Science B.V. All rights resewed.
PII: S0950-5849(99)0005 1 -8

upper and lower bound cardinality constraints and, more
importantly, allows delete propagation to be based on
these constraints. This results in a simpler and more power-
ful scheme for specifying a greater variety of relationship
types. In Ref. [4] an integrated methodology was presented
for developing relationships in a database based on ORN.
This paper showed how ORN, unlike rhe declarative scheme
of SQL, can be incorporated into ER-like Diagrams [5].
Ehlmann and Riccardi [6] discussed ORN's implementation
in an extensible, ODMG-93 compatible [7], Object DBMS
prototype called Object Relater Pftzs (OR+). Hardeman [8]
showed that with ORN, subtleties and inconsistencies in
relationship behavior can be identified and automatically
detected during analysis and design. Brown [9] presented
the user interface, architecture, and features of the ORN
Simulator, a database design tool. Finally, in Ref. l2l the
syntax, semantics, and pragmatics for incorporating ORN
into SQL were described as well as the benefits.

The syntax of ORN can be easiiy specified by simple
syntax diagrams; however, the complete semantics of
ORN are not as easily specified, especially whe:l- relation-
ship cycles are considered. A relationship cycle occurs in a

database when an object is related to itself, directly or indir-
ectly. The problems posed by such cycles in specifying
ORN semantics are inherent in any scheme that defines
relationship semantics recursively, as does ORN. This
paper describes the semantics of ORN via formal methods

h-_
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Table 1

Meaning of ORN symbois
qelationship>:

4inding> < <cardinality-relationship> > 4bding> +
<binding>:

<c ardinalily -r e latio n s hip> :

<cardinality> -t.o- <cardinality> --->
<cvdinalily>;

o/
<mteqer> .

Fig. 1. ORN sYntax.

in a manner that is precise, unambiguous, noncircular, and

almost complete-dlmost complete because relationship
cycles necessitate that a smal-l restriction be placed on

ORN to facilitate processing order independent semantics

and a less complex formal specification.

The remainder of the paper is orgarttzed' as foilows. In
Section 2 we give the syntax of ORN and an informal,
English description of the semantics, similar to that which

has appeared in previous papers- Section 3 makes this

description mathematically precise by specifyinC ORN
semantics using formal methods. The notation we employ

is ttre Z specifications language [10]. Explanations that

accompany the formal specincations should allow the reader

unfamiliar with Z but well versed in set theory and fust-
order predicate calculus to understand these specifications

as well as gain insight irito Z. Section 4 briefly discusses

relationship cycles-the problems they pose to our formal

specification and how these problems are addressed. We

conclude in Section 5 with some summary remarks.

2. An informal description

The syntax and semantics of ORN define a taxonomy of
binary, aggegate relationship types cornrnon to databases-

Fig. 1 gives the syntax of ORN. Table I gives the meanings

for all ORN symbols.
Relationships in ORN are described on two levels. A

(cardinality-relationship) defines a binary relationship
type soleiy by class cardinalities. Bindings are then added

in a (relationship) to indicate the level of binding between

related objects. The level of binding determines the implicit
and explicit destructibility of relationship instances and

whether relationship destruction can result in the implicit
deletion of related objects. Impiicit destructibility of rela-

tionships is important since all existing relationships involv-
ing an object must be implicitly destroyed, or cut, before an

object can be deleted. lmplicit deletions of related objects,

which may result from relationship destructions, enforce

cardinalities and define the extent of complex and composite

< > - Angle brackets distinguishing a <relationship> from a
< c a r d inal i ty - rel at i o ns h ip > .

Cardinality Symbols:

u - z.erc /-or t-one
M - "Many" meaning one or more

- . - 'or more'as in 2. ., meaning ttffo or morc, or "to" as in

1- . 9, meaning I to 9 inclusive

Binding Syrnbols:

Binding symbols are described in terms of an object class C in a
relationship R having the given binding- Deletion of a C object

succeeds only if all existing relationships involving thd objec!
i.e-, relationship instances, are implicitly destructible, i.e., can be
cnr- In addition, the deletion of a C object or explicit desruction
of an rt relationship succeeds only if all required implicit
deletions succeed- "none" indicates fhe absence ofan applicable
binding symbol.

none - Default implicit destructibility binding. On delete of a C
object, an existing R relationship, i-e., relationship
instance, is implicitly destuctible provided implicit
deskuction does not violate the cardinality of C-*

l- - Minus implicit destmctibility binding. On delete of a C
objecl an existing ,t relationship is never implicitly
destnrctible- lmplicit relationship destnrction is denoted
by the L symbolizing a czr in the rclationship.

|- - Propagate implicit deskuctibility binding. On deiete of
a C objec! an existing R relafionship is always
implicitly destructible. The related object is implicitly
deleted when implicit destmction violates the cardinality
of C-

none - Default explicit destructibility binding- An R

relationship, i.e-, relationship insfance, is explicitly
destructible provided explicit destruction does not
violate the cardinality of C-*

X- - Minus explicit destructr-bility binding. An R relationship
is never explicitiy desfuctible- Explicit relationship
destruction is denoted by the X.

x- - hopagate explicit destructibility binding- An R
relationship is always explicitly destructible- The

related object is implicitly deleted when explicit
destmction violates the cardinality of C-

' - Prime implicil and explicit desructibiliry binding- On

delete of a C object, an existing R relationship is

impticitly destructible. An implicit delete is done on the

related, i.e-, subordinale, objecl An f relationship is
always expiicitly desti-ucdble. Again, an implicit delete

is done on the subordinale objecl The implicit deletion
of a subordinate object is required, and thus must
succeed, if and only if relationshp destmction, implicit
or explicit, violates the cardinality of C.*

* The check for a violation caused by the destmction is deferred

until the end of the current operation.

objects, objects that are closely
other objects, respectively.

connected with or contain

In a (cardinality -re larionship),
the -to- describes the cardinality

the (c ardinality) befor e

for the subject class; the
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Fig. 2. ORD for a company database.

(cardhaliry) after the -to- describes the cardinality for the
related class. The subject class cardinality is the number of
objects of the subject class that can relare to a single object
of the related class. Likewise, the related class cardinaliry is
the number ofobjects ofthe related class that can relate to a
single object ofthe subject class. For example, the relation-
ship between departments and employees could be
described as 1-to-0/M. Each objecr of q?e department,
the subject class, relates to zero or to many (meaning one
or more) employees. Each object of type employee, the
related class, relates to exactly one department.

In a \relationship), the (bindingl before the ( indicates the
binding for the subject class; the one after the ) indicates the
binding for the related class. Relationship semantics are

derived from the cardinality semantics and the semantics
of the given bindings.

Fig. 2 shows how ORN is incorporated into an Object-
Relationship Diagram (ORD), which is similar to an ERD.
Fig. 3 shows how it is incorporated into the Object Database
Definition Language (ODDL), developed as part of OR+
[6]. Fig. 3 gives partial ODDL specifications corresponding
to the ORD in Fig. 2. These specifications refine the objects
and relationships described in an ORD by defining literal-
valued attributes, object-valued ctttributes, and methods for
each object class-e.g- SSN, Dept, and RaiseSalary, respec-
tively, for the class employee. The Object Database Manip-
uiation Language (ODML) of OR+ provides for database
creation, access, and manipulation based on ODDL.

To illustrate the use of ORN to describe relationship
semantics, we will discuss some variations on the classic
departments-employees relationship. Although the seman-
tics of some of these variations may seem odd for this
relationship, they make sense for other one-to-many rela-
tionships, some of which appear in Fig. 2. The discussion
beiow while focusing on a one-to-many relationship is also
relevant to one-to-one and many-to-many relationships as

Database CompanyDB // Compny DataBase
Ti

class employee {
d_String SSN; // Soc. Sec. No-
d_String Name; // Last, First name
Date BirthDate;
deparment Dept inverseEmployees <0/lv1+o-l>;
Set<assignmenl> Assignments inverse Employees

l-< I -to-0/1r,1>;

employee Spouse inverse Spouse <0/l-to-O/l>,
List<child> Children invsrse Parents'<1..2-to-0M>l-;
carjool CarPool inverseRidersl-X-<2..-to-0/l>;

$C;
void RaiseSalary(int percentage);
void CancelAssi gnmentsQ;

s.
l.

extent Set<employee> Employees key SSN;

class departrnent {
d_String Name;
d_String Location; // Building No.
Set<employee> Employees inverse Dept;

// <l-to4^,/,> by default

);
extent Set<dcpartment> Departments key Name;

class car3ool {
d_String LicNum; // License Number
Set<employee) Riders inverse CarPool;

);
extent Set<carjool> CarPools key (LicNum);

);

Fig. 3, Partial ODDL specificauons for ORD in Fig. 2,

cardinaliry and binding semantics for one side of a relation-
ship are mostly independent of those for the other side.

1. (l+o-\/lul1. This is the relationship between departments
and employees as shown in Fig. 2. T\e default implicit
destmctibiliw binding for the employee elass, i.e. rhe

absence of a binding symbol after the ), denotes that
the relationship between an employee and a department
can be (and is) implicitly destroyed or cut when an

employee is deieted. Such destruction never violates
the 0/M cardinality for the employee class. The default
implicit destructibility binding for the department ciass
denotes that a department cannot be deleted if it has any
employees since implicit relationship destruction would
violate the 1 cardinality for the department class-i.e. an
employee must have I department. A department can be
deleted only if all of its employees were deleted or
reassigned to other departments.

Finally, the default explicit destructibility binding for
the employee class means that a relationship between an
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employee and department can be explicitly destroyed

since this would never violate the 0/I4 cardinality;

however, the default explicit destructibility binding for
the department class prohibits this destruction as it would
violate the 1 cardinality. An employee's departrnent may,

however, be changed as this would not violate the 1

cardinality.
2. (011-to-0/Wl-. An employee can now exist without being

in a department. An employee who is in a department

cannot be deleted as this would require implicit destruc-

tion, or a cut, of the relationship, which is disailowed by

the l- implicit destructibility binding. An employee's

reiationship with a department would have to be expli-
citly destroyed, which is now allowed by the 0/1 cardin-
ality, before the employee could be deleted.

3. (L-to-lt[l -. Every department must have at least one

employee, and the l- implicit destructibility binding
means that deletion of the last employee in a department

would cause the deletion of the department. If the rela-

tionship were | - (l-to-M)l - , then deletion of a depart-

ment would cause deletion of all employees in the

department. If (0/1-to-3-.)l - , then deletion of the third
last employee would cause deletion of the departrnent' If
I - (t-to-:..)l -, deletion of the third last employee

would cause deletion of the department and its two

remaining employees as well!
4. \0lI+o-0/WX-. A relationship instance between an

employee and a department once created cannot be expli-
citly destroyed. It carr, however, be implicitly destroyed

if the employee is deleted- The X- binding when given

applies to both classes it a (relationship)-

5. (0/1-to-lr[)X - Now, explicit destruction of the relation-

ship between a department and the last employee in the

department would cause the deletion of the department-

If the relationship were X - (l-to-M)X - , then explicit
destruction of a department and employee relationship
would cause deletion of the employee. And of course,

if the employee is the last one in the department, then

the department would also be deleted.

6.'(l-to-Ollt4). Here department is the prime class and

empioyee the subordinate. When a department is deleted,

all of the relationships it has with its employees are impli-
citly destroyed and an implicit delete is done on all of
these employees. If any of these deletes fail, the depart-

ment delete fails since the 1 cardinality constraint must

be maintained. (If the relationship between departments

and employees were '10ltr,t-to-U), then failure of an

employee delete would not cause failure of the depart-

ment delete- The employee may be the lone subordinate

object of another department and, therefore, cannot yet

be deleted.) Also, when the relationship between a

department and an employee is explicitly destroyed, an

implicit delete is done on the employee with aualogous

faiiure semantics.

Listed below are some of the relationship semantics

defined in Fig. 2 by ORN. Relationship semantics associated

with an employee object make it a very complex object.

. If an employee is deleted, all assignments for that

employee are deleted as is his/her payroll record.
. If an employee is deleted, the employee's address is

deleted, unless it is also the address of another employee

or customer. The employee's position is also deleted,

unless it is also held by another employee, and all
children of the employee are deleted unless the

employee's spouse also works for the company- These

semantics result from the / (prime) bindings.
. If an employee is deleted who is one of only fwo riders in

a car pool, the car pool is deleted. This also occurs ifthis
employee is not deleted but his relationship with the car

pooi is destroyed. That is, a car pool "is defined by" two

or more riders.
. An employee's relationship to a payroll record can never

be explicitly destroyed.

3. A formal specification

In this section we utilize formal methods, specifically the

formal mathematical notation of Z, to more fully and

precisely describe ORN semantics.

The formal specification of ORN accounts for the possibi-

lity of relationship cycles, which were not mentioned in the

previous section. A relationship cycle exists among objects

x1,x2,...,xa,n > 1, when x1 e x2,x2 e X3,..-,xn-1 e Xn,

and r, * x1 , where € means that the left object is related

to the right object via some relationship, Such cycles, when

present, result in circularities and ambiguities in the English

description of ORN semantics.

The ambiguities will spill over into the formal specifica-

tions unless a small restriction is placed on ORN- The

restriction is that a single l- binding cannot be given for
any relationship involved in a relationship cycle, i.e- a l-
binding must be given for both sides-subject and related

class-in such a relationship or not at all. We impose this

restriction in the formal specification by constraining the

database from having a cyclic, one-sided l- Unang- We

discuss this restriction further in Section 4-

We also make some assumptions to simplify the formal

specification. First, we assume a database having a consis-

tent metadatabase wherein the types of objects and relation-

ships are predefined and unchanging during the course of
database operations, i.e. schema evolution and data reorga-

nization are of no concern. Second, we assume that certain

capabilities available in OR+ [6] are restricted. There are

no "is a" relationships, i.e. relationships are not inherited

from super or base objects; no objects are marked as "not

explicitly deletable;" and there is no RXCmode (R-elation-

ship eXChange mode), a mode that suspends lower bound

cardinality checks in order to do relationship exchanges'

These restricted capabilities do not affect the basic semantics
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of ORN- They just make their formal specification more

complex.
Also, to simplify the formal specification, we assume the

database operations that define ORN semantics-object
creation and deletion and relationship creation, destruction,

and change-operale under a simplified transaction model.

This we must formally define since ORN semantics require
a transaction commit operation to provide deferred checking

of lower bound cardinality constraints for relationships.

Although not explicitly enforced by the formal specifica-

tions, the reader should assume that a commit or abort

operation, as defined, is done immediately after an object
delete or a relationship destroy or change operation. This
protocol ensures that these complex object operations are

either completely successful or rolled back before another

database operation is begun- The reader should also assume

that the database ban never be "closed" in transaction state,

although no database close (or open) operation is fonnally
defined. This enswes that with our simplified transaction

model a final commit or abort will eventually be done,

resulting in a consistent database.

In OR+, ORN is implemented within a more complex
transaction model in which a complex object operation is

done in an implementation-supplied transaction nested in a
user-supplied transaction. If unsuccessful, the operation is

automatically rolled back and an exception results.

Finally, again for breviry, we will not provide operation

schema to handle error siruadons. We will simply assume

that violations to preconditions or constraint predicates on

the database result in appropriate exceptions.

To specify ORN semantics via Z, we must first establish

the context in which these semantics operate. That is, we

must formally define a database. The database is formally
defined in terms of sets of classes, objects, relationships, and

instances, where relationships and instances can be directly
mapped to relations and ordered pairs.

3.1. Defning a darabase

Class is the given set of all object classes . Object is the set

of all objects.

ICIass]
Object ^ [rype: ClassJ

The type of each object associates it with a particular
class. In the horizontal schema defined for Object (denoted

by the A and the |s), type is declared a variable of type
C/ass, since the values of type are members of the set

C/ass. Both the Class and Obiect sets can be used as

types.

A cardinal and abinding, or more precisely the members

of these sets, are used to record cardinalities and bind-

ings, respectively, in an ORN. An ORN is an encoded

(relarionship).

cardinal=Nu{M)
binding::= default l- l- I'

The set cardinal includes natural numbers (denoted by N)
and the letter M, meaning "many." ( U denotes set union.)
The data type binding is a set containing four €numerated

values: default, -, -, and

A vertical schema, like that given above for ORN,

declares variabies in the top part and may express
predicates in the bottom part that constraint the values

of these variables. Within the variable names in the

ORN schema, s refers to the subject class, r to the

related class, lB to lower bound, UB to upper bound,

ImpB to implicit binding, and ExpB to explicit binding.
The two predicates given in the ORN schema express

constraints on the bindings and cardinalities given in a

(relationship)- For example, the subject class implicit
binding is / if and only if (denoted by o ) the subject

class explicit binding is '. 1 n denotes "logical and"
and v "logical or.")

Relationship is the set of all binary relationships between

a subject class (sC) and a related class (rC). Each relation-
ship is described by an ORN.

Relationship a [sC,rC: Class; desc: ORN]

Instance is the set of all instances of binary relation-
ships between two objects, one object designated as the

subject object (sO) and the other as the related object
(rO). The type of an Instance associates it with a specific

Relationship.

Instance L IsO,rO: Object; type: Relationshipls;O.type:

rype.sC n rO,type - type-rCl

The predicate part above (which follows a I in a

horizontal schema), states that the type of the subject

and related objects in an instance must be that of the

subject and related classes of the associated relationship,
respectively.

The functions relation, relation-type, and ordered4air
are not used in subsequent specifications but are defined

below to show how relationships and instances are mathe-

matically related to relations, relation types, and ordered

pairs, respectively.

sLB, sUB, rLB, rUB: cardinal
slmpB, sExpB, rlmpB, rExpB: binding

(slmpB =' e sExpB =') n (rlmpB -
,^.(sExpB=-erExpB=-)

sl,B *M n rLB *M n (sUB = M v sLB < sUB)

n(rUB =Mv rLB < rUB)
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the set of instances.
relation: Relationship --+ (Object <+ Obiect)

Vr Relationship t relation(r) = li Instances I i.rype = r o

LsO e i.rol

relation-type: Relationship -+ F (Obiect <+ Object)

V r. ReI ationship . relal ion-type(r) = p lo I, o2: Obiect I

o I.rype = r-sC n o2.type = r.rC : o I e o2l

orderedgair Instance -+ Obiect x Object

Yi'. Instance t orderedJtait{i) = sQ * 1{1

The functions above are specified by axiomatic descrip-

tions. In the first such description above, the top part
declares relation to be the name of a total function (denoted

by * ) that takes a Relationship for its argument and has a

relation as its value. (X * Y denotes a relation between sets

X and L) The bottom part of the axiomatic description is a
predicate that fixes the value of relation for any argument.
(The notation VD.P asserts that for all values of the vari-
ables declared in D, predicate P is true. {Olf.4 denotes a

set consisting of all values of term E for aTl values of the

variables declared in D constrained by predicate P- xey
denotes an ordered pair (x,y).). The function relation-type
maps a Relationship to a relation type. (PS denotes the

power set of set S.) The function ordered4air maps an

Instance to an ordered pair. (XX Y denotes the Cartesian

product of sets X and Y.)

The inverse functions below return the inverses ofa given

ORN, Relatjonship, and Instance, respectively. The inverse

operator is -. (- denotes the given operand or argument.)

Yx, y: ORN :(y=x-) e $lsLB = x.rLB ny-sUB = x-rIIB n
y.rI-B = xsLB t y.rUB : x.sUB s
y.slmpB = xrlmpB t' y.sExpB = x.rExPB x
y.rlmpB : x-slmpB rx y-rExpB = xsExpB)

--: Relatinnship -+ Relationship

Y x, y: Rebtionship o 1O = x-) <+ (y.sC = xr{ n
y.rC: rsC ny.61ss6 = (x.dcsc)-)

-: Instance -) Instance

Yx, y; Instance . (y = .t-) c+ (y-sO = x.rO n y-rO = xsO x
y.type = (xtype)-)

The recursive function related returns true ot false for
two given objects and a set of instances to indicate whether

the two objects are related either directly or indirectly via

Object x Object x P lnstance -+ ltrue, falsel

Yol, o2: Object; i-ser- Flnstance ' related(ol , o2, i-set) =
(3i I : Instance t i I e i-set t' iI.sO = o I n il.rO = o2) v

(fi2: i-set; o; Object t i2 e i-set n A-sO = oI n

i2.ro = o n related(o, o2))

The related function is used later to detect a relationship

cycle in the database. (The notation llD.P asserts that there

exists values for variables declared in D such that predicate

P is true.)
A metadatabase, MetaDB, is a set of classes and relation-

ships.

A-ll relationships in tbe metadatabase are defined over the

classes iu the metadatabase. All relationships in the meta-

database have an inverse relationship also in the metadata-

base.

A database is assumed to have a consistent metadatabase,

which is declared as a global vaiable mdb.

m.db: MetaDB

A database, or D8, consisB of a set of objects and a set of
relationship instances. The state of this abstract data type is

given by the following schema.

objecrs: F Object

inslances: P Instance

(l n: N . # objects <n) ,r B m: N ' # instdnces <m)

(Y o: objects . olype e mdb.classes) t (Y i: instances '
i ntno c mih ralntinnshioc\"'Jf- -

Y i: instances. i.sO e objects n i-rO e objects

Y i1, i2: instances . (il.rype = i2.type 
^ 

il * i2) =+

(i] .sO * i2.sO v iI .rO * i2.t0)
Y il: instanceso (3 i2-. instaaceso iI = i2-)
Yo objects o (Yr. mdb.relationships I r-sC = o.rypa '

(r.rlJB = Mv# {i.' db.btstancesl i.type= r,:,i.sO= ol
< r.desc.rUB)

4r mdb. relationship s lr.desc.slmp B = - A r-desc. rlmp B + -

o 1i: db.instances I i.type = r t i-so = LrO v
related(i-sO, i.rO, db.instances \ {i, i-})

classes: P Class

relat io nship s: P Relationship

Y r relationships. r.sC e classes n r.rC e classes

Y rl: relationships t {) r2: relationships o rI = r2-)

The number of objects and instances in the database is
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finite. 1+S denotes the cardinality of ser S.) All objecrs in a
database belong to (or have Vpe o0 one of the classes in the
metadatabase, and all instances are instances of one of the
relationships in the metadatabase. The instances in the data-
base are between the objects in the database. All instances of a
particular relationship are unique. ( + denotes implication.)
Each instance in the database has an inverse instance in the
database- All upper bound relationship cardinality constraints
are satisfied. (The notation VD jP.Q asserts that for all values of
the variables declared in D constrained by predicate p, the
predicate Q is true. VDIP.Q is equivalenr to VD.(p + e).)
Finally, there are no cyclic, one-sided j- Uinaings. Thar is,
for any instance ofa reiationship having a one-sided i- binding,
the subject and related objects are not identical or are not
reiated via other instances, (The notation SDlpre asserts
that there exists values for variables declared in D constrained
by predicate P such thatpredicare e is rrue. 3Dlpee is equiva_
lent to 3Dr(P A Q).)

An InitDB operation specifies the initial state of the data-
base. The schema for this abstract operation is given below
in horizontal format.

InitDB L [DBllobjects' : A A instancest : Al
The declaration DBlincludes into the operation schema

the declarations and predicates of the DB schema. The /

indicates that only the ending state of the database, i,e. the
DB component values after the operation completes, will be
specified. At the end of this operation, both the objects and
instances sets of DB are empty.

3.2. Defning a transaction model

In the definition for DB no predicate is given to ensure
that all lower bound relarionship cardinality consrraints are
satisfied. This is because these constraints are only enforced
when a transaction is committed. We now define a trans-
action model that provides a transaclion commit operation.

TransData consists of a flag, indicating whether or not ..the

system is in transaction state", and a saved copy ofthe database
as it was at the beginning of a transaction. The InitTransData
operation specifies the initial state of TransData.

TransData L [inTrans: {true.false}: saveclDB: DB]
initTrans D ata L [Trans ac tion' linTrans' : false ]
The operation schemas for transaction operations are

given below in vertical format followed by some explana-
tory remarks-

the declaration LTransData. This includes into the opera-
tion schema two versions of the TransData schema: the first
having undashed variables, representing the starting state of
TransData, i.e. component values prior to the operation, and
the second having dashed (/ ed) variables, representing the
ending state of TransData, i.e. component values after the
operation completes. The declarationZDB includes the DB
schema into the BeginTransaction operatton schema, and
the 3 symbol specifies that the state of DB is not changed
by the operation.

The first predicate in Lhe BeginTransaction schema states
that the system is not in transaction state. If this precondition
is not met, we assume an exception results. This invalid case
for beginning a transaction is not formally specified.

The fust of two postconditions specifies that &e copy of
the current database is saved. That is, after this operation is
completed, the ending value of savedDB in TransData,
denoted by savedDBl, is equal to the value of the current
database- (0DB is a term of type DB denoting the database
in its starting state, which for this operation is the same as
the database in its ending state, ?DBt.) The second postcon-
dition indicates that the system is now in transaction state.

CommitTransaction
LTransaction
gDB

inTrans

Yo: objects o (V r m"db.relationships I r.sC = o.type .
# li: instances I i.type = r n i.sO = o I 2 r.desc.rLB)

inTrans' = false

A CommitTransaction requires the database to be in
transaction state. All lower bound relationship cardinality
constraints must be satisfied- If both preconditions are rue,
the database is no longer in transaction state, wtrich is
specified by the last predicate.

The database is in transaction state. At completion of this
operation, the database is as it was at the beginning of the
transaction, and it is no longer in transaction state.

3.3. Defning needed funcrions

Before formally defining the operation schemas for
updating a database, a number of functions on a database
must be defined, where the darabase is given as the first

AbortTransaction 

-LTransaction

ADB

inTrans

0DB'= savedDB

inTrans' = false

BeginTransaction 

-LTransData
gDB

inTrons = false
savedDB'= 9DB

inTrans'= true

In beginning a transaction, TransData will change, thus
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argument. Certain of these functions are recursive and

dependent on another argument, the set of objects that

have already been traversed. This set can be thought of as

ttre "deleted object set" (dos), the set of objects ftrat have
already been "marked for deletion." The set is used to detect

a relationship cycle and terminate the recursion and is
discussed further in Section 4. The functions in this subsec-

tion may be studied now in bottom-up fashion or top-down
as they are invoked from the operation schemas given in the

next subsection.
The function related insta,i?ce,r returns the set of all

instances associated with a given set of objects.

related-instances: DB x P Object -t+ P lnstance

Ydb: DB; os:. P Object I os c. db.objects o

related_instances{db, os) : li:. db.instances I i.so e os v
i-ro e osl

This is a partial function since it is only defined for a

given object set, the second argument, that is a subset of
the objects in the given database, the first argument. (-++

denotes a partial function.)
The function slB-violated returns true or false for a

given instance to indicate whether the subject class lower
bound cardinality is violated if the given instance is
destroyed.

sLB_violated; DB x Instance + ltrue,folsel

Ydb: DB; i: Instance I i e db.inslances c

s LB _v io lat ed(db,, = * | i2 : db. insr anc es I i2. typ e =

i.rype n i2.rO = i.rol = i.rype-desc.sl'B

The function sUB-violated returns true ot false for a

given instance to indicate whether the subject class upper

bound cardinality is violated if the given instance is created.

sUB_t,iolated: DB x Instance + ltrue,falsel

Ydb: DB; i: Instance I i e db.instances o

sUB_violated(db, i) = * li2: db.instances I i2.type =
i-type n i2.rO = i.rOI : i.rype.desc.sUB

The recursive function rO-implicitly-deletable retums

true or faise for a givcn insiancc to iiidicaic wireihcr tlre

related object can be implicitly deleted when the given

instance is destroyed.

ro-implicitly-deletable: DB x Instance x P Object +
Itrue,fakel

Ydb: DB; i: Instance; dos: P Object I i e db.instances t'
dos c db.objects o

rO-implicitly-deletabte(db, i, dos): ( i.rO e dos v
Yi2: db.instances I i.ro e dos t i2-sO = i.ro 

^ 
i2 + f

o implicitly 
-de 

sr ructibl{db, i2, do s w t t- rO } ) )

The recursive function implicitly-destructible returns
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true or false for a given instance to indicate whether the
given instance is implicitly destructible with respect to the

subject object in the instance.

implicitly-desrructible; DB x Instance x F Object +
Itrue, falsel

Ydb: DB; i: Instatrce; dos: P Object I i e db.instances n
dos c db.objecrs o implicitly-destructibl4db, i, dos) = 1

(i.type.desc.slmpB = - nfalse)v
(i.type.desc.slmpB = default n true) v
(i.type.desc.slmpB= -,r(--rslB-violaed(db,lv

rO 
-imp 

licitly-delet able(db, i, do s))) v
(i.rype.desc.slmpB = ' ,r (-rslJ-violated(db, lv

rO 
-tmplicitly-deletable(db, 

i, dos))) )

The function explicitly_destructible retums true ot false
for a given instance to indicate whether the given instance is

explicitly destructible from the perspective of the subject

object in the instance.

explicitly-destructible: DB x Instance -++ ltrue,fakel

Ydb: DB; i: lnstancel i e db.instances c

explicitly_destructibl{db, i) = (
(i.type.desc.sExpB= - nfalse)v
(i.type.desc.sExpB = default ,r true) v
(i.rype.desc.sExpB= - n(--.s1,B-r,blated(db,i)v

rO 
-implic 

itly-deletable{db, i, AD) v
(i.rype.desc.sEtqB=' ,a(rslB-viol/tted(db,0v

rO 
-implicirly-deletable(db, 

i, AD) )

The function deletable returns true or false for a given

object to indicate whether the given object can be explicitly
deleted.

deletablc:, DB x Objea + ltue,fakel

Ydb; DB: o: Object I o e db.objects ' deletablc(db, o) =
Yi: db.instances I i.sO = o c

implic itly 
-de 

st ructible(db, i, I o l)

The recursive function dro retums true or false depend-

ing on whether the related object of the given instance is a
r - , r - -- ,-- t--^J ^L:^^z L^^^) ^- rL^ -:,,^- ^,,L:^^. ^-l^^-uepcrluclat reluteu uuJcLt w4>w ulr !lr9 Slvclr suuJcLt 9r4J)

binding. Such an object is deleted when the given instance is

desfroyed.

dro : D B x lnstance x biniling x P Obiea + ltrue, fals e I

Ydb: DB; i: Instance; b: binding; dos; P Object I

i e db.instances n dos c db.objects ' dro(db, i' b, dos) =
( (D = - n sl,B_violared(db, 0 r

ro-implicitly-deletabl{db, i, dos)) v
(b =' n rO-implicitly-deletable(db, i, dos)))

The recursive function complex,ro returns the complex

object set for the related object of the given instance. This
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complex object set is the set of all objects that must be

deleted when this related object is implicitly deleted on
destruction of the given instance.

complex-rO: DB x InstancexF Objea + P Object

Ydb: DB; i: Instance; dos: P Object I i e db.instances n
dos c. db.objects o complex_ro(db, i, dos) = ( {t rO) U
lo: db.objects l3iI-. db.insrances I il.rO € dos t

i] + i 
^iI 

+ i- n il.so: i-ro t
dro(db, i, i.rype.desc-slmpB, dos v li.rO|) n
o e complex_ro(db, iI, dos w li.rOl)l )

The function complex_drO returns the complex object set
for a dependent related object of the given instance. Ttris
related object is one that must be deleted if the instance is
explicitly destroyed. The function returns A if the related
object is not a dependent object.

comples_dro: DB x Instance + F Object

Ydb: DB: i: Itzstance I i e db.instances o

complex_dro{db, i) = lo: db.objects I dro(db, i,
i.type-desc.sExpB, A) n o e complex-rO(db, i, O)l

The function complex_objecl refurns the complex object
set for a given object. The complex object set is the set ofall
objects that must be deleted when the given object is
deleted-

complex-object DB x Object -++ F Object

Ydb: DB, o: Object I o e db-objects o

complex-objecr\db, o) = ( {o} v lol : db.objeas I

3i: db.instances I LsO = o n i.r0 * o n drO(db, i,
i.rype.desc.slmpB,l"l) . oI e complex_rO(db, i, lol)l )

j.4. Defining the database operations

Now we are finally ready to specify the database opera-
ii^nc lhat d.6np l-)pN cemanfics Thcir nnerrtinn qchemec

given below, along with some explanatory remarks
complete the formal description of ORN semantics.

CreateObject

ADB
ETransData
o?: Object

inTrans rxo? € objects no?.type e mdb.classes

objects'= objects v o?

In creating an object the database may change, thus the

declaration L,DB. TransData will not change, thus the 3.

The object to be created, o? of type Object, is declared as

input to the operation, denoted by the ?.

The first predicate inthe Createobject schema, a precon-
dition, states that the system is in transaction state, the o?
object must not be in the database, and its type must be that
ofa class defined in the metadatabase. Again, ifa precondi-
tion is not met, we assume an exception results. The post-
condition states that the object is added to the set ofobjects
in the databa.se.

CreateRelationship

ADB
ETransData

i?: Insurrce

inTrans nt? e insunces r.i?.typee mdb.relationships
i?.sOe objects ni?.roe objects
1s U B 

-v 
i olat ed{OD B, i ?) n --s U B 

-v 
i ola t e d(0 D B, i ? -)

instances' : instances w li ?, i?- |

The system is in transaction state, the relationship
instance to be created, i.e. added to the database, must not
already be in the database, and its type must be that of a

relationship defined in the metadatabase. The subject object
and related object in the instance must be objects in the
database. Creating the instance must not violate the upper
bound cardinality constraints associated with the subject
class or related class in the relationship. (Lower bound
cardinaliry constraints are verified in an eventual Commit-
Transaction operation.) A postcondition specifies that the
given instance and its inverse are added to instonces.

DeleteObject

ADB

ETransData

o?: Object

inTrans 
':, 

o? e objects r' deletable(qDg, o?)
objects' = objects \ complex_objea(0D8, o?)
instances' = instances \

related _ins tanced9D B, comp lex_obj ect(OD B, o ?))

The system is in transaction state and the o? object must
be in the database and deletable. The first of two postcondi-
tions specifies that the complex object, i.e. the set ofobjecs
that must be deleted when o? is deleted, is removed from the
database. (\ denotes set difference-) All related instances, i.e.
those involving the objects making up the complex object,
are also removed from the database. This is specified by the
second postcondition.

A CommitTransaction done immediately after a Delete-
Object-a protocol assumed for this as well as the Destroy-
Relationship and ChangeRelationship operations, given
below-verifies that instances implicitly destroyed by the
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complex object operation do not cause lower bound rela-
tionship cardinality violations. If tbe commit results in
exceptions, an AbonTransaction rnust be done.

DestroyRelationship
ADB

ETransData

i?: Instance

inTrans l.i? e instances

expli citly _de n ruc tibl49D B, i ?) ^
exp licitly_dz struc tibl40D B, i ?-)

objects' = objects \ (complex_dro(0D8, i7) u
comp lex-dro (0D B, i ?-))

instances'= instances\( {i?, i?-l w
re lat e d 

-ins 
t anc e dOD B, c omp le x _d r0 (A D B, i ?)) v

re lared_ins t anced9D B, comp lex_drO(BD B, i 7 -)) )

The system is in transaction state and the given instance
to be destroyed must be in the database. It must be explicitly
destructible from the perspective of both the subject and
related object. The sets ofobjects representing any complex
dependent related object and any complex dependent
subject object of the given instance (or related object of
its inverse) are removed from objects. These sets contain
the objects that must be implicitly deleted when the instance
is destroyed. The given instance and its inverse as well as all
instances related to any implicitly deleted objects are

removed from inyances-

inTrans a old? e instances n new? €. instances t
oA?.type = new?-type

new?.sO = old?-sO nnew?-ro e objects

explicitly_de st rucr ibl{OD B, o ld ?) n
--ts U B _vio lat ed( 0D B, new ?)

objects' = objeas\ complex_dro(9D9, old?)

instances' = ( instances \ (lold?, old?- | W
rektted-instanced9D B, complzx_dro(0D B, old?))) ) w

lnew?, new?- |

The system is in transaction state, the old instance to be

changed must be in the database, the new instance must not,
and the type of the old and new instances must be the same.

The subject object of the old and new instance must be the

same, and the related object in the new instance must be an

object in the database. The old instance must be explicitly
destructible from the perspective of the subject object, and
creating the new instance must not vjolate the upper bound
cardinality constraints associated with the subject class. The

set of objects representing any complex dependent (old)
related object are removed from objects. This set contains
the objects that must be implicitly deleted when the old
instance is destroyed- The given old instance and its inverse
as '"r'ell as all instances related to any implicitly deleted
objects are removed from instances, and the given new
instance and its inverse are added to instances.

-1. Relationship cycles

Relationships cycles in a database pose two potential
problents in specifying relationship semantics. These
problerns have been studied by others in the context of
relational databases and SQL LlI,l2l. One problem invr.rlves
circularity and the other ambiguity. In this section, we
briefly discuss these problems and how they are addressed
by the formal specification of ORN semantics given in the
pre'r'ious section. Relationships cycles and their impact on
the implementation of ORN are more fully examined in Ref.

11 31.

The fust problem with relationship cycles is that the
recursion inherent in the semantics of ORN, and often in
other relationship declarative schemes, can result in circu-
larity unless there is some means to detect a relationship
cycle. This can be illustrated by the relationship cycle
show in Fig. 4. Here there are just two objects, xl and y),
within the database and two instances, y2 * xl of Rl and

1,2 * xl of R2 (actually four instances u'hen inverse rela-
tionships and instances are considered).

Suppose an attempt is made to explicitly delete xl.
According to the ORN semantics as informally described
in Section 2, the explicit deletion of ,rl should result in an

implicit destruction of the 1,2 * xl instance of Rl (or the

xl * t-2 instance of fil-) and the implicit deietion of 1,2.

This is based on rhe | - binding and I cardinaliry for class
X in the Rl relationship. The implicit deletion of y2 should
result in the implicit destruction of the y2 * xl instance of
R2 and the implicit deletion xl, based on the | - binding
and I cardinality for class Y in the R2 relationship. We have

come full circle, but based only on the semantics of Section
2, we should continue by concluding that the implicit dele-
tion of rl should result in the implicit destruction of the

),2 * xl instance of Rl and the implicit deletion of y2,
etc. etc. We are in an infinite loop and have not yet begun

to anal)'ze the implicit destructiveness of the other relation-
ships in which xl might be involved-which in Fig. 4 is just
R2-a,nd their impact on the explicit deletion of .r1-

Obviously, any formal specification of ORN semantics

must avoid such circularity of description.
In the formal specification in Section 3, the recursive

function definitions detect relationship cycles and avoid
circularity by means of their dependence on the set of
objects that have already been traversed. To illustrate this,
Iet dbFig4 represent the state schema for the database shown

in Fig. 4, and assume that the operation schema for



y2<->xI

y2<->xL

Fig. 4. Relationship cycle rl * y2. y2 * x7.

DeleteObjeu is invoked to describe the deletion of -tl.
The list below traces the functions invoked by the first
precondition in the schema. The last invocation of
rO_implicitly_deletable returns true and recursion
terminates since l.ro e dos, i.e- xl e {xl,y2} and no
i2s satisfy the i.ro 6 dos constraint in the Vi2...
quantification.

deletable(dbFig4, x2)

implicitly_destructible(dbFigl, xley2 of R.r-, {xl })
rO,i mp I ic it ly de Ie tab le(db F ig4, xl <+y2 of R/-, { x 1 } )
i mp I i c i t ly _d e s truc t i b le (db F ig 4, yL<-+xl of R2, { x I, y2 } )
r O _i mp I i c it ly _de I e t a b I e(d b F ig 4, y2<> xl of M, (x I, y2|)

Fig. 5 depicts another relationship cycle and is used to
illustrate the second problem that can arise from such

cycles. The "?" in the figure indicates the selection of an

implicit destructibility binding. For two such bindings we

examine what happens when an attempt is made to delete

-r1. We again at fust assume only the ORN semantics as

described in Section 2.

Case I. "?" is replaced by a default implicit destructibility
binding (i.e. no explicit bilding indicator is given).

. If Rl is considered first, the deletion of -r1 should result in
the implicit destruction of theyl * xl irrstance of Rl and

an implicit delete on yl. This should be successful and

result in the implicit destruction of the yl * -xl instance
of rR2 based on the default implicit destructibility binding
for class Y h the R2 relationship. Now, when R2 is
^^*-;l^-^,{ +^ "-^.;f a-rr i-o+a-^^-;-.,^1.,;-- -l --;-+lvriiruurvu Lv Jvv r^ @rJ urJLdrvvs r[ r vr vu6 

^1 
LND!

that require implicit destruction, it is not clear if any

will be found. If in fact the yl * xl instance of R2 has

yJ.<->x1

Fig. 5. Relationship cycle rl * yl, yl * xl

been implicitly destroyed, the

successful.
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delete of -xl should be

. If RZ considered before Rl, the deletion of xl should be

unsuccessful because the l- binding prevents the implicit
destruction of the yl * xl instance of R2.

The second problem with relationship cycles is evident
from the above case- They can cause the outcome of a

complex object operation, like object deletion, to be depen-

dent on the order in which relationships are considered (or
"processed"). When such ordering is unspecified-as it is in
the informal description of ORN semantics of Section 2 and

the formal mathematicai notations of Section 3, involving
iterations over (unordered) sets-ambiguities result. In the
"Vi db.instances..." quantification in the function deletable
in Section 3, which relationship instance will be considered
(or in an implementation processed) fust?

Now let us assume a different binding for the "?" in Fig. 5,
and examine what happens when the an attempt is made to
delete -rl.

Case 2. "?" is replaced by a l- implicit destructibility
binding.

o ffRl is considered fust, the deletion of xl should again
cause an implicit destruction of the yl * xl instance of
Rl and an implicit delete on yl. The deletion of y1,
however, will not be successful because ofthe l- binding
for Y in the R2 relationship. Thus the deletion of xl
should be unsuccessful-

c If R2 is consider fust, the results are the same as indicated
in case l. The deletion of -rl should be unsuccessful-

Here the outcome of the operation is independent of the
order in which the relationships are processed-

In the formal specification of ORN, we assumed that a

one-sided l- Uinaing could not be given for a relationship
involved in a relationship cycle. The reason for this restric-
tion was too avoid the ambiguity in semantics exemplified
by case l. Only the l- binaing of ORN causes processing
order dependencies, and this is true only when it is given for
just one class, i.e. one side, in a relationship involved in a

relationship cycle. This is indicated by the above two cases

zurd is formally proven in Ref. [3].
We should note that the OR+ implementation of ORN

allows the cyclic, one-sided l- binding, which was dis-
allowed in the formal specification. The user, however, is
cautioned to avoid it tl3l. This problematic binding could
have been forbidden but was tolerated for three reasons.

First, it could prove useful in defining some relationships-
In Fig. 2, for example, the one-sided l- binding occurs for
two relationships, though both are non-cyclic. Second, the
cyclic nature of the binding camot be detected at database

definition time. The possibility of a relationship cycle is
detectable when relationships are defined but not an actual
occurrence, which is data dependent and not inevitable. And
third, when a cyclic, one-sided l- UinAing does occur, an

OR* user can know (and also indirectly control) the
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order in which relationships are processed, thus eliminating
the ambiguity exemplified by case 1- In OR+, relationships
for an object are always processed in the order in which they
are defined within a class.

The algorithms in OR* implement ORN semantics by
implicitly destroying relationship instances as they traverse
the database. The database functions in the formal specifi-
cation, however, do not "process" the database in this
manner. That is, they do not (and cannot) change the state

of the database by destroyilg instances as they traverse it
(else they would not be true functions). Therefore, in a

relationship cycle such as seen in case I, all instances are
eventually examined from the perspective of both sides of
the relationship, no matter the order of traversal. This means
that a one-sided l- binding encountered in a relationship
cycle would always specify the non-deletability of an
object, which is not always the result as implemented in
OR+. Tll-rus, admittedly, another reason the cyclic, one-
sided l- binding is disallowed in the formal specification is
the extreme difficulty of formally specifying its messy.
processing order dependent semantics as implemented in
oR+.

5. Conclusion

ORN is a simple yet powerful notation for describing
relationship semantics at a very high level of abstraction,
the entity(or object)-relationship level. This level of data-
base abstraction is suitable for both system requirements
specifi cation and database definition.

This paper has described ORN semantics using formal
methods. The formal specification given is precise, unam-
biguous, and non-circular, accounting for the possibility of
relationship cycles within the database. It is also complete in
describing ORN minus the cyclic, one-sided l- UinAing-a
situation to be avoided whose meaning is ambiguous in the
inforrnal description of ORN and processing order depen-
dent in its implementation. The formal specification of ORN
ties the manipulation of objecs and relationship instances
within a database to the insertion and deletion of objects
within sets and of ordered pairs within relations defined
on those sets, thus providing ORN with a mathematical
interpreiaiion- A rr-raiheir-raiically based speciiication of
ORN is beneficial to the potential user and implementer of
ORN and facilitates further research into its application and

extension.
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