€ IEEE TRANSACTIONS ON

' KNOWLEDGE AND
DATA ENGINEERING

A publication of the IEEE Computer Society

MARCH / APRIL 1999 VOLUME 11 NUMBER 2 ITKEEH (ISSN 1041-4347)
REGULAR PAPERS
Dynamic Programming in Datalog with Aggregates
S BIBEOD ettt ettt ettt ettt 265
Techniques for Increasing the Stream Capacity of A High-Performance Multimedia Server
D. Jadav, ANN. Choudhary, and P.B. BEITAccuuiiiiieriiieeiiniireee ettt ettt e et e e e e e e e e e eeeenn 284
Resource Scheduling In A High-Performance Multimedia Server
H.H. Pang, B. Jose, and M.S. KFISANGNccuiiiiiiiii e 303
Join Index Hierarchy: An Indexing Structure for Efficient Navigation in Object-Oriented Databases
EI =1 Ao N TR ———————— TSSO S 321
A Hybrid Estimator for Selectivity Estimation
Y. Ling, W. Sun, N.D. RiShe, @0 X. XIBNGrvuuveimieiitaieces oot e e ee oo e e 338
CORRESPONDENCE
Proof of the Correctness of EMYCIN Sequential Propagation Under Conditional Independence Assumptions
XoLUO @NG €. ZRANG ottt ettt et 355
1998 TKDE REVIEWEFS LIScccuieeuiiriieeieieeeeeeeeeeeeeee et 360

Dr. Naphtali Rishe |
Florida International University
IEEE ®

School of Computer Science
Southwest 8th St. and 107th Avenue COM PU%ER
University Park SOCIE

Miami, FL 33199
http://computer.org ¢ tkde@computer.org

i
gy |

Proceedings

Technology of Object-Oriented
Languages and Systems

TOOLS 30

August 1-5, 1999

Santa Barbara, California

Edited by

Donald Firesmith, Richard Riehle, Gilda Pour, and
Bertrand Meyer

Sponsored by

Interactive Software Engineering, Inc.

IEEE@

COMPUTER
SOCIETY

&

Los Alamitos, California

Washington o Brussels . Tokyo

Storing Java Objects in any Database

Raimund K. Ege
High Performance Database Research Center *
School of Computer Science, Florida International University
University Park, Miami, FL 33199
ege@cs.fiu.edu

Abstract

Typical Java applications involve access to a database system. Database systems store
data according to their type system, even object-oriented databases generally have their
own storage structures. It is therefore necessary to convert Java objects as they are stored
in a database, and to re-convert them when they are read. Ideally, this should be done
behind the scenes by a support package. Our paper presents an approach that automates
the conversion process without involving pre- or post-processing of Java code: we use a
reflection mechanism, where Java code is inspected at run-time and changed to include the
convert and re-convert effort. The result is a flezible and transparent Java database access.

1. Introduction

Accessing a database system from the Java programming language is a common occur-
rence. For typical database systems, i.e. those based on relational technology, there are
several packages available that enable Java to store and retrieve data. For object-oriented
database systems it is desirable to allow Java to store and retrieve its objects directly, i.e. in
a seamless manner. Several approaches to the integration of a Java program’s object model
with an object-oriented database have been proposed and demonstrated. Some advocate a
strong and strict integration, some allow loose coupling. Either approach has advantages
and disadvantages.

In this paper we will describe an API based on a novel approach that allows Java objects
to be maintained by an object-oriented database system. Our approach employs a reflection
mechanism that allows for an application program to explore itself and the database schema:
it is neither strict nor excessively loose. We use reflection, i.e. self inspection and change
of a running program, to map Java classes to database classes and to enable persistence.
Reflection allows a program to inspect itself and to affect its own execution. In an object-
oriented program that means that at run-time the class of an object is accessible, in our
case, the classes of the Java application program as well as the classes of the database API.

And unlike other approaches that add persistence capabilities to Java our approach does
not change the Java language nor does it require changes to the Java Virtual machine. The
result is a very flexible and efficient style of Java database access.

This research was supported in part by NASA (under grants NAGW-4080, NAG5-5095, NAS5-97222,
and NAG5-6830), NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409), ARO (DAAHO04-96-
1-0049 and DAAH04-96-1-0278), AFRL (F30602-98-C-0037), BMDO (F49620-98-1-0130 and DAAH04-0024)
Dol (CA-5280-4-9044), and State of Florida.

312

0-7695-0278-4/99 $10.00 © 1999 IEEE

3]

This paper is organized as follows: Section 2 explores the issue of adding' p}e.r8815tililsz
to Java objects; Section 3 discusses other efforts that are 4related to our approach; fLJ !
4 illustrates our reflection-based approach of adding persistence to Java- objects arn(1a\c;
classes; Section 5 elaborates and gives examples of common classes, and gives an e?(;n:;;:;;)g
a program; Section 6 briefly outlines the implementation approach and x'epprtl(.)rl.t, e-;e;te(gl
of our prototype [Ege et al., 1998a] which is based on SemODB', a semantic object-or
database system [Rishe, 1992]. Finally, the paper concludes with our future plans.

2. Java Persistence

Both object-oriented programming languages and object-oriented da‘f,abase sys‘r{e‘ms lha:;
been in use for some time. And from the early days there was the deslxre t‘n. com nnci);)
in a true object-oriented fashion. The programming 1anguag(? uses objcctf in its m«;x:h(o(
computation; the database stores objects: thereforcj, an appl.lcatmn pr(_)gmmmerlmlezi <(1
(API) necessarily should be constructed around objects. Objects occur in »'r,wo} ;})Ja.;u”n
the objects stored and retrieved from and to the database, and (2) service o bjects, tha
enable the typical database management capabilities, such as transz}ct‘mns etc. -

It is clasées that describe objects: the schema of the database is Jujgt a set”of‘ c afﬁt,sl
an OO program is also just a set of classes. Several approaches to their u]tf:qgiatltlxlotx'lllkm\t/(
emerged: from a loose integration, exemplified b‘y the GemStone O()DB for ;,de 8 m,i%
the ODMG/Catell et al., 1997] C++ binding, which repr(ﬁscuts an mtvegmtilon f/.ortx?pllu]w
to tight integration that is proposed for storing Java objects. In a Llhght %I?F(}gvlrtt‘lolellvé;n;
program objects can be made persistent, which causes them to be implicitly stor

age an OO database. ‘ A
mzt;l:ici;ls}:zsdillwolved in allowing Java objects to be persistent are (1) the selection/markin;

of classes that have persistent instances; (2) the creation of persistentj obje‘c—‘ts; (31) Fh
retrieval of objects from the database; (4) navigation from object to object; (5) updatin

objects; and also (6) some basic database housekeeping capabilities.

2.1. Persistence-Capable Classes

In order for an object to become persistent, its class needs tolbclenabled. A ‘A]awa' cla}s
has to be made persistence-capable, i.e. we allow thatv some (?f‘lts mstm?ces refldeﬁ .m“tl;
object-oriented database. There are 2 ways to a(:hieve. it: ea:pl?cm;/, .that is Lot'rcquu;rive
the programmer mark persistence-capable classes; or via some implicit automatic or de
fdsflil;z);ll-icit marking can be done in several ways, e.g. by defining a class as a S\.lb(.ljsst;
a database superclass. Any class in Java is already a subclass of Java class Obj elc t ,;
same concept applies now to such a database root superclass. We can 1}0?\/ éay t}l& S;
persistent object handled by our Java API is an instance of thalt class. This class 1i1x1
the basic correlation between the physical database object and its loc(ﬂ Java (;'ouuge)l ;)ar

Another approach is more implicit: any object can be made persxstent, ”,1 e} ec ’ é
Java classes are therefore persistence-capable. The advantage of this .apprue.wh 1s t‘ mt E[?/lc
Java system classes, AWT classes, utility classes, etc. can have persistent mStTn\“b'“Pl,
concept is called orthogonal persistence. The programumer, of course, need not be aware

this.

The second issue of persistence in Java is how to make individual objects persistent.
The desire is to stay minimally intrusive. The first option is to add a variation of a new
operation to Java (e.g. pnew); or, to provide a mechanisin to tell the database about those
objects that are to be persistent; or, as a variation of that, enable a ODMG C++-style
set_object_name () operation that declares root objects.

The third issue is how to retrieve objects from the database: 3 sub-options again: (1)
allow some general query capability similar to a single SQL project, e.g. “select instance
of class whose attribute has value”; (2) extend the Java programming language with a new
looping construct that allows to scan instances of a class; or (3) retrieve specific objects
that have been given a root name in ODMG C++ style: lookup_object('root name").
As Java objects are moved into the database, member fields that contain references to other
Java objects need to be converted. A Java reference is only valid during a single run of
a program. Therefore, they need to be converted into more general object identifiers that
are valid, i.e. unique, in the context of the entire database. As objects are retrieved from
the database these object identifiers will have to be reconverted into valid Java references.
Once a persistent object has been retrieved from the database, other objects are reached
by following its relationships, i.e. via object identifiers. Objects are automatically fetched
as needed from the database. This concept is called persistence by reachability.

Updating objects is totally transparent to the programmer. The programmer invokes
member functions and goes about the programming business as usual. Member functions
can update member fields of persistent objects: that in effect is an update of a database
object. The programmer does not have to insert any code to explicitly affect the update to
the database. Of course, the final success of an update is dependent on the final success of
the transaction.

2.2. Implementation Issues N

The above mentioned issues present various degrees of complexity: how to resolve how to
make a Java class subclass of the database root class; how to enable objects to be named;
how to retrieve objects by name; how to enable traversal of persistent objects; and finally
how to enable object update.

ODMG suggests 3 potential ways to address these “how-to” issues in Java: via a prepro-
cessor to Java compilation; via a postprocessor of Java byte codes; or via a change to the
Java Virtual machine.

In the preprocessor version, one would parse Java code to add the necessary snippets to
enable persistence capability, e.g. make a class a subclass of a database root class. This
approach would also allow to insert the necessary checks and additional code to enable the
fetch, traversal and update of persistent objects.

In the postprocessor version, one would read and modify Java byte codes for the classes
that are to be effected. Since Java byte codes are well defined and documented - tools exist
to process them - this version has the same capabilities as the first version, but might even
be easier to implement.

To change the Java virtual machine is not a complete solution: it needs to be made
aware of objects that are persistent. One could add new byte codes: this approach is used
in the PJama approach. However, in our opinion this runs against the spirit of Java: such
a modified Java program will not run everywhere.

In summary, approaches one and two are doable, however, as a consequence they alter

315

the Java compilation approach: a programmer needs to use a special version of the Java
compiler.

Our approach attempts to stay away from changing the compilation approach and from
changing the Java virtual machine. Instead we use Java's reflection capabilities, where we
generate the necessary changes to the Java program automatically as it runs. The result is
limited intrusion into the programmer’s model and into the compilation model.

3. Related Work

Many different approaches have been suggested to enable database access from a Java
program. Prominent, for example, is the Java Database Connectivity package (JDBC)
[Hamilton and Catell, 1996]. Of course, it allows Java to access relational database system?.
JDBC acc an be bridged into ODBC access, or - as is becoming very common - direct
drivers are provided by the database management system. Several extensions to this JDBC
approach have been suggested: one is JRB (Java Relational Binding) which allows to
manage database entities (transactions, queries, etc.) and to store and retrieve Java objects.
JRB has been used as further basis for a Java Universal Binding (JUB) which hides the
relational aspects of the underlying database system [Xhumari et al., 1997].

Several commercial vendors of ODBMS have provided Java bindings that follow the
ODMG recommendation: ObjectStore[PSE, 1998] and GemStone/J[Gem, 1998] are 2 ex-
amples.

The most integrated approach is PJama[Atkinson et al., 1996]: Lere Java truly becomes
persistent with minimal intrusion into the programming model, however, at the expense of
requiring a non-standard Java compiler and significant changes to the Java Virtual Machine.

4. Reflection

Our approach to enable Java programs to store their objects in an object-oriented
database is based on reflection. The term reflection means that a computer program is
able to observe and/or change itself while it is running. A programming language becomes
reflective if it enables its programs with reflection, i.e. it enables that the program code is
changed by the program at run time [Stemple et al., 1993].

An object-oriented program is described via a set of classes. OO programming languages
such as Smalltalk and Java represent these classes as objects and make them available at
run-time. Smalltalk has a rich set of meta-classes that enable reflective programming. Java,
on the other hand, does not directly support full reflection: its java.lang.reflect package
allows a program to inspect the class of objects, its member fields and functions, etc., but it
does not allow that they are changed. In order to achieve full reflection, access to the Java
byte code is necessary. Once a Java class is available in byte code, it can be changed and
the class reloaded using the standard Java class loader. Recreation of Java byte codes and
dynamic loading can be done at run-time. While not elegant, this avenue in effect enables
full run-time reflection for the Java programming language.

In the database context it is quite common to represent and store the schema with
the rest of the data in the database and also to make it available to application pro-

"more precisely, it allows access to database that allow ODBC-style access, and of course, the common
commercial OODBMSs have such interfaces.

316

grams®. Our prototype implementation uses SemODB (semantic object-oriented database
system)[Rishe, 1992]. Its metaschema contains classes for the database, transactions, file
storage, as well as classes “Category” and “Relation” that govern what is stored in the
database. “Category” has instances for the classes whose objects populate the database.
“Relation” captures the superclass/subclass relationships among classes and class associa-
tions. In the semantic object-oriented database approach, attributes are also captured as
associations to basic primitive database types.

The Java meta schema on the other hand is quite simple: it contains classes Class, Field
and Method. We also need to use the class ClassLoader since that enables the dynamic
reload of classes at run time.

In addition to the meta classes, the Java program will contain application specific classes,
and the database schema will contain content specific classes.

Our API now allows the 2 sets of classes to be reconciled automatically. As the pro-
grammers declares objects to become persistent, we inspect — via reflection — the details
of the class, then check whether a corresponding class exists in the database, and then -
again via run-time reflection - create a proxy class that serves as a bridge to enable Java
objects to move into the database, and for database objects to move into the Java execu-
tion world. In this fashion, all Java classes mentioned in a program are made persistence
capable, including the Java support classes from the standard JDK packages.

Some special cases need to be considered: (1) Java primitive types, e.g. int, char
etc. are mapped directly into equivalent database primitive atomic types; (2) a Java class
might not have a corresponding category in the dtabase: we then create the category
automatically based on the data members declared for the Java class.

In addition, we enable a caching mechanism, where the proxy classes are also stored with
their byte codes in the database, which significantly improves the performance of those Java
programs which use common classes. [Ege et al., 1998b)]

5. Database Programming with Reflection

For further illustration lets consider a sample Java class (see Figure 1) which is defined
without any database access in mind. This class is then used in Java programs that access
the database:

5.1. To make an object persist

In order for a Java program to make arbitrary object persistent it will have to make that
intention known. Our reflection package provides a helper class DBAccess which defines
the member function makePersist (). This code example illustrates the use:

DBAccess db = new DBAccess("demo");
Person p = new Person();
db.makePersist(p, "first");

The member function inspects the class of its parameter in the Java program and in the
database. If a corresponding database category is not found, a new category is created in
the database based on the member fields of the Java class. In any case, a new instance of

*This is a form of reflection, full reflection would enable dynamic schema evolution.

31

import java.io.*;

class Person {
String name;
int age;
Person [] children;
void add(Person ¢) {
Person [] 1list;
if (children != null) {
list = new Person [children.length + 1];
for (int i=0; i<children.length; i++)
list[i] = children[il;
} else
list = new Person[1];
list[list.length-1] = c;
children = list;
}
void print() {
System.out.println(name + "(" + age + "):");
if (children != null)
for (int i=0; i<children.length; i++)
children(i].print();

Figure 1. Java Class Person

the category is created in the database. We now create a proxy class which will serve as
an intermediary between Java objects and database objects. We add a new member field
to the Java class to allow it to be associated with the proxy class. The Java class is further
modified to become a subclass of the database root class, unless it is already a subclass of
a class other than Object. In this case, its superclass will be modified to become of the
database root class. The code of all member functions of the Java class is inspected to
check for member field access: where it occurs checks are inserted to ensure related objects
are fetched from the database as needed. Of course, if the Java class is already prepared in
this way, then makePersist () will not repeat this setup task.

The second parameter to the makePersist () member function is used as root label for
the object.

5.2. To retrieve an object

In order to retrieve an object from the database, we provide the member function fetch()
in class DBAccess. This code example illustrates the use:

p = (Person) db.fetch("first");

It allows to find an arbitrary object in database that had been named previously via
the makePersist () member function. It gets the database object, inspects its category,
searches for the equivalent Java class. If the class is not found, then an exception is raised.
It prepares an instance of that class by setting its member fields and converting databas.e
object identifiers into Java references. Like before, a proxy class is generated and associ-

318

import java.util.x;

public class DBwrite {
public static void main(String(] args) {
DBAccess db = new DBAccess("demo");
Transaction tx = new Transaction(db);
tx.begin();

Person p = new Person();
db.makePersist(p, "first");

p.name = "John Doe";

p.age = 31;

Person ¢ = new Person();)
c.name = "little guy";

c.age = 1;

p.add(c);

tx.commit ();
db.close();

Figure 2. Writing Java Objects

ated with the Java class of the retrieved instance. The Java class is also made persistence
capable as above.

5.3. To navigate from object to object

Since object creation and retrieval inserted presence checks whenever member functions
access member fields, objects can be fetched from the database as needed. Whenever an
object is further retrieved it may be possible that it is an instance of a class that has not
been encountered yet. We then create the necessary proxy class and modify its Java class
as discussed above.

5.4. To update persistent objects

Before a transaction is committed we need to ensure that all persistent objects are stable,
i.e. that all its dependents have been recognized and their classes been made persistence
capable. The member function stabilize() serves this purpose. It is called whenever the
programmer commits a transaction.

Figure 2 illustrates a Java program that writes objects into the database. Two Person
objects are created, “little guy” as a child of “John Doe”. Only “John Doe” is explicitly
made persistent, “little guy” becomes persistent implicitly when he is added as a child.
Once the transaction is committed, both objects arc stored in the database.

Figure 3 illustrates a Java program that reads objects from the database, makes some
changes, and then commits the transaction: “John Doe”, the person object labeled “first” is
explicitly fetched from the database; his child person object is implicitly directly accessible.

319

import java.util.x;

class DBread {
public static void main(String args[]) {
DBAccess db = new DBAccess("demo");
Transaction tx = new Transaction(db);
tx.begin(); g

Person p = (Person) db.fetch("first");
p.print();

Person ¢ = new Person();

c.age = 0;

c.name = "baby";

p.-add(c);

tx.commit () ;

db.close();

Figure 3. Updating Java Objects

A new person object “baby” is created and added to “John Doe’s” children array. All 3
objects are updated to the database upon the transaction commit.

In summary, the Java programmer will encounter limited intrusion when writing persis-
tent programs. Figure 4 shows the UML class diagram for class DBAccess.

6. Implementation

The architecture of our prototype implementation [Ege et al., 1998a]. has the following
components:

1. a Java front-end as described in Sections 4 and 5 of this paper;
2. asubstrate, or facilitator, that enables our reflection-based persistence approach;

3. a communications protocol called Icecube, which enables objects to travel in a network
of distributed clients and servers;

4. data base servers: either directly implemented database core engines, or proxy servers
that interact with other database systems.

Components 2 and 3 are provided in form of a Java package. The package contains
the classes DBAccess as well as the meta classes for the semantic object-oriented database
system.

Another important element of the architecture is the Icecube communications link: Ice-
cube enables a set of command that allow a Java application program to access the services
of the server database system. Java persistent object access is translated into Icecube com-
mands. The commands travel on the socket link to the database server. The database
server receives the command through its engine interface (EI). This EI is implemented as

i 320 a21
f

| [Ege et al.,, 1998b] Ege, R. K., Liu, J., and Lebedev, V. (1998b). Using Java to add “Stored
‘} Procedures” to Databases. FIU-HPDRC Technical Report.

{ DBAccess i))

| [Gem, 1998] Gem (1998). GemStone/J Programming Guide. GemStone Systems, Inc.,
il name: String www.gemstone.com.

r« rootObjects:Hashtable [Hamilton and Catell, 1996] Hamilton, G. and Catell, R. (1996). JDBC: A Java SQL API.
i DBaccess: Sun Microsystems, Inc., http://java.sun.com.

| Y makePersist:void [th,'1998] PSE (1998). ()bj?ctStore PSE and PSE Pro for Java User Guide. Object
] I] Design, Inc., http://www.odi.comn/.

| +fetch:0bject ! o oy)

‘ o) [Rishe, 1992] Rishe, N. (1992). Database Design: The Semantic Modeling Approach. Mc-
I (| tstabilize:void Graw Hill.

i ,: +close:wvoid [Stemple et al., 1993] Stemple, D., Morrison, R., Kirby, G., and Connor, R. (1993). Inte-
| B . grating reflection, strong typing and static checking. In Proceedings of the 16th Australian
u Figure 4. Database Access Class Computer Science Conference, pages 83-92, Brisbane, Australia.

i(Xhumari et al., 1997] Xhumari, F., dos Santos, C. S., a] iszewski 7

[a set of switch statements that make the function calls associated with the method invoca- [tniversil Binding:] E Uq. R al.‘ e B Wndékub“{e“gkh o SO e
] - set ! ¢ ' ¢ ; . : i ding: Storing java objects in relational and object-oriented database. In Pro-
i tion information (Action Code) of an incoming message. The database engine delivers its ceedings of The Second International Workshop on Persistence and Jav (tm) (PJW2
i results through its EI. The EI packages the results into a message and sends it out through HMI"mbonﬁew CA 300D 0Ty LET ce and Java(tm) (),

the socket.

Our architecture allows for multiple servers to connect to an Java API via our IceCube
communications link. 2 servers are envisioned: both are based on the semantic binary
database model [Rishe, 1992]: the first is implemented using Java; the second is represented
with its C4++ API, which maps itself into 2 available servers, one written again in C++,
the other simulated on top of a relational database server.

7. Conclusion

In this paper we presented a flexible application programmer interface that allows Java
objects to be stored in an object-oriented database system. Our approach uses a reflection
mechanism, that inspects and changes a running Java program. Our approach requires
limited intrusion into a normal Java program. Especially, it is not necessary to pre-process
Java code or post-process Java byte codes. A standard Java compiler can be used. The
code is able to run on any standard Java virtual machine.

Our future plans call for an investigation of using the reflection approach for other aspects
of object-oriented database systems, such as schema evolution, query optimization, and load

balancing.

i

\

I : References
i

i [Atkinson et al., 1996] Atkinson, M., Daynes, L., Jordan, M., Printezis, T., and Spence, S.
(1996). An orthogonally persistent java. ACM SIGMOD Record, 25(4):68-75.

[Catell et al., 1997] Catell, R., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamerman,

i S., Jordan, D., Springer, A., Strickland, H., and Wade, D., editors (1997). The Object
Database Standard: ODMG 2.0. Morgan Kaufmann.

[Ege et al.,, 1998a] Ege, R. K., Battikhi, Y., Pardo, P., Uppal, J., and Rishe, N. (1998a).
A modular java api for object-oriented databases. Proceedings of IEEE COMPSAC 98.

i
i
il

