
n
r tow

@IEEE TRANSACTToNS oN

KI{OWIEDGE AI{I)
DATA EI{GII{EERIIIG

A publication of the IEEE Computer Society

q ! fls
qq'trL

MARCH / APRIL 1999 VOLUME 1-I NUMBER 2 ITKEEH (rssN 1041-4347)

REGULAR PAPERS
Dynamic Programming in Datalog with Aggregates

Techniques for Increasing the Stream Capacity of A High-Performance Multimedia Senter

Resource Scheduling In A High-Performance Multimedia Sert er

Join Index Hierarchy: An Indexing Structurefor Efficient Navigation in Object-Orientecl Databases

A Hybrid Estimatorfor Selectivity Estimation
Y. Ling, W. Sun, N.D. Rishe, and X. Xiang

265

284

303

321

338

CORRESPONDBNCE
Proof of the Correctness of EMYCIN Sequential Propagation (Jnder Conditional Independence Assumptions

355

1998 TKDE Reviewers List 360

Dr. Naphtali Rishe
Florida International University
School of Computer Science
Southwest 8th St. and 107th Avenue
University Park
Miami, FL 33199

CoupurER
SOCIETY

http://computer.org . tkde@computer.org

f, u.

Proceedings

Technology of Object-Oriented
Languages and Systems

TOOLS 30

August 1-5, 1999

Santa Barbara, California

EditcJ by

Donald Firesmith, Richard Riehle, Gilda Pour, and
Bertrand Meyer

Sponsored by

Interactive Software Engineering, Inc.

,rrr@
Colrpurnn

SOCIETY

Los Alamitos, California
WashingtonoBrusselsoTokyo

Storing Java Objects in any Database

Rainiund Ii. Ege
High performance Database Research Center *

School of Computer Science, Florida International Universitv
University Park, Miarni, FL 33199

ege@cs.flu.edu

Abstract

T'gptcal Jaua applications inuorue access to a d,atabase systern.. Da.tahase sastems storedata according to their type sEsten, euen object_orzented databases generalli hate their
own storage structures. It is the-re,Jore necessary to conuert Jaua objects as ilti.y are stored,in a database, and' to re-conuert them when they are read. k)eariy, this sho"utd be. dane
beh,ind the scertes by a support pachage. Ou, po,p", prnents an o,pproach th,at atftonates
tlre conuersion ,:rocess uithout'inuorutng 7rr"-'oi poit-processing of Jaua cod.e: ue use a
reJlectton rnechanisrt, uthere Jauo, cod,e zs inspectei o,t rtm-tirne and changed. ro incrutre the
conuert artd re-conuert effort The result is a flettblr and transpare,nt Jauci database ar:cess.

1 lntroduction

Accessing a daiabase system from the Java programrni'g language is a col'morr occur-rence For typical database systens, i,e. those bised on reratic,naitechnology, thcre are
several packages available that enable Java to store and retrieve clata. For ou]".t-..iurt"a
database systems it is desirable to arow Java to store and retrieve its objects directly, i.e. in
a seanless manner. Severar aJ:proaches to the integration of a Java prug.arn,, object moderwith an object-oriented database have been proporecl and r.iemolstratecl. Sorle advocate astrong ard strict i'teg.ation, some allow roose coupring, Either approacli has advantages
and disadvantages.

In this paper rve wilr describe a' r\pl based o' a novel approacrr that ailows Java objectsto be naintained by an object-orie'ted cratabase system. our approach emproys a reflection
mechanism that allows for an application program to explore ibself ancl the jatabase scrrema:it is neither strict nor cxcessively roose. we use .eflection, i.e. self inspection and change
of a running progran]. to map Java classes to database classes ancl to enable persistence.
Reflection allorvs a program to inspect itself and to affect its orv' execution. In an object-
oriented prograrn that means that ai run-time the class of an object is accessibre, in our
case, the classes of ihe Java appricatio' program as rveil as the classes of the database ApI.

And unlike other approaches that add persistence capabirities to Java our approach does
rrot change the .Iava lalguage nor does it require changes to the Java Virtual rnachine. .Ihe
result is a very flexible and efficient style of Java data=base access,

This research ws suppolted.itr^p"f^!y
ry49A (un.ter grants NACW-4080, NAc5_b095, NAS5-97222,

lqryAG! 98!gl Nsr'1coa-ozrrsq?, rRr-gaosoor, HRD-fzoioio, u"a aNr-e87640e), ARO (DAAH04-e6-r-00'1e and DAAH04-96-r-n27Rr, AFRL rF30602-es.c-oorzi. sMno ,r.lsc2d.9a_i bliii
""ibi"eirl,l_ot,rorDol (CA-5280-4-90-14), and Srare of FlorLda.

312
0_7695-0278"4/99 $10.00 o 1999 rEEE

3l

This paper is organizecl as follows: seciion 2 explores the issue of adding persistence

to Java objects; Section 3 discnsses other efforts tlrat are related to our approachl Section

4 illusirates our reflection-based approach of adding persistence to Java objects and Java

classes; section 5 elaborates and gives exarnples of cornnon classes, and gives an example of

aprogram; Scction 6 briefly outlines the irnplenrentation approach ancl reports on the staius

of our prototype [Ege et al., 1998a] w]rich is based on SernODI3, a sernaDtic object-oriented

dalabase systenr fRishe, 1992], Finally, ihe paper concludes with our future plans'

2. Java Persistence

Both object-orierrted prograrnrning Ianguages and object-orienied database systerns havt

been in rrse for some time. And from the early days there was tire desire to conlbine botl
in a true object-oriented fashion, The prograrnming language uses objects in its model o

computation; the clatabase stores objecis: therefore, an application plogranrnel interftrcr

(API) necessarily should be constructed around objects. Objects occtrr in two places; (1

the objects siorecl alcl retrieved frorn and to the database, and (2) service objects, tha

enable the typical database managenent capabiliiies, such as transactions etc.

It is classes thai describe ob.jects: the scltema of the database is just a set of classes

an OO program is also just a set of classes. Several approaches to their intcgration hav,

ernerged: from a k;ose integration, exenrplifiecl by thc Gernstole ooDB for srnalltalk, ir

the oDMGlcatell et al., 1997] c++ binding, rvhich represents an integration contprotnise

to tight integratiorr that is proposed for storiug .lava objects ln a iight integration, Javr

progranr objects can be rnade persistent, which causes thern to be iurplicitly stored ant

Inanagr'(l LY arr 0O tlalalraso.
The issues involved in allowing Java objects to be pcrsistent are (1) the selection/markin

of classes ihat have persistent irtstancesl (2) the creation of persistent objects; (3) th
retrieval of objects fronr the database; ('1) navigaiion fronr objeci to object; (5) updatilr

objects; and also (6) some basic database ltousekeeping capabilities.

2,1. Persistence-Capable Classes

In order for an object to beconre persisteni, its class needs to be enabled A Java cla:

has io be made persistence-capable, i.e. tve allow tliat sorne of its instances resicle in tb
object-oriented clatabase. There are 2 ways io achieve it: erplicitly, that is to require tha

the programrner rnark persistence-c:rpable classes; or via sonte impllcit autornatic or derive

fashion.

Explicit marking can be done in several waysr e.g. by dcfining a class as a subclass t

a database superclass. Any class in Java is already a subclass of Java class Object: tl:

same concept applies now to such a database root superciass. We can norv say that ar

persistent object handled by our Java API is an irtstance of that class. This class handlr

the basic correlation betrveen the physical clatabase object and its local .Java conllter par

Arrother approach is more irnplicit: ang object can bc nlade persistent, in effect, a

Java classes are therefore persistence-capable. The advantage of tliis approach is that eve

Java systenr classes, AWT classes, utility classes, et,c can have persisteut instances Th

corrcept is called orthogonal persistence. The programttrer, of cortrse, need not be aware '

this.

314

The seconcl issue of persisbence in ,lava is how to make iudividual objects persisteni.
'flte desire is to stay miuirnaily intrusive. The first option is to acld a variation of a nec
operation to Java (e.g. pnew); or, to provide a ruechanisrn to te)l the daiabase about those
objer:ts that are to be persistent; or, as a variation of that, euable a ODMG C++-style
set_object-nmeO operation tliat declares root objects.

The third issue is how to retrieve objects from the database: 3 sub-options againr (1)

allow some gerreral query capability sirrilar to a single SQL project, e.g. "select instance
of class whose aitribute has value"; (2) extend the Java progranrming laugrrage with a new
looping construct that allows to scau instances of a class; or (3) retrieve specific objects
that have been giveu a root name in ODMG C++ style: lookup_object(r,root nme',).
As,Java obiects are rriovecl into thc database, nembcr fields that coutain referelces to other
Java objects oeed to be colrverted. A Java refereuce is only valicl during a single ruu of
a plogr&n, Therefore, they need to be converted into more gerleral object identifiers that
are valid, i.e. unique, in the context of the entire database. As objects-are retrieved from
the database these object identifiers will have to be reconverted into valid Java references.
Oncc a persisteut object has been retrieved frour the clalabase, other ob.jects are reached
by lollowirrg its relationships, i.e. via object identifiers. Objects are automaiically fetched
as nr:edetl lronr ihe database. This concept is ca)lecl persislence by reachabilitg.

Updaling ob.jects is totally transparent to the prograrnmer. The prograrnrler invokes
melnber ftrnctions and goes about the prograrnmilg business as usual. Member functiols
can updnte menrber fields of persistent objccts: that in efiect is an update of a database
object. The prograltmer does not have to irserl any code to explicitly affect the itpdate to
tl)e database. Of coruse, the final success of an update is depenclent on tlie final success of
the trarrsactio!.

2.2. Irnplementation Issues

'I'he above mertionccl issues preseDt va.rious degrees of cornplexity: how to resolve horv to
make a Jaya class subclass of the database root classi horv to enable objects to be named;
how to retrieve objccts by uame; horv to enablc traversal of persisteDt objects; and fiually
horv lo errable object update.

ODMG suggests 3 poterrtial ways to a(ldress these "how-to" issrres iu Javar via a prepro-
ccssor to Java contpilatiou; via a postprocessor of Java byte codes; or via a change to the
Java Virlual machine.

In the preprocessor version, one would parse Java code to add the necessary snippets to
enable persistence capability, e.g. make a class a subclass of a database root class. This
approach woulcl also allow to insert the necessary checks and additioual code to enable bhe

fetch, traversal and update of persistent objects.
In the postprocessor versiorr, oue would read ancl nroclify Java byte codes for the classes

that are to be effecled. Since Java byte codes are well defined and documented - tools exist
to process them - this version has the same capabilities as the first version, but might even
be easier to implernent-

To change the Java virtual rnachine is tot a complete solution: it needs to be made
aware of objects that are persistent. One could acld uew byte codes: this approach is used
in thc PJama approach. However, in our opinion this ruls against the spirit of Java; such
a modified Java program will not run euergwhere.

Iu surnrnary, approaches one and two are doable, however, as a consequence thcy alter

315

the Java cornpilatiol approach: a programmer needs to use a speciai version of the Java
compiler.

Our approach aiternpts to stay away fron changing the conrpilation approach and frour
changing the Java virtual machine. hstead rve use Java's re{lection capabilities, w}rcre we

€lenerate the necessary challges io the Java program auiomatically as it runs. The result is
limited intrusion iuto the progranlrner's model aud into the compilatiou rnodel.

3. Related Work

Many diflerent approaches have been suggested to enable database access from a Java
prograrn. Prorniucnt, for exarnple, is tlie Java Database Conrreciivity package (JDBC)
fHanri)ton ancl Catell, 1996]. Ofcourse, itallowsJavatoaccessrelationaldatabasesystenrr.
JDBC access can be bridged into ODBC access) or as is beconring very cornrton direct
drivers are provided by the database managenlent systenr. Several extensions to this JDBC
approach have been su6igested: oue is JRB (Java Relational Binding) which allows to
nlanage database eDtities (transactions, queries, etc.) and to store arrd retrieve Java objects.
JRB has been used as further basis for a Java Universal Binding (JUB) which hides the
relational aspects of the unclerlying database system lXhunari et, al., 1997].

Several cornnrercial venrlors of ODBMS have provided ,Iava bindings that lollow tlLe

ODMG recomnrericlation: ObjectStorelPSE, 1998] ard GernStorre/JfGem, 1998] are 2 ex-
amples.

The rnost irtegraled approach is PJama{Atkirson et al.. 1996]: here Java truly becomes
persisteni rvith rrrininral intrusion into the progranrrnirrg model, however, at the expeuse of
requiring a Ilon-standard Java cornpiler and sigrrificant chauges to tLe,lava Virbual IVlachine.

4. Reflection

Our approach to enable Java prograrns to store their objocts in an object-oriented
clatabasc is based on reflection. The lern refiection nleans that a computer prograrn is
able to observe and/or change itself while it is ruuning. A prograrnuring larrgtrage becornes
refiectiueif it enables its prograrls with reflection, i.e. it cnables that t]ie program code is
changed by the program at rurl tinre lSiemple et al., 1993].

An object-oriented prograrn is described via a set of classes. OO prograrnnring larguages
such as Smallt,alk aud Java represent these classes as objects ancl tnake theur available ai
run-time. Srnalltalk has a rich set of meta-classes iirat enable reflective programming. Java,
ontheotherhand,doesnotclirectlysupportfullreflection: itsjava.lug.reflectpackage
allows a program to inspect the class of objects, its mernber fielcls and funcbions, etc., brLt it
does not allow that they are changed. Irr order to adiieve full reflectior, access to the Java
byte code is uecessary. Once a Java class is available in byte code, ii can be changed arrcl
the class reloaded using the siandard Java blass loader. Recreation of Java byte codcs and
dynanic loacling can be done at ruu-time. While not elegant, this avenue in efleci enablcs
full rurrtime reflection for the Java programuring language,

In the database context it is quite comnto:t to represent arrd store the schelra with
the rcst of the data in the database alcl also to rnake it available to applicatjon pro-

** p***l]., ii
"l

base that allow ODBC-style rccess, and of course, the common
commercial OODBMSs have such interfaces.

316

Srams2 Our prototypo implementation trses SeurODB (sernantic object-oriented database
systenr)fRishe, 19921. Its netaschema contains classes for the database, transactions, file
storage, as well as classes "category" and "Relation" that govern what is stored in the
database. "category" has instances for the classes whose objects populate the databas€.
"Itelaiion" captures the superclass/subclass relationships among classes and class associa-
tions. In the sernantic object-oriented database approach, attributes are also captured as
associations to basic primitive database types.

The Java meta schema on the other hantl is quite simple: it contains classes c1ass, FieId
a.cl Method. we also need to use the class classloader since thai enables the dynamic
reluad of classps ai run tinre.

Irr atldition to the meta classes, the Java program will contain application specific classes,
and the database schema will contain content specific classes.

our API
'ow allows the 2 sets of classes to be reconciled a.tomaiically, As the pro-

granmers declares objects to become persisient, we inspect - via reflection, the details
of the class, ihen check whether a corresponding class exists in the database, and then -
again via rurtime refiectio'- create a proxy class that serves as a bridge to enable Java
objects to rnove into the database, and for database objects to move into the Java execu-
tio. world. In this fashio., all Java classes rnentioned in a program are rnade persistence
capable, including the Java support classes from the siandard JDI{ packages.

Sorne special cases need to be considered: (1) Java primitivc types, e.g. int, char
et'c. are mapped directly into equivalent database prirnitive atornic types: (2) a Java class
Irighi not have a correspondi'g category in the d.dtabase: we then create the category
autorrratically based on the data rnembers declared for the Java class.

In addition, we enable a caching ntechanisnr, rvhere the proxy classes are also siorecl with
their byt'e codes in the database, which significanily improves the performance of those Java
prograrns which use comrnon classes. [Ege et al., Igggb]

5. Database Programming with Reflection

For further illustratio. lets co'sider a sanrple Java class (see Figure 1) which is defined
withoui a.y database access in mind. This class is then .sed in Java programs that access
the database:

5.1. To make an object persist

In order for a Java program to make arbitrary object persistent it will have to make that
inte'tiorr known. our reflection package provides a helper class DBAccess which tiefines
the member function mal<ePersi.sto. This code exarrrple ilrustrates the use:

DBACcess db = new DBAccess(',demo");
Personp=newPersonO;
db.makePersist(p, "first,') ;

The member fu'ction inspects the class of its parameier in the Java program and in the
databasc lf a corresporrding database category is not founrl, a nerv category is created in
the database based on the member fields of the Java class. In any case, a

'ew
instance of

@onrvouldenablcdynamicschemaevolutiol'

import java,io.*;

class Person {
String nile;

Person [] children;
void add(Person c) t

Person [] list;
if (children l= nu11) {

list = new Person lchildren.Iength + 1];
for (int i=0; i.<children.length; i.++)

listIi] = children[i];
) else

list = new Person[1];
fist [1ist.]ength-11 = c '

children = list;
)
void printO {

System.out.println(nile +'r(t' + age + rr):'r);
if (children != nult)

for (1nt i=0; i<children.length; i++)
children Ii] . Print O ;

)
)

Figure 1. Java Class Person

the category is created in the database. We now create a proxy class which will serve as

an intermediary betwecn Java objects and database objecis. We adtl a new merlrber field
to the Java class to allow it to be associated with the proxy r;lass. The Java class is further
niodifled to become a subclass of the database root class, urrless it is already a subclass of
a class other than Object. In this case, its superclass wiil be modified to become of the
database root class. 'I'he code of all mernber functions of the Java class is inspected to
check for member field access: where it occurs checks are inserted to ensrlre related objects
are fetched from the database as needed, Of course, if the Java class is alreacly prepared in
this way, then makePersj,st O wili not repeat this setup task.

The second pararneter to the nakePersistO nrember function is used as ro<it label for

the object.

5,2. To retrieve an object

In order to retrieve an object from the daiabase, we provide the Inernber fulrction fetcho
in class DBAccess. 'I'his code exarrrple illusirates ihe use;

p = (Person) db. fetch("first") ;

It allows to find an arbitrary object in database thai had been named previously via
the makePersistO melrber function. Ii gets the database object, inspects its category,

searches for the equivaleni Java class. If the class is not found, then an exception is raised.

It prepares an instarrce of that class by sei,ting its member fields and converting database

object identifiers into Java references. Like before, a proxy class is generated and associ-

318 319

import java.util.*;

public class DBwxite {
public static void main(String[] args) {

DBAccess db = new DBACcess("demo");
Transaction tx = nec Transacti.on(db);
tx.beginO;

Person p = new PersonO;
db.makePersist(p,' f irst') ;

p.nme = I'John Doe";
P. d6e - Ja,

Personc=newPersonO;
c.nme . ,'little guy";
c. age = 1;
p. add(c) ;

tx. comi.t O ;

db.closeO;
)

)
Figure 2. Writing Java Objects

ated wiih the ,lava class of the retrieved instance. The Java class is also ntade persistence
capable as above,

5.3. To navigate from object to object

Since object creation and retrieval irrserted presence checks whenever member functions
acccss nernber fields, objects can be fetched from the database as needed. Whenever an

object is further retrieved ii rnay be possible that it is an instance of a class ihai has not
been encountered yet. We then create the necessary proxy class and rnodify its Java class

as discussed above.

5.4. To update persistent objects

Before a transaction is comnitted we need to ensure that all persisieni objects are stable,
i.e. thai all its clependents have been recognized and their classes been made persistence
capable. The rnember function stabj.lizeO serves this purpose, It is called whenever the
programmer commits a trarrsaction.

Figure 2 illusirates a ,lava tr)rogram that writes objects into the database. Two Person
objects are created, "little guy" as a child of "John Doe". Only "John Doe" is explicitly
made persistent, "little guy" becomes persistent implicitly when he is addecl as a child,
Once the transaction is committed, both objects are stored in the database.

Figure 3 illustrates a Java program that reads objects from the daiabase, makes some

changes, and then commits the transaction: "John Doe", the person object labeled "first" is

explicitly fetched fron the database; his child person object is irnplicitly directly accessible.

inport java.util.+;

class DBread {
public static void main(String argsll) {

DBAccess db = new DBAccess(r'denor');
Trmsaction tx = neil Transaction(db);
tx.beginO;

Person p = (Person) db.fetch("first");

p. print O ;

Person c = new PersonO;
----=d.

c.name = "baby";
P, duq\L,

'

tx. comit O ;

db. close O ;

)
i

Figure 3. Updating Java Objects

A new person object "baby" is created and added to "Jolur Doe's" chilclren array. All 3

objects are updated to thc daiabase upon the transaction courrnit.
In sumurary, t,he Java progralrllner will encounter lirniied intrusion when writing persis-

tent prograurs. Figure 4 shows the UML class diagram for class DBAccess,

6. Implementation

The architeciure of our prototype implenientation [Ege et al., 1998a]. has the following
corrponentsl

1. a Java front-end as described in Sections 4 and 5 of this paper;

2. a substrate, or faciliiator, that enables our reflection-based persistence approach;

3. a communications protocol called Icecube, which enables objects to travel irr a network
of disiributed clients and servers;

4. data base servers; either directly inplemented database core errgines, or proxv servers
that interact wiih other database systerns.

Cornponents 2 and 3 are providecl in form of a Java package. The package contains
the classes DBAccess as yr'ell as the meta classes for the semantic obieci-oriented database
system.

Another important element of the architecture is the Icecube cornmunications link: Ice-
cube enables a set of commarld that allow a Java application program to access the services
of the server database system. Java persistent object access is iranslated into Icecube com-
mands. The commands travel on the socket link to the clatabase server. The daiabase
server receives the command through its engiue interface (EI). This EI is implemented as

321

fEge et al., 1998b1 Ege, R. K., Liu, J., ancl Lebedev, V. (1998b). IJsing Jaua to arld, ,Stored
Procedures" to Datal:ases. FIU-HPDRC Techrical Report.

fGenr, 1998] Gem (1998). Gemstone/J Programming Gzide. GernStone Systems, Inc.,
www.gPnlil,ullc.cOnt,

fHamiltou and Catell, 1996] IJamilton, C. and Catell, R. (1996). JDBC: A Jaua SQL Apt.
Sun Mioosystems, Inc., http://java.sun.corn.

[PSE, i998] PSE (1998). Objectstore PSE and PSE Pro for Jaua (Jser Guide. Objeci
Design, Inc., http://www.odi.corn/.

fRishe, 1992] Rishe, N. (1992). Database Design: The Semanti.c Madelino A1tproach. Mc-
Graw Hiil.

[Stemple et al., 1993] Steurple, D., Morrison, R.., Kirby, C., and Connor, R. (1993). Inte-
grating reflection, strong typing ancl static checkirg. hr proceetl.itLgs ol the 16th Australian
Computer Science Conferencc, pages 83 92, Brisbane, Australia.

fXhumari et al., 1997] Xhumari, Ir., dos Santos, C. S., ancl Skubiszewski, M. (i99?). Java
universal binding: storingjava objects ir relational and object-oriented database. ln pro-
ceerlings of The Second. International Workshop an persistence and Jaaa(tn) (pJW2),
Halfrnoon Bay, CA.

a set of switch statements that rnake the frrnction calls associated with the method invoca-
tiou information (Act,iorr Code) of an irrcouring message. The clatabase engine clelivers its
results tlrrough its EI. The EI packages the results into a nlessage and sends it out through
tlrc socket.

Our architecture allows for rnultiple servers to conlrect to arr Java API via our lceCrrbe
cornurunications link. 2 servers are enyisioned: both are based on tLe semantic binary
database urodel fllishe, 1992]: the first is irnplemented using Java; the second is represented
with ils C++ API, which nraps itself into 2 available servers, one written again ir C++,
tire other siurulated on top of a relatioual database server.

7. Conclusion

ln this paper we presented a flexible application progralnrner interlace that allows Java
objects io be stored in an objcct-oriented database system, Our approach uses a reflectioD
mechanisur, that inspects ancl changes a rLurning Java prograrn. Our approach requires
limited intmsion into a nornral Java prograrn. Especially, it is not necessary to pre-process
,Java code or post-process Java byte codes. A standard Java compiler car be rrsed. Tire
code is able to run orr any siandard Java virtual machine.

Our future plans call for an ilvestigation of using the reflection approach for other aspccts
ol object-oriented database systerns, such as scliema evolution, query optimization, antl load
balancing.

Refelences

lAtkinson et ai., 1990] Atkinson, M., Daynes, L., Jordan, M., Printezis, T., and Spence, S.

(1996). An ortlrogonally persistentjava. ACXI SICMOD llecord'25(4):68-75,

ICatell et al., 1997] Catell, R., Barry, D., Bartels, D., Berler, M., Eastnan, J., Gaurerrrral,
S., Jordan, D., Springer, A., Strickland, H., and Wade, D,, editors (1997). The Object
Database Stand.ard: ODMG 2.0. Morgan Kaufmann.

lEge et al., 1998a] Ege, R. K., Battikhi, Y., Pardo, P., Uppal, J., and Rishe, N. (1998a),
A rnodular java api for object-oriented daiabases. Proceetltngs o! IEEE COMPSAC 98.

naIlte: String
rpotob j ects : HashEalIe

+DBACcess:

+nakelersietl voi-d
+fetch: Obj Ect
+scslili ze : void
+cIose: void

Figure 4. Database Access Class

