Proceedings

Technology of Object-Oriented
Languages and Systems

TOOLS 30

August 1-5, 1999

Santa Barbara, California

Edited by

Donald Firesmith, Richard Riehle, Gilda Pour, and
Bertrand Meyer

Sponsored by

Interactive Software Engineering, Inc.

IEEE@

COMPUTER
SOCIETY

&

Los Alamitos, California

Brussels . Tokyo

Washington °

Using Java to add “Stored Procedures” to Databases

Raimund K. Ege, Naphtali Rishe, Jingyu Liu, Vladimir Lebedev
High Performance Database Research Center *
School of Computer Science, Florida International University
University Park, Miami, 'L 33199
@cs.fiu.edu

Abstract

The paper describes our approach to adding "stored procedure” capability to a semantic
database system using Java byte-codes and Java’s ability to dynamically load and execute
Java code. Several steps were necessary: first we added a Java application programmer
interface to the database system; then we created a database schema to hold Java executable
code; then we constructed a Java class loader to allow code to be loaded from the database;
then we enabled the creation of Java objects and executed the Java code for them. Our
approach is not specific to our semantic database system, rather it can serve as a recipe for
adding Vstored procedures” to any database system.

1. Introduction

While database systems are meant to store data, increasingly demands arise to allow
data manipulation within the database context. The database system typically enables
such manipulation by storing procedures [Urman, 1996, Ranking, 1997], i.e. fragments of
code, that can execute with data from the database.

Object-oriented database systems [Kim and Lochovsky, 1989, Atkinson et a‘lA, 1989] - by
their very definition - already deal with procedurality. While an object stored in a database
represents data, it is also an instance of a class, which may define applicable 1.11ethod&
These methods — if made available to the database system - can be executed with data,
i.e. the objects, from the database, giving the database management system procedural
capabilities.

In this paper we describe our approach to add “stored procedures’
database system. Our specific database system uses the semantic modeling approach
[Rishe, 199:2] which extends the relational database model with user doﬁname typgs, ex-
plicit relations, and inheritance. The semantic database model is close to an object-oriented
model, however, it lacks the capability to capture methods.

In order to add procedure capability we considered 2 approaches: (1) to define our
own programming language, or (2) use an existing one. Obviously, for choice (1).we
would have to specify our own language, provide grammar, parser, compiler, run-time

"

capability to a

i 0 5 - G5-5095, NAS5-97222

This research was supported in part by NASA (under grants NAGW-4080, NAG b i

and N:—\GS-GS%). NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409), ARO (DAAH04-96-

1-0049 and DAAH04-96-1-0278), AFRL (F30602-98-C-0037), BMDO (F49620-98-1-0130 and DAAH04-0024)
Dol (CA-5280-4-9044), and State of Florida.

322 0-7695-0278-4/99 $10.00 © 1999 IEEE

323

environment in order to make it viable. The existence of the Java programming language
[Gosling et al., 1996, Jaworksi, 1996] made our choice (2) easy since several of its features
greatly simplify our endeavor:

L. Java code is compiled and stored on a per-class basis. One Java class yields one Java
compiled-code file (byte-code file).

2. Java code can be loaded dynamically. It does not have to be linked, neither statically
nor dynamically at compile time.

3. Java supports reflective programming, i.e. a running Java program can modify itself
while running. For example, a Java program can load a class, inquire about its meth-
ods, create instances of the new class, and invoke those methods for these instances,
all in the same program.

4. Java is platform independent, so operating system dependencies are not present.

w

. Java can easily interact with the G4+ programming language, which is very important
since our database management system is written entirely in C+4 and has a C++
interface.

In the following sections we will first outline the basic elements of the semantic data
model used in this database system: we will illustrate its C-+ application programmer
interface (AP1). Then we discuss the implementation of our Java to C++ bridge, which
gives us a Java API to the database system. Next we illustrate a database schema to store
Java code and give an example of how to store and retricve it. And finally we show how to
execute Java stored procedures with database data.

The paper concludes with some performance results and our vision of how to further
enhance the database system.

2. The Semantic Binary Database System

The target of our research effort, the semantic binary database system [Rishe, 1992],
models data in a semantic fashion, but employs a highly efficient binary storage model
[Rishe, 1996).

The semantic model allows the definition of categories, relations and database types.
Database types exist for the most commonly found types such as numbers (arbitrary varying
precision and magnitude), strings, large binary objects etc.. A category is a specification
of a class of abstract objects in a database. Each category may have relations with other
categories or database types. A relation from a category to a database type is called an
attribute. A relation from a category to a category is called an abstract relation. Categories
can have sub-categories, which models inheritance.

The storage model consists solely of binary facts, each of which describe an aspect of
an abstract object in the database, as well as inverses of these facts constructed in a way
guaranteeing optimality of the so-called "basic queries”. Examples of such binary facts are:

e an abstract object is an instance of a certain category;
e an abstract object has an attribute with a certain value;

e an abstract object has an abstract relation to a certain category;

More details on this storage model can be found in [Rishe, 1996].

324

#include <iostream.h>

#include <sdb3.h>

main() {
TDataBase* DB = (OpenDataBase('"Demo");
DB->Transaction_Begin() ;
// create class with attributes
Category *cat = NewCategory(DB, "Person');
NewRelation(DB, "name", "Person', ”String“);
NewRelation(DB, "birthYear","Person", "integer");
// make instances
Var pl = DB->NewAbstract("Person");
pl.Assign("Person::name","John Doe");
pl.Assign("Person::birthYear",1958);
Var p2 = DB->NewAbstract("Person");
p2.Assign("Person::name","Sue Miller");
p2.Assign("Person::birthYear",1965);
// simple query
SetQuery list = cat->GetObjects();
Var person;
while (list.GetVarInc(person)) {

cout << pChar(person.Query("Person::name").GetVar()) << ", ";
cout << pChar(person.Query("Person::birthYear").GetVar()) << endl;

DB->Transaction_End();
CloseDataBase(DB);

Figure 1. C++ APl Example

The primary application prograimmning interface (API) to this database system is for the
C+-+ programming language[SDB, 1995]. Figure 1 shows a simple C++ example: after
opening a “Demo” database and starting a new transaction, we create a category Person,
with attributes “name” of type String, “birthYear” of type integer. Then we create 2
instances of category Person and relate them to attribute values. A simple query retrieves
the 2 instances from the database and prints their attribute values. The program ends with
committing the transaction and closing the database.

The current C++ interface has no capability to define and attach methods to a category.
In this example, a method to calculate the age of a person based on the birth year would be
useful. In the following sections we will show how Java can be used to make this happen.

3. A Java to C++ bridge

The first step necessary was to create a Java application programmer interface to the
semantic binary database. Our approach provides that by mimicking the C++ API with
Java using the Java Native Interface [JNI, 1997] capability. We implemented a Java package
that contains the same classes and functions as can be found in the C++ APIL The Java
classes define “native methods” which are implemented in C++ and call the respective
C++ API functions.

For example, the C44 API has a function to create a new category: NewCategory().
The Java API defines a class Proc with static methods, one of them is newCategory().

325

Figure 2 shows a portion of the Java class 1. Other methods that were also used in the G4+

example (Figure 1), such as OpenDataBase () and NewRelation() now appear as methods
of class Proc.

package JavaSDBAPIBridge;
public final class Proc extends DataBaseObject { F
public native static TDataBase createDataBase(String databasename);
public native static TDataBase openDataBase (String databasename);
public native static void closeDataBase(TDataBase db g
public native static Category newCategory(TDataBase db, String name);
public native static Relation newRelation(TDataBase db,
String relation,
String CategoryFrom,
String CategoryTo);

Figure 2. Java API Proc Class

Figure 3 shows a portion of the Java class Category, which mirrors the C4-+ Category
class. For example, the method GetObjects () (see Figure 1) now becomes a native method
of Java class Category. In order to complete the Java package we provide native C++ code
that is dynamically loaded whenever the Java class executes. For each native Java method
we have a C-++ function which simply calls the respective C++ API function. For example,
Java native method Category.getObjects() is linked to the C-++ function

Java_JavaSDBAPIBridge_Category_getObjects__

which in turn calls the Category: :GetObjects () function in the C++ APIL The standard
Java developer’s kit (JDK) provides helper utilities, such as the javah command, to facil-
itate the native method interface. The name conventions and further detail can be found

in [JNI, 1997). Since C++ is not platform independent we provide compiled versions for

package JavaSDBAPIBridge;
public class Category extends DataBaseObject {
public native String getName();
public native Category[] getSupercategories();
public native Category[] getSubcategories();
public native Relation[] getRelations();
public native boolean hasRelation(Relation relation);
public native boolean hasSupercategory(Category category);
public native SetQuery getObjects();
S}

Figure 3. Java API Class Category

both environments on which the semantic binary database system is available: Sun Solaris
and Windows NT.

With the Java API, we can now rewrite our earlier C++ example. Figure 4 shows the
resulting Java code. The Java code quite closely resembles the C44 code of Figure 1: we

'DataBaseObject is a common superclass to serveral classes in the Java APL It contains operations and
attributes that are common to all of its subclasses. SetQuery is a class to capture query results.

326 i
|

import JavaSDBAPIBridge.x*;

import lang.io.*;.*;

public class Main {

public static void main(String[] args) {
TDataBase DB = Proc.openDataBase("Demo") ;
DB.transactionBegin();
// create class with attributes
Category cat = Proc.newCategory(DB, "Person");
Proc.newRelation(DB, "name", "Person', "String");
Proc.newRelation(DB, "birthYear", "Person", "integer");
// make instances
Var pl = DB.newAbstract("Person");
pl.assign("Person: :name","John Doe");
pl.assign("Person::birthYear",1958);
Var p2 = DB.newAbstract("Person");
p2.assign("Person: :name","Sue Miller");
p2.assign("Person::birthYear",1965);
// simple query
SetQuery list = cat.getObjects();
Var person;
while (list.getVarInc(person)) {
System.out.println(Proc.pChar(person.query("Person: :name").getVar())
+ ", " + proc.toLong(person.query("Persen: :birthYear") .getVar()));

DB.transactionEnd();
Proc.closeDataBase(DB);

)

Figure 4. Java APl Example Program

open the database, start a transaction, create a class, make instances, issue a simple query,
and then commit the transaction and close the database.
. » .
The Java program accesses the semantic database as easily as C++.

4. The Java Class Repository

Java source code resides in files that have the extension “.java”. While a source code
file may contain more than one Java class, once it is compiled it will result in exactly one
file with extension “.class” for each compiled Java class. Java “.class” files actually
contain Java byte codes, which are executed in the context of a Java virtual machine
[Lindholm and Yellin, 1996]. Java virtual machine implementations are available for most
modern computing platforms and also are contained within typical Internet browsers. This
is the key to Java's platform independence.

Figure 5 shows a simple Java class for our Person category example. It declares two
attributes “name” and “birtYear”, a constructor, and a simple method for age calculation.
This class is quite similar to the Person category of Figures 1 and 4. When compiled, its
code resides in file “Person.class”.

To store Java code in the database all we need to handle is Java “.class” files. We
create a simple category “JavaClassRepository” with attributes “name” and “data”. The
“data” attribute is of type “binary” which allows to store an arbitrary-long chunk of data.

«

327

public class Person {
String name;
int birthYear;
public Person(String n, int b) {
name = n; birthYear = b;

public int getAge(int when) { return when - birthYear; }

Figure 5. Java Person Class

public static void Store(String[] args) {
TDataBase DB = Proc.openDacaBase(”Demo”);
DB.transactionBegin();
// create classes with attributes
Category cat = Proc.newCategory(DB, "JavaClassRepository");
Proc.newRelation (DB, "name", “JavaClassRepository“, "string");
Proc.newRelation(DB, "data", "JavaClassRepository", "binary");
// code to load Person.class into buffer
File theFile = new File("Person.class");
DatalnputStream fileStream =

new DatalnputStream(new FileInputStream(theFile));

// allocate a buffer and read the data into it
byte[] buffer = new byte[theFileAlength];
fileStream.readFully(buffer);
// make instance
Var ¢ = DB.newAbstract ("JavaClassRepository");
c.assign(“JavaClassRepositcry::name",“Person”);
c.assign(”JavaClassRepository::data”, buffer);
DB.transactionEnd();
Proc.closeDataBase (DB) ;

Figure 6. Storing Class Code

Figure 6 shows the Java program 2 which creates the schema and loads the Person class
into the database: it first opens the “Demo” database, starts a new transaction, then
makes a new category JavaClas sRepository with two relations to attributes “name” and
“data”. Then it opens and reads the “Person.class” file into a buffer, and finally creates
a database object and assigns its name and data. Figure 7 shows how to retriex"ﬂ a Java
class from the database: the code is quite similar to the code in Figure 4. After opening

the database, creatin a transaction, we read all classes in the database, then commit and
cloase the database.

5. Execution of Java Code

And finally we want to execute Java code. Assuming that the database contains Java
class code and also instances for the same class, we need to do the following steps:

1. read Java “.class” code from the database;

2 3 .
for clarity, we have ommitted the Java housekeeping and exception handling code.

328

public static void Show(String[] args) {
TDataBase DB = Proc.openDataBase("Demo");
DB.transactionBegin();
// find category, read instances
Category cat = DB.findCategory("JavaClassRepository");
Relation rel = DB.findRelation('"JavaClassRepository::name");
// show the list of all java classes in the database
SetQuery list = cat.getObjects();
Var aClass;
while(list.getVarInc(aClass) {

System.out.println(Proc.pChar(aClass.query(rel).getVar()));

DB.transactionEnd();
Proc.closeDataBase(DB) ;

}

Figure 7. Reading Class Code
2. dynamically create a Java class from “.class” code;
3. find instances of a corresponding category in the database;
4. create instance of Java class with data from the database;
5. execute a method.

In order to dynamically create a class in Java we need to create a special class loader.
The Java code for a DBClassLoader is shown in Figure 8. It is defined as a subclass of Java
class ClassLoader which is part of the Java standard distribution. The critical method is
loadClass which first tries to find the class in a local cache — to prevent multiple definitions
-, checks whether the requested class is a system class, and then finally calls defineClass
which creates a new Java class based on the btye-codes passed in a buffer parameter. The
next step is to resolve the class, i.e. to make sure that all other Java names used within
the new class are also loaded and present.

With this DBClassLoader class we can now show an example that illustrates these steps.
The Java code in Figures 9 and 10 first opens that database and starts a new transaction;
it then finds the JavaClassRepository category with its attribute relations; it then reads
the Java byte-codes from the database, creates an instance of the DBClassLoader class, and
loads the byte-codes using the loadClass method; it then finds the constructor and the
getAge method using Java’s reflective programming capabilities. Figure 10 then continues
with the code find and read Person data from the database, and finally creates Java Person
objects and executes the getAge () method.

In the example we loaded only a single isolated class from the database. The Person class
only references builtin data types “String” and “int”. More complicated classes, of course,
will be related to other classes: those classes can either be also fetched from the database or
resolved from the local execution environment subject to the normal Java “CLASSPATH”
search rules.

The performance of executing “stored procedures” was quite acceptable, posing little
overhead in addition to the regular database access times. However, even that can easily
be improved. For example, to execute the method “getAge()” we had to construct a Java
Person object. As easily we can define a static method “calculateAge()” as shown in Figure
11 and call it instead of “getAge()”. Since we do not have the overhead of creating a Java

329

import java.io.*;
import java.util.*;
public class DBClassLoader extends ClassLoader {
private byte buf[] = null;
private Hashtable sdbClassCache = new Hashtable();
public DBClassLoader(byte inBuf[]) {
buf = inBuf;

public synchronized Class loadClass(String name, boolean resolve)
throws Class NotFoundException {
try {
// try to find the class in cache
Class aClass = (Class)sdbClassCache.get(name);
if (aClass == null) {
try {
// check if it’s a system class
aClass = findSystemClass(name);
} catch (Exception e) {
System.out.println(" System class: " + name + " not found");

¥

if (aClass == null) {
aClass = defineClass(name, buf, 0, buf.length);
sdbClassCache.put (name, aClass);

if (resolve) resolveClass(aClass);

return aClass;

catch (Exception e) {
System.out.println("DBClassLoader.loadClass: " + e.getMessage());
throw new ClassNotFoundException(e.getMessage());

-

Figure 8. Database Class Loader

Person Object, the performance is significantly improved.

We measured the performance by loading 20000 objects from the database: with method
invocation per Person object the program ran for 11.4 seconds; with static method invo-
cation without creating Java Person objects it ran for 10.5 seconds. Without any method
invocation, just reading 20000 objects nsing the Java API, the program ran for 10.1 seconds.

6. Conclusion

Our approach to adding “stored procedure” capability to the semantic binary database
system uses the advanced features of the Java programming language. We make it possible
to store and retrieve Java code from the database and then immediately execute it with
acceptable performance. Our next research step is to use this facility to allow the definition
of virtual categories. Virtual categories have attributes that are computed as needed by a
query.

The approach described in this paper is actually a recipe that can easily be adopted and
applied to other database system that need the capability to execute stored procedures.

330

import JavaSDBAPIBridge.*;
import java.io.;
import java.lang.reflect.*;
import PersonClassLoader;
public class Execute {
public static void main(Stringl] args) {
TDataBase DB = Proc.openDataBase("Demo");
DB.transactionBegin();
// find Repository category and it’s relations
Category cat = DB.findCategory("JavaClassRepository");
Relation className = DB.findRelation("JavaClassRepository::name'");
Relation classData = DB.findRelation("JavaClassRepository::data');
// retrieve Java class ’Person’ from category JavaClass_Repository,
SetQuery query = Proc.rangeQuery(className, new Var ("Person"));
query.goFirst();
Var dataClass = new Var(query); // assuming it’s not null
Var aData = dataClass.operatorDot(classData);
// get the length of java class data
int expectedBytes = (int)Proc.dbfilelength(aData);
byte buffer[] = new bytel(int)expectedBytes];
int readBytes = Proc.dbread(buffer, (short)expectedBytes, aData);
Proc.dbclose(aData);
// init class loader
DBClassLoader classLoader = new DBClassLoader(buffer);
// load the ’Person’ class from the memory buffer
Class personClass = classLoader.loadClass("Person", true);
// init ’Person’ constructor
Class[] paramList = { Class.forName("java.lang.String"),
Class.forName("java.lang.Integer") };
Constructor personConstructor = personClass.getConstructor(paramlList);
// init ’gethAge’ method
Class[] whenList = {Class.forName("java.lang.Integer")};
Method ageMethod = personClass.getMethod("getAge", whenList);

Figure 9. Executing Java Class Code

References

[Atkinson et al., 1989] Atkinson, M., Baucilhon, F., DeWitt, D., Dittrich, K., Maier, D.,
and Zdonik, S. (1989). The object-oriented database system manifesto. In Proceedings
of the First Conference on Deductive and Object-Oriented Databases, Kyoto, Japan.

[Gosling et al., 1996] Gosling, J., Joy, B., and Steele, G. (1996). The Java Language Spec-
ification. Addison Wesley.

[Jaworksi, 1996] Jaworksi, J. (1996). Java Developer’s Guide. Sams Net, Indiana.

[JNI, 1997] JNI (1997). Jave Native Interface Specification. JavaSoft, A Sun Mi-
crosystems, Inc. Business, http://www.javasoft.com/products /jdk/1.1/docs/guide/jni/
spec/jniTOC.doc.html.

[Kim and Lochovsky, 1989] Kim, W. and Lochovsky, F. H., editors (1989). Object-Oriented
Concepts, Databases and Applications. ACM Press, Reading, Mass.

[Lindholm and Yellin, 1996] Lindholm, T. and Yellin, . (1996). The Java Virtual Machine
Specification. Addison Wesley.

331

// Find category, relations which represent class ’Person’ in database
Category cPerson = DB.findCategory("Person");

Relation rPersonName = DB.findRelation("Person::name");

Relation rPersonBYear = DB.findRelation("Person::byear");

// Retrieve all instances of class ’Person’ from database

SetQuery list = cPerson.getObjects();

Var aClass;

vhile (list.getVarInc(aClass)) {

// retrieve data for each person object

String name = Proc.pChar(aClass.query(rPersonName).getVar());

int byear = Proc.toLong(aClass.query(rPersonBYear).getVar());
Object[] paramList = {new String(name), new Integer(byear)};

// create an instance and invoke method

Object obj = personConstructor.newInstance(paramList);

. System.out.println(name+" is "+ageMethod.invoke(obj, 1998)+ " old");
DB.transactionEnd();
Proc.closeDataBase (DB);

Figure 10. Executing Java Class Code (continued)

public class Person {
String name;
int birthYear;
public Person(String n, int b) {
name = n;
birthYear = b;

public static int calculateAge(int when, int birthYear) [
return when - birthYear;

Figure 11. Java Person Class

[Ranking, 1997] Ranking, R. (1997). Sybase SQL Server 11 Unleashed. Sams Publishing.

[Rishe, 1992] Rishe, N. (1992). Database Design: The Semantic Modeling Approach. Mec-
Graw Hill.

[Rishe, 1996] Rishe, N. (1996). A file structure for semantic databases. Information Sys-
tems, 16(4):375-385.

[SDB, 1995] SDB (1995). Semantic Binary Database C++ Interface Version 3. High Per-
formance Database Research Center, School of Computer Science, Florida International
University.

[Urman, 1996] Urman, S. (1996). Oracle PL/SQL programming. Oracle Press, Osborne
McGraw-Hill.

