
22

EsmGilGffi
fhe fwentU'SeGond lnnual lnternational
Gompulet Soltwarc

E ilpplicalions GonlerenGc
::::'i,::=:.====i€=:=-==

August 19-21, l9_?-B Vienno, Austrio

Proceedings

The Twenty-second Annual International
Computer Software & Applications Conference

(Compsac 98)

August 19-21.,1998 Vienna, Austria

Sponsored by
IEEE Computer Society

COtvtPUTER
SOCIETY

Los Alamitos, California

Washington o Brussels o Tokyo

A Modular Java API for Object-Oriented Databases

Raimund K. Ege, Yaman Battikhi, Philippe Pardo, Jinny Uppal, Naphtali Rishe
High Perforrnance Database Research Center *

School of Computer Science, Florida International University
University Park, Miami, FL 33199

ege@cs.fiu.edu

A,bstract

The object-oriented programming language Java is an

ideal companion to an object-oriented database system.

This paper describes our approach to provide a seamless

application programmer interface. It is based on a modular
architecture with components for database engines, a com-

munications protocol and a JAVA API facihator The open
architecture is flexible, scalable and distributed in nature.

l.Introduction

Object-oriented software development is considered
standard practice. Even database systems I are becom-
ing object-oriented in the mainstreamfi, 4]. With that we
need modern application programmer interfaces (APIs) that
deal not in terms of functions but in terms of objects.
In this paper we will describe an API from the Java[5]
object-oriented programming language to object-oriented
databases. We will actually describe a modular architec-
ture that allows for a distributed layout of object-oriented
access to a variety ofdatabase systems.

Our architecture has the following components (see Fig-
ure I):

l. a Java front-end, suitable to be used in a Java appli-
cation or an Java applet 2. The Java front-end follows
the ODMG object-oriented database system standard
(ODMG 2.0) t3l;

2. a substrate, or facilitator, that enables ODMG-like or-
thogonal persistence;---_

_-
'This research was supported in parr by NASA (under grants NAGW-

4080, NAG5-509s, ano Nhe-sz-MTpE-05), NSF (cDA-971r582, tRI-
9409661, and HRD 9707076),ARO (DAAHO4-96-l-C/|,49 and DAAHO4-
e6-l-0278). Dor (CA-5280-4-9044), NATo (HTEcH.LG 931449). AFRL
(F30602_9S_C_0037),

and the stare ol.Flonda.

,
lOf course, we ale aware that object-oriented database.systems have

been commercially available since the mid gOs.
'an applet is a program that runs within a Intemet browser

Java application
or
Java applet

Figure 1. Modular Architecture

a communications protocol called lcecube, which en-

ables objects to travel in a network of distributed
clients and servers;

data base servers: either directly implemented
database core engines, or proxy servers that interact
with other database systems.

The paper is organized as follows: the next section de-

scribes our approach to provide transparent persistence to
Java objects; then we will describe the Icecube commu-
nications protocol; then we will describe some potential
database servers: (l) a core engine for an object-oriented
database written in Java; and (2) a proxy server to the se-

mantic binary database system [7]. The paper concludes
with the status of our implementation and our future plans.

2. The Java API

Objects should be the unit of interchange between an

object-oriented database and an objecroriented program-

1-

4.

ODIVIG substrate

Corrrrn urr ications Protocol

Cornrnun icatiorls Protocol

0-8186-Bb8b-9/98 g10.00 o 1998 IEEE

ming language. Conceptually, an object-oriented database

is a set of objects governed by a set of classes: so is an

object-oriented program. The object-oriented program must
be allowed to create objects in the database, retrieve objects
from there and update them. The unit of intercourse has to
be object t

The goal of our research was to facilitate the object-
oriented view as much as possible: we want to allow a

programmer to create and manipulate objects without being
burdened with the tasks of database access and update. Fol-
lowing the standard outlined by the Object Database Man-
agement Group (ODMG, www.odmg.org) [3] we provide
the concept of persistence to programmihg Iiinguage ob-
jects. We support the concept of orthogonality: any lava
object is allowed to persist, i.e. be stored in the database.

Our approach to extending Java with persistence capabil-
ity is similar to PJava l2l and ObjectStore PSE t6l, however,
in our research we also focus on the architectural aspects of
a distributed application programmer interface.

The issues involved in allowing Java objects to be persis-
tent are (I) the selection/marking ofclasses that have persis-
tent instances; (2) the creation of persistent objects; (3) the
retrieval of objects from the database; (4) navigation from
object to object; (5) updating objects; and also (6) some ba-

sic database housekeeping capabilities.
A Java class can be made persistent-capable, i.e- we al-

low that some of its instances reside in the object-oriented
database, by defining it as a subclass of our Pobject su-
perclass. Any class in Java is already a subclass of Java
class Object: we just extend that concept and require a

PObject superclass. We can now say that any persis-
tent object handled by our Java API is an instance of our
Pob j ec t class. This class handles the basic correlation be-
tween the physical database object and its local Java counter
part. The programmer, of course, needs not be aware of this.

Java objects can be created from Java classes using the
regular new operator. Instances of a class that is a subclass
of PObject allow the operation persist () which will
declare an object to reside in the database world.

Objects that reside in the database are necessarily already
persistent. We provide a naming facility: objects can be
explicitly named. The name can be used to retrieve objects
from the database.

Once a persistent object has been retrieved from the
database, other objects are reached by following its relation-
ships. Objects are automatically fetched as needed from the
database. This concept is called pers istenc e by reachability.

Updating objects is totally transparent to the program-
mer. The programmer invokes member functions and goes
about the programming business as usual. Member func-
tions can update member fields of persistent objects: that
in effect is an update of a database object. The program-
mer does not have to insert any code to explicitly affect the

import JavaOODBApj. . *,-

public class Person extends PObject (

String name,'
int age;
Person children[];
public Person (St.ring n, int a, Person c []) {

nElme = ni age = a;
children = c;

)
public SEring getNaneO (. ..)
public void seLName (String n) { . . .)
public int getAge0 t...)
public void setAge(int age) (.. .]
public Person[] getchildrenO t

return children;
)
public void setChildren(Person c[]) {

children = c;
)

)

Figure 2. Java API Person Class

update to the database. Of course, the final success of an

update is dependent on the final success ofthe transaction.

Database db;
db = P.g.5ase.open ("demo") ;
Transaction tr = new TransactionO;
/ / create objects
Person sophia = new Person("Sophia',3,nul1),-
Person alex= new Person("A1exander",3,nul1) ;
Person childrentl = t sophi.a, alex);
Person ray -

new Person('Raimund", 38, children) ;
/ / make objects persistent
ray.persist () ;
// Creatse a named database root
db.bind(ray, "Raimund Ege") ;

tr.commitO;
db.closeO;

Figure 3. Creating Person Objects

House keeping facilities are provided such as to connect
to a specific named database server. Of course, handling of
transactions can be specified and is passed on to the specific
database server that is currently connected.

Figure 2 shows an example of a Java class person
that illustrates how little database detail is needed. The
only database specific detail is the mention of superclass
POb j ect. Class Person defines three attributes! one con-
structor, and six simple methods. Figure 3 shows a simple
program that creates objects in the database. it first opens
a "demo" database and starts a new transaction, which is

Db

basic database housekeeping. The program then creates

three new Person objects. Database detail here is that

after the objects have been created, object ray is made

persistent with the operation persist O. The other ob-

jects automatically become persistent, since they are reach-

able from object ray. Object ray is then given a name,

which can be used in subsequent object retrievals. Figure

4 shows a simple update program: after opening the same

database and creating a new transaction, we first retrieve

a named database object using the lookup () method.

The rest of the program is straight Java code. The call

ray.qetchildren() accesses 2 dependent objects, in

effect it retrieves 2 persistent database objects. The call

ray. setChildren(new) updates a persistent object.

Again, the programmer needs not be aware of this database

access. The program concludes by committing the transac-

Database db;
db = Database.open("demo") ;
Transaction tsr = new TransactionO;
// retrieve named object
Person ray= (Person) db. lookup ("Raimund fge") ;
/ / reLrieve dependent objects
Person oldtl = ray.getChildrenO;
Person lucas=new Person ("Lucas " , 0nu11) ;

Person more[] =iold[0], old[1],]ucas) ;

// update persistent object
ray. setchildren (more) ;
tr.commitO;
db. c1ose O ,.

Figure 4. Updating Person Objects

tion and closing the database.

The design of our Java API follows the ODMG stan-
dard closely. The Java code is compiled and matched to
the ODMG substrate. In the ODMG substrate (see Figure
l) translates object creation, access and update into com-
mand of our Icecube communications language. The next
section will discuss its design and implementation.

3. Communication Language

This section introduces the communication language that
links the Java API to a database engine. Our architecture is
not dependent on a specific database engine, rather it explic-
itly allows to connect to a variety of them. The communi-
cation language uses standard TCPIP sockets where client
access is from the API side and the server is the database
engine.

The API client access is logically done via a set of com-
mands that allow a Java application program to access the
services of the server database system. Java persistent ob-
ject access is translated (in the ODMG substrate, see Fi-e-

ure I) into Icecube commands. the commands travel on the

socket link to the database server. The database server re-
ceives the command through its engine interface (EI). This
EI is implemented as a set of switch statements that make
the function calls associated with the method invocation
information (Action Code) of an incoming message. The
database engine delivers its results through its EI. The EI
packages the results into a message and sends it out through
the socket.

3.1. Format of the Communication Language

The communication language is called lceCube. The
idea here is that the sending side (the condenser) will con-
dense the message into an lceCube that can be easily melted
by the receiving side (the melter). Our lceCube resembles

the Java bytecodes of a .classfile. The cube is a bytestream.
It contains a magic number, version number, the DataCube,
and an ActionCube.

In detail, an IceCube has these entries: magic number of
length 4 bytes; version number of I byte; overall length of
the DataCube given in 2 bytes; a first DataCube structure:
a typical structure has a type of I byte, a length field of 2
bytes, followed byte the byte values of the data; then maybe
more DataCube structures; and finally an ActionCube struc-
ture: which identifies the active object with 2 bytes, an ac-

tion code of 2 bytes, and then the arguments to the action
with 2 bytes each.

The magic number identifies the data sent on the socket
as an IceCube. The version number indicates changes in the

scheme so a melter can take appropriate actions.
Entries of the ActionCube , except for the action code,

are references to structures in the DataCube. The Action-
Cube has three main entries: the active object, action code

and the argument list. A null active object (denoted as all
"0") has no representative structure in the DataCube. The

DataCube is an array of structures needed to interpret (melt)
the ActionCube. A typical structure is composed of a type,
a length, and a value. The first entry ofthe DataCube spec-

ifies the length ofthe array.

1 String 2 lnteger 3 Float
4 Double'5 .classFile 6 boolean

7 class 8 void 9 object l0 array

Figure 5. lceCube Type Entries

Figure 5 a table of type entries and their associated types.

Notice that an array is specified as the following special

structure: type l0 followed by array length and the list of
the contained structures. The other types use the typical
structure defined above. We need to build a table of action
codes and their associated,functions. The first three bits of
an action code refer to the category of request that the ac-

57

tion code represents: 000 is for schema requests; 001 is for
data requests; 010 is for queries; 0l I is for exceptions; and

I I 1 is for connection requests.

Figure 6 shows the table of action codes and their asso-

ciated functionalities.

n100000 0k
I I 100001 Error
00000000 createCategory(.classFile)
00000100 categoryDelete0
00000101 categoryRead0
00100000 createObjectQ

00l00Oll objectDeleteQ

00100100 objectReadQ

00100101 objectUpdate(data)

0l0O0O0O setobjectName(globalName)
01000001 getobjectlD(globalName)
01000010 categoryInstancesQ

01000011 categoryInstances(conditionlist)
01000100 createDataBase(dataBasename)
0l0OOl01 closeDataBaseo
0l00Oll0 openDataBase0
01100000 terminateConnectio0

Figure 6. Action Codes and Functions

The ODMG substrate passes an IceCube to the engine

interface. The active object in the ActionCube part of the

IceCube refers to the object id of the object on which a

method is to be invoked. The engine will return an IceCube
where the active object refers to the object id returned by the

method invoked; the action code specifies the result status

of the transaction (error, ok,...); the argument list contains a

set of records returned as a result of the method invocation.
For example, assume we have an object id 010101 that

refers to the class "Person". A user creates a new Person

object P and wishes to store it into the database. Person p

= new Person0; status - p.persist0; Here is the function we
need to call: Person.createobject0. We need to condense

the function call into this lceCube;

l1 l0ll 14,1 01 70648494849 484901 06400

On the receiving side, we now need to melt the incoming
IceCube: We read magic number I I l0 1l 14, and version

number 1- We know there is one structure in the DataCube

because of the array length 01. The type of the structure

is a class: 7. The length is 06 and the value is 48 49 48

49 48 49 which represents 010101. Now, the ActionCube
has its active object referred to structure #01 previously de-

scribed as class with object id 010101. The action code 0
64 refers to createObject in the action codes table. We have

00 argument. The receiving side successfully interprets the

IceCube as: 010101 064 00 which is Person.createObject0.

This scheme is very appealing because of its scalability and

its flexibility. New types, new structures, and new action

codes can be easily accommodated. The melter can make
use of the information carried by a structure.

4. Database Engine Components

Our architecture allows for multiple servers to connect

to an Java API via our IceCube communications link. In
the following we will describe the 2 servers that we have

currently running in our prototype implementation. Both
servers are based on the semantic binary database model

[7]: the first is implemented using Java; the second is repre-

sented with its C++ API, which maps itself into 2 available
servers, one written again in C++, the other simulated on
top of a relational database seryer.

4.1. Java Database Engine

The Java database engine is designed to follow the phys-

ical storage model of the Semantic binary database system

l8l. A semantic binary database is defined by categories
and their relations. A category defines a real world en-
tity such as Person, Student, Course etc.. Categories can

have relations, which in objecroriented terminology would
cover both attributes and associations. Suppose the cate-
gory Person has a relation "name" oftype (range) "String".
In semantic database terminology the category Person has a

binary relation with the category "String" and this relation
goes by the name "name".

All objects in the database, categories, relations and their
instances have unique identifiers assigned to them. The only
objects that do not have IDs are the primitive datatypes (int,
float etc.)

All information in the database is represented as one of
the two binary facts "aC" and "xRy" where a,x and y are

IDs for objects (including primitive datatypes), C is the ID
for a category and R is the ID forthe relation that associates

x with y.
"aC" indicates that the object is of type C, i.e. it belongs

to the category whose ID is C. "xRy" indicates that object x
has the relation R with the object y. The semantic database

is a set of such facts.
Figure 7 shows an example of a database schema with

categories Person, Student and Course.
Suppose now that we have two Course instances (with

identifiers Cl and C2) and one Student instance (S1) in our
database. The data stored (in the format of "aC" and "xRy")
is:

C1 Course (aC)
C2 Course (aC)
51 Student (aC)
31 Person (aC) (Note: inheritance)
C1 name "InLroduction to AI" (xRy)
C2 name "C Proqrammi-ng" (xRy)

58

Category Person
Relation#1, Name: nane , Range: String (1-:1)

Relation+2, Name: age , Range: Integer(1:L)
Category Student SubCategoryOf Person
Relacion*1, Name: course, Range:Course (1:m)
category course
Relation*l, Name:name, Ranqe:String(1:1)

Figure 7. Semantic Binary Database Schema

51 name "rfohn" (xRy)
Sl age 34 (xny)
51 course C1 (xRy)
51 course C2 (xRy)

Along with the above binary facts we also store inverses.

The inverse of a fact of type "aC" is "Ca". As for facts

of type "xRy", there are two possibilities, "y" could be an

instance of another category (association between two cat-
egories) or a primitive datatype (e.g. int, String etc.). The
former fact is denoted by "xRy" and the latter by "xRv". In
case of a fact of type "xRv", the inverse is stored as "Rxv"
and for facts of type "xRy", the inverse is'lyRx". Storing in-
verses introduces redundancy in the database, however the
payoff in fast retrieval of data compensates for the redun-
dancy in the database (see [8] for more details).

The data structure used to store the binary facts is a

B+Tree. All facts are stored at the leaves. Since a B+Tree
stores keys in the order of its fields, the binary facts are

stored in lexicographical order- That means all facts de-
scribing a particular object are stored in serial order, since
the prefix ("a" in "aC" or "x" in "xRy") is the same. A
group of facts are stored in one disk block and one disk ac-
cess loads the entire block into memory. A block can there-
fore then be read to retrieve a large number of facts. The
index block of the B+Tree is stored in memory to facilitate
faster search. The basic B+Tree operations of insert, find
and delete allow the atomic queries to be satisfied.

All queries can be broken down into the following
atomic queries:

store and manipulate data and perform other database tasks.

The engine has as one of its components the "Melter"
which listens for icecubes from the communications link.
When an IceCube is received over the network, the Melter
breaks down the lceCube in to its various components and
extracts the command and the data from the lceCube. The
engine interface maintains a table ofcodes (the class and/or
method number ,see Fig 6) and the corresponding EI meth-
ods to be invoked. The prototype of the methods is stored
in the table, so it knows what parameters are to be expected
in the input stream. The Melter uses this table as reference
to look up the method that has to be executed.

A "DataBase" class is the "do-all" class which serves
as the main interface for most of the tasks that can be per-
formed on the database. Apart from allowing a user to cre-
ate, open and close a database, it provides methods to cre-
ate and delete objects and the facts that describe them. The
DataBase class also allows the user to define the schema
(explained in greater detail in the next section). It has meth-
ods to execute simple atomic queries on the database. Com-
plex queries are broken down to a series of atomic queries
before they passed onto the DataBase methods. A DataBase
object keeps track of all the Objects in the database. The
DataBase class also allows objects to be named- So an ob-
ject may be assigned a unique name (String) which is in-
ternally stored in the database system. The object can then
be referenced anytime in the future by this name. The name
can be set or unset. Moreover, given a name the correspond-
ing object can be retrieved from the database.

There are two types of data maintained in the database:
data (actual instances of categories) and meta-data(data
about categories and relations). For the meta-data we in-
troduce a category called "Schema" which maintains all the
data defining the schema of the database in question. An ob-
ject (instance) of the Schema category has as its members all
the categories and the relations in the database. Every time a

new category is added, the schema object changes. We also
have categories called "Category" and "Relation", which
as the names suggest describe a category and relation re-
spectively. An instance of category has as its members: the
name of the category, the super-categories and the relations
of that category.-The "Relation" category has as members
the name of the relation, the domain (which is a category) ,

the range (could be a category , primitive datatype or user-
defined datatype) all ofwhich are stored in the database.

4.2. Other Engines and Issues

Our second database engine server is written in C++,
since our existing semantic binary database engine has a
C++ APL

The C++ server consists of three major parts. The first
part is the "Melter", which deals with communication with

aC

xRy
a?

?C

aR?

?RA
a?+a??+??a

?RV

?R[v l,v2l

verify the fact aC

verify fact xRy
find categories the object a belongs to
find all instances ofcategory C
get all y such that aRy
given object a find all y such that yRa

all information on the object a

find all x such that xRv
find all xwhere xRvl 1= xRv 1- xRvl

4.1.1 Engine Interface(El)

The engine interface (EI) is a set ofclasses that provide the
API access to the database. This component lets the API

59

Figure 8. C++ Engine Server Architecture

various clients using the IceCube communication language.

When an Icecube is received from a client, the Melter
breaks it down to its smaller components, and depending on

the Icecube action code the requests will be passed to the

second part which is called "OODB Bridge". The Melter
is also capable of constructing an acknowledgment Icecube

depending on the ciient requested action code. Figure 8

shows the organization. The "OODB Bridge" is where Java

API requests are translated into requests to the semantic bi-
nary database system C++ API [9]. This API allows access

to a pure C++ based Semantic Database Engine or to our
C++ Semantic Database engine simulated on top of Oracle

relational Database.

To represent a Java class in the semantic database meta

schema, the client will send an Icecube containing the com-
piled class file of that class with createCategory action code.

After melting this lceCube in the server side the Melter will
extract the binary class file and pass it to "OODB Bridge"
with a request to create a new semantic database category.
In the "OODB Bridge" we have developed a Java class file
interpreter, which is capable of retrieving all information
about a Java class from its compiled binary format includ-
ing its superclass, its private and public data fields and its
private and public methods.

A semantic database category is created for each Java

class. To store an instance ofa class in a semantic database

the client will send an Icecube containing a Java serialized
object together with the appropriate action code. After melr
ing this IceCube in the server side the Melter will extract

the serialized object and pass it to "OODB Bridge" with a

request to store this object in the semantic database. The

OODB Bridge first will check to see if this object has a

valid category in the semantic database and then will use

a method to break down the serialized object and extract
its data fields and create an semantic database instance of
the category representing that object and store it as a binary
fact.

There are two methods available to retrieve the serialized

object. The first is to invoke a Java virtual machine within
the C++ code and to try to create a real Java object and

then to extract its data one by one. The second method is
to develop a C++ Java serialized object handler which can

retrieve the data fields from the serialized object as well as

constructing a serialized object from any semantic category

object.
We have also developed tools that use the semantic

database API to manipulate data in an Oracle relational
database. The semantic database concept has been simu-
lated on Oracle. The physical layout of the Oracle relational
database is implemented by creating one big table with one

column. Each row of this column will contain a semantic
binary fact such as "ac", "aRy" and "aRv" or its inverse
binary relation fact. All facts are stored in a compressed
format. In addition, the table is fully indexed (see also Sec-

tion 4. l). With "Embedded SQL" inside C++ we are then
able to support our C++ semantic API on top of Oracle.
This semantic API then will be used the same way the pure
Semantic database engine API is used to store serialized ob-
jects.

5. Conclusion

In this paper we presented a distributed and scalable ar-
chitecture for a Java application programmer interface. Our
prototype implementation was done on a network of Win-
dows NT and Solaris based workstations. Our next goal is
to use this API to implement a Java-based database admin-
istration tool.

References

[] M. Atkinson, F. Bancilhon, D. DeWitt. K. Dittrich, D. Maier,
and S. Zdonik. The object-oriented database system mani-
festo. In Proceedings of the First Conference on Deductive
and Object-Oriented Databases, Kyoto, Japan, Dec. 1989.

[2] M. Atkinson, L. Daynes. M. Jordan, T. Printezis. and

S. Spence. An orthogonally persistent java. ACM SICMOD
Re cord, 25(4):68-1 5, 1996.

[3] R. Catell, D. Barry, D. Bartels, M. Berler, J. Eastman,
S. Gamerman, D. Jordan, A. Springer, H. Strickland, and

D. Wade, editors. The Object Database Standard: ODMG
2.0. Morgn Kaufmann, 1997.

[4] R. Ege. Database support for object-oriented simulation. 1n-

temational Joumal of Svstems Engineering, 1994.

[5] J. Gosling, B. Joy, and G. Steele. The Java ktnguage Spectf-
carion. Addison Wesley, 1996.

[6] Object Design, Inc., http://www.odi.com/content/products/-
pse/doc-l 20ldoc/apiugy'index.htm. O bj e c tSt ore P SE and P S E
Pro for Java U ser Guide, 1998.

[7] N. Rishe. Database Desigrt: The Semantic Modeling Ap-
proach. McGraw Hill, 1992.

[8] N. Rishe. A file structure for semantic databases. Information
S1'stems, I 6(4):375-385, 1996.

l9l Semantic Binary Database C++ lnterface Versiott 3. High
Performance Database Research Center, School of Computer

Science, Florida International University, 1995.

C++
Ensine
Oracl6

60

