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Abstract: Geographic datasets are usu-
ally accompanied by spatial non-stationarity –
a phenomenon that the relationship between
features varies across space. Naturally, non-
stationarity can be interpreted as the under-
lying rule that decides how data are gener-
ated and alters over space. Therefore, tra-
ditional machine learning algorithms are not
suitable for handling non-stationary geographic
datasets, as they only render a single global
model. To solve this problem, researchers of-
ten adopt the multiple-local-model approach,
which uses different models to account for dif-
ferent sub-regions of space. This approach has
been proven efficient but not optimal, as it is
inherently difficult to decide the size of sub-
regions. Additionally, the fact that local mod-
els are only trained on a subset of data also
limits their potential. This paper proposes an
entirely different strategy that interprets non-
stationarity as a lack of data and addresses it
by introducing latent variables to the original
dataset. Backpropagation is then used to find
the best values for these latent variables. Ex-
periments show that this method is at least
as efficient as multiple-local-model-based ap-
proaches and has even greater potential.

Index Terms: Back-propagation, Geograph-
ically Weighted Regression (GWR), Latent
Variable, Machine Learning Algorithm, Non-
stationary, Random Forest
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1. Introduction

Geographic data is defined as information
that is implicitly or explicitly associated

with a location on the surface of the Earth
[1]. With advancements in remote sensing
technologies and the widespread use of GPS-
enabled devices, the number of available phys-
ical and human geography datasets has vastly
increased in recent years [2]. These data are
studied and utilized for social good, such as
mitigating damages caused by natural disasters
[3], discovering mineral resources [4], prevent-
ing crimes [5], improving traffic conditions [6],
and many other scenarios.

However, when dealing with geographic
datasets, researchers find that many tradi-
tional machine learning algorithms do not per-
form very well due to the presence of non-
stationarity. In such data, the relationship
between features does not necessarily remain
the same everywhere, meaning the underly-
ing model that governs the data changes over
space. To address this issue, a natural solution
is to replace the global model with many local
models. Each local model is only responsible for
describing a much smaller region within which
the data is supposed to be relatively station-
ary. Most studies that have taken this approach
(such as [7], [8] and [9]) have observed signif-
icantly better results compared to traditional
algorithms, which are not specifically designed
to handle non-stationarity.

These multiple-local-model based ap-
proaches all face similar challenges. First, the
dataset used to train local models is only a
subset of all available data. Previous research
has shown that the accuracy of a model is
strongly correlated with the amount of data
used to train this model. There can be a
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significant decrease in model performance if
the training data size drops below a certain
threshold [10]. Second, determining the size of
sub-regions to which local models correspond
is difficult. A larger size means more data
can be used to train local models, but the
region is more likely to exhibit non-stationary.
Conversely, a smaller size implies the opposite.
As a result, compromise is always necessary.

Our insight is that the source of non-
stationarity can be explained as a lack of data,
i.e., some dimensions of the data are not be-
ing collected. For example, a crime dataset
could exhibit strong non-stationarity, as crime
patterns in New York could be fundamentally
different from those in Washington DC. Even
within New York, it is hard to imagine that
Brooklyn shares the same crime pattern as
Manhattan. Ultimately, these differences are
caused by various factors such as household
income, population composition, culture, and
the number of police officers per capita, among
others. If one were able to collect data on every
single aspect of an area, the dataset would ulti-
mately become stationary. This theory is also in
accordance with the fact that non-stationarity
is quite often observed in human geography
datasets but rarely found in physical geography
data. Since physical geography data – which
is generated by Earth’s natural processes - has
fewer determining factors and is usually simpler
to collect, it is less prone to non-stationarity. In
contrast, human geography data focuses on hu-
man activities and is much more complex. Even
seemingly simple datasets can have countless
deciding factors that are impossible to collect
comprehensively. For example, house sale price
data generally includes features of the house
itself and its nearby areas, but other factors -
such as school, traffic, population, and crime -
are usually not included, even though they are
important and would certainly affect the pricing
model. The lack of these data would then be
observed as non-stationarity in the dataset and
would impact the final model in some way.

Based on this insight, we propose an en-
tirely different strategy that addresses non-
stationarity by introducing latent variables to
the original dataset. These latent variables
would account for all the missing factors that

not collected by the original dataset but ob-
servable as non-stationarity. Theoretically, as-
suming we have unlimited calculating power,
the optimal values of the latent variables could
be easily found through a brute-force search of
the entire vector space. However, this solu-
tion is obviously impossible due to the tremen-
dous size of the vector space. Thus, inspired
by neural networks, we use a back-propagation
algorithm to find the optimal values of the la-
tent variable. Experiments demonstrate that
this new approach can build models as accurate
as the state-of-the-art algorithms while offering
the potential for further improvement.

2. Background and Study Area

2.1 Background

The first renowned method for exploring spa-
tial non-stationarity, known as Geographically
Weighted Regression (GWR), was proposed by
Brunsdon, Fotheringham, and Charlton in 1996
[7]. The “main characteristic of GWR is that
it allows regression coefficients to vary across
space, and so the values of the parameters can
vary between locations” [11]. The motivation
for inventing GWR was that “a single global
model cannot explain the relationship between
some sets of variables” [7]. To address non-
stationarity, GWR allows relationships between
features and labels to differ across spaces. The
basic idea of how GWR works is to learn a
regression equation for every feature in the
dataset, during which dependent and explana-
tory components are accounted for by exam-
ining neighboring data points. The neighbors
contribute differently to this process according
to their distance, which is why it is called a
“weighted” regression. The closer a data point
is, the more weight it is assigned. This de-
sign complies with Tobler’s first law of geogra-
phy, “everything is related to everything else,
but near things are more related than distant
things” [12]. Later, in 2002, Brunsdon fur-
ther improved this algorithm to Semiparametric
GWR (SGWR) [13], which allows some features
to have fixed regression equations across space,
while others can still be variable.

Due to the success of GWR, many later
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studies followed this multiple-local-model de-
sign. One example is Multiscale GWR
(MGWR), which was introduced in 2017 by
Fotheringham, Yang, and Kang. This method
“is similar in intent to Bayesian nonseparable
spatially varying coefficients (SVC) models, al-
though potentially providing a more flexible and
scalable framework in which to examine multi-
scale processes” [9]. It improves upon GWR
in a way that not only adapts to datasets on
different levels of non-stationarity but also pro-
vides the necessary information to evaluate the
scales of different processes. The latest re-
search using this approach is Geographical Ran-
dom Forest (GRF), proposed by Stefanos, Tais,
et al. in 2019. It adopts Random Forests [14]
as the base algorithm to create local models.
The principle idea of this method is the “disag-
gregation of RF into geographical space in the
form of local sub-models” [8], which is basically
another version of the multiple-local-model ap-
proach.

In conclusion, all these methods are di-
rectly or indirectly based on the multiple-local-
model approach and consequently suffer from
the same problems mentioned in the previous
section. In this work we propose a completely
different approach with the goal of better un-
derstanding and accounting for the intrinsic na-
ture of non-stationarity.

2.2 Study Area

We selected housing sales data from King
County, US as the target study area (ob-
tained from [15]). The dataset contains 21,613
records, with each record being a real estate
transaction that occurred between May 2014
and May 2015, a period during which the hous-
ing market remained relatively stable in King
County.

In this dataset, there are 20 features related
to the house’s location (latitude, longitude, zip
code), its basic information (size, number of
stories and rooms, garage, air conditioning),
and transaction-related information (sale date
and price). Some of the features have missing
values. This is not a problem for our algorithm,
which is based on the Random Forests algo-
rithm and can handle missing values. However,

Figure 1: Distribution of the King County hous-
ing data.

some other algorithms we use for performance
comparison are incapable of doing this. There-
fore, during the data preparation stage, we fill
in the missing values with the average value of
that column.

The goal of this dataset is to build a predic-
tive model that can estimate house sale prices,
given the house’s location and some of its basic
information. It is a well-researched topic that
has been studied for a long time. However,
even state-of-the-art algorithms in this area still
have ample room for improvement due to the
complicated nature of this task. Additionally,
it is a very typical human geography dataset
in which data availability varies depending on
the amount of human activity. Figure 1 shows
the distribution of the dataset on the map. As
depicted in the figure, the downtown area in
Seattle is populated with data, with some areas
left blank which are mostly parks or commer-
cial zones. Rural regions have much less data
scattered all over the place. The fact that this
dataset is distributed extraordinarily unevenly
across the space presents additional challenges
when using the previously mentioned multiple-
local-model approach, as local models which
correspond to rural areas will have fewer train-
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ing samples, leading to inaccurate results. In
urban areas, overcrowded data points will only
bring marginal improvement to models built for
that area.

Another issue with this dataset is that the
house sale price spans over a fairly large range
with a long tail, as shown in figure 2, which is
undesirable. To eliminate the tail, we convert
Price to log(Price), which follows the normal
distribution and is a much better target variable
to deal with.
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Figure 2: Distribution of Price vs. log(Price)

3. Latent Variable Random Forests

In this section, we provide a detailed descrip-
tion of the key designs of the Latent Variable
Random Forests as follows.

3.1 Key Design of the Latent Variable

By introducing a new latent variable, we aim
to use it to represent the hidden factors that
cause non-stationarity. In our housing price
model example, it would be a combination of
various unknown factors that could affect how
house prices should be modeled. For instance,
the security level of a community obviously has
an impact on house value. Although we don’t
have any information on which area is more se-
cure and which is not, its influence on the sale

price will be observable via non-stationarity. It
is important to note that the target variable
might be affected by multiple hidden factors
such as security, traffic, nearby schools, and so
on. But no matter how many hidden factors
there are, they will influence the target variable
together. It is impossible to know which fac-
tor has a larger impact. Fortunately, we don’t
need to care about that. Our primary focus is
on how these hidden factors as a whole would
affect the target variable we want to predict.

To better describe the problem, let
(f1, f2, ..., fn) denote the features in the
dataset and t denote the target variable to be
modeled and predicted. After adding a la-
tent variable lv, the feature vector becomes
F (lv) = (f1, f2, ..., fn, lv). Thus, the task is
converted to finding the best l⃗v that makes
the model trained from F (lv) (using a prede-
termined regular machine learning algorithm)
achieve the highest accuracy.

The vector space l⃗v is obviously unlim-
ited. Thus we introduce a value range of [0, 1]
to lv and define a minimum step interval of
0.01. The reason why we limit the value range
to [0, 1] is that the value range of lv actu-
ally doesn’t play an important role in the fi-
nal model. If lv is multiplied by 2, the result-
ing model will still be the same. So, only the
relative value matters and is what we should
care about. Also, during the machine learning
stage, all the features of the original dataset
need to be standardized and normalized any-
way, thus a standardized lv will, in fact, benefit
the entire procedure. For the minimum step,
the smaller it is, the more fine-grained the fi-
nal model would be. However, setting it too
small will also considerably increase the calcu-
lation time and may not be worth the marginal
return. So we recommend setting it to 0.01 as
a balance between speed and accuracy.

Theoretically, the value array of latent vari-
able l⃗v can be inferred by an exhaustive brute-
force search of the entire vector space. The
time complexity of doing so is as follows:

O(n) = (R

S
)n ∗ (Ttrain + Ttest) (1)

where n is the number of data points in the
dataset, R is the value range, S is the step size,
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Ttrain and Ttest are the time needed for training
and testing the model, respectively. Note that
the value of n is usually very large. Even for a
very small dataset, n will probably be greater
than 1000. Thus, this brute-force method is
completely impractical considering the amount
of calculation needed.

3.2 Grid Based Latent Variable System

To solve the time complexity problem, we
clearly need a smarter algorithm, for example, a
heuristic search, which could greatly reduce the
search space. But before that, let’s examine the
possibility of reducing the size of the potential
vector space, which would greatly benefit the
entire procedure even if a heuristic search is to
be adopted.

Here we introduce a grid-based latent vari-
able system. Let (xmin, xmax, ymin, ymax) de-
note the minimum bounding box that contains
the entire dataset. A step size of s will evenly
divide the space into this many grids:

G(s) = ⌈xmax − xmin

s
⌉ ∗ ⌈ymax − ymin

s
⌉ (2)

For each intersection of the grid system,
we assign an Influence Center (abbreviated as
IC) to it. For a data point with a coordinate
of (x, y), we first determine which grid it is
located in. Then calculate its latent variable
value from all the nearby ICs located at the
four corners of grid. Here we use an inverse
distance weighted method to combine the val-
ues from nearby ICs, in accordance with the
idea that nearby ICs should have a stronger in-
fluence on the latent variable than remote ones.
The detailed formula is as follows:

v(x, y) =
∑N

i=1 W (ICi)V (ICi)∑N
i=1 W (ICi)

(3)

where W (ICi) is the weight for the ith in-
fluence center which equals the inverse of the
Euclidean distance between the data point and
the IC.

This design simulates how the hidden fac-
tors create non-stationarity in the dataset. No
matter what hidden factors there are, as a

general rule, they would affect nearby data
points more than remote ones. Thus we simu-
late this procedure by introducing the concept
of Influence Centers and making them impact
nearby records in a similar way. Another benefit
brought by this design is that now the search
space is greatly reduced down to the number
of ICs. Instead of finding the best values for
all the records, we only need to optimize the
values for ICs now, which is way less than the
total number of records.

3.3 Random Forests as the Base Algorithm

Before proceeding, we still need to decide which
base machine learning algorithm is to be used
to train models. Here, our choice is the Ran-
dom Forests [14] algorithm. As suggested in
the name, Random Forests will create many
randomly generated decision trees to perform
the prediction task together. For classifica-
tion tasks, the final result would be a major-
ity vote of results from all the decision trees.
For regression, this would be an average of all
results. The core idea of RF is to create a
bagging procedure where the variance of the
model is decreased but the bias remains un-
changed, thus generating a better result from
sub-optimal models.

There are multiple reasons why we choose
RF as our base algorithm. First, RF is based
on decision trees which are naturally good at
handling coordinates in geographic datasets.
Then, Random Forests is among the top ma-
chine learning algorithms available and often
shows exceedingly good results when handling
spatial data, as proven by [16] and [17]. We
will be able to inherit all of these advantages
by using RF as the base algorithm.

3.4 Back Propagation

With a reduced search space, the time complex-
ity is still massive as we are only replacing (R

S )n

in Formula 1 with Xn (X is the total number
of influence centers) if a brute-force search is
to be used. Thus we must find a way to further
reduce the search space, i.e., a heuristic-search
like method.

Here, inspired by the backpropagation al-
gorithm in Neural Networks [18], we have de-
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signed a backpropagation process to search for
the best values for influence centers, as de-
tailed in Algorithm BackPropagation(). In
this function, a learning rate α is introduced,
which determines how fast the backpropa-
gation converges. A large value will cause
BackPropagation() to converge faster, but
the generated result will be more likely to be
coarse-grained and thus less than optimal. Con-
versely, a smaller value will converge slower but
produce better results. Generally speaking, the
best α value is recommended to be set to the
smallest value within acceptable training time.

1 Function BackPropagation()
2 Initialize IC Array
3 while IC Array has not converged

do
4 foreach IC in IC Array do
5 foreach learn rate in [α, -α]

do
6 IC new = IC +

learn rate
7 if Trained model sees

improvement in
accuracy then

8 IC = IC new
9 else

10 continue
11 end
12 end
13 end
14 end
15 return IC Array
16 end

The converge condition in the BackProp-
agation() algorithm is a bit tricky. Ideally, if
IC Array remains the same after an iteration,
the algorithm is considered converged as fu-
ture iterations will produce the same results.
However, this does not necessarily happen as
IC Array may always change slightly with pretty
much the same results. So, we insert a pro-
cess at the end of each iteration, which will
evaluate the test accuracy under the current
IC Array. If the test accuracy does not improve
for more than 5 iterations, we consider the algo-

rithm converged and stop the backpropagation
iteration. Although this extra calculation slows
down the entire algorithm, it is worth the cost.

3.5 Prediction

The prediction process is relatively simple. Af-
ter the IC Array is returned by BackPropaga-
tion(), the final Model is trained from the orig-
inal dataset plus the latent vector generated
from IC Array. When predicting an unknown
observation, the latent variable is first calcu-
lated by using the inverse distance weighted
method from Formula 3. Then, Mode is ap-
plied to get the final prediction result.

3.6 Assessment Measurements and Results

One thing that wasn’t mentioned in the previ-
ous sections is that a proper assessment mea-
surement must be chosen. This actually plays
an important role in the algorithm, as the eval-
uation result generated by the measurement
will be used to determine how the backprop-
agation process runs and guide it to gener-
ate a better result for each iteration. Some
of the most commonly used measurements
are [19]: mean absolute error (MAE), mean
squared error (MSE), and root mean squared
error (RMSE). In our case, MAE is preferred
as the other ones will penalize large errors and
cause bias in our algorithm.

Now that the algorithm is complete, we
have run LVRF on the King County housing
dataset and achieved an MAE of 0.263. As a
comparison, we also experimented with unmod-
ified Random Forests on the same dataset and
obtained a result of 0.289. This means that the
learned latent variables were able to offset some
of the non-stationarity and made it easier for
the standard RF to generate a more accurate
model. To compare with the others, we also
evaluated the same dataset using two state-
of-the-art algorithms, RFsp [20] and MGWR
[9], which are specifically designed to handle
geographic datasets and non-stationarity. The
results for RFsp and MGWR were 0.261 and
0.272, respectively. These results suggest that
the idea of using latent variables to capture
hidden factors that cause non-stationarity is at
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least as effective as the best results achieved
using the multiple-local-model approach.

4. Conclusion

This paper presents LVRF, a machine-learning
algorithm that can create predictive models
for non-stationary geographic datasets. Un-
like other algorithms, LVRF adopts a latent
variable based approach, instead of the widely
used multiple-local-model strategy. Experi-
ments show that LVRF can build models as
accurately as state-of-the-art algorithms while
avoiding the common disadvantages of the
multiple-local-model approach. First, LVRF es-
tablishes grid-based influence centers. The la-
tent variable value of any data point is decided
by the nearby influence centers using an inverse
distance weighted method. Then it uses a back-
propagation algorithm to train the values of the
influence centers until they converge. To pre-
dict unknown observations, the data point’s la-
tent variable is calculated from the converged
influence centers, and fed into the model with
its other features.

The insight of LVRF is that the design of
the influence center can mimic the hidden fac-
tors which affect nearby data points in differ-
ent ways depending on the location. By learn-
ing these hidden factors with a backpropaga-
tion algorithm and then including them in the
model creation stage, the impact brought by
non-stationarity will be offset. This approach
allows for a single global model to be used to
describe the features plus the hidden factors.

It is also worth mentioning that, although
Random Forests is selected as the base algo-
rithm, LVRF is capable of using any other reg-
ular machine learning algorithm as the base al-
gorithm. Doing so may bring advantages in
certain scenarios when there is preknowledge
regarding the dataset.
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