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Abstract—Recent years saw explosive growth of Human Geog-
raphy Data, in which spatial non-stationarity is often observed,
i.e., relationships between features depend on the location. For
these datasets, a single global model cannot accurately describe
the relationships among features that vary across space. To
address this problem, a viable solution — that has been adopted
by many studies — is to create multiple local models instead of
a global one, with each local model representing a subregion
of the space. However, the challenge with this approach is
that the local models are only fitted to nearby observations.
For sparsely sampled regions, the data could be too few to
generate any high-quality model. This is especially true for
Human Geography datasets, as human activities tend to cluster
at a few locations. In this paper, we present a modeling method
that addresses this problem by letting local models operate
within relatively large subregions, where overlapping is allowed.
Results from all local models are then fused using an inverse
distance weighted approach, to minimize the impact brought
by overlapping. Experiments showed that this method handles
non-stationary geographic data very well, even when they are
unevenly distributed.

Index Terms—spatial non-stationarity, human Geography, ran-
dom forests

I. INTRODUCTION

Geographic datasets are usually categorized by the phenom-
ena they describe. Data collected about the natural processes
of the Earth are categorized as Physical Geography datasets,
such as mineral resources, hydrology, weather, and climate [1].
In contrast, data generated about activities of people are called
Human Geography datasets: housing, culture, traffic, disease,
war, crime, etc.. Historically, researchers were more interested
in Physical Geography datasets in order to learn how to survive
and mitigate the damage of natural disasters [2], discover and
utilize mineral resources, understand environmental damage
[3], and so on. But recent years also witnessed an explosive
growth of Human Geography data, as GPS-enabled devices
are omnipresent in everyday life [4].

With new data come new challenges. Many of the tools
and theories that worked well with Physical Geography data
are incompatible with the new datasets, which have signifi-
cantly different characteristics. Spatial non-stationarity is one
of them. For Physical Geography data, researchers usually
assume stationarity, meaning the relationships among features
remain unchanged across space. This makes perfect sense
because Earth’s natural processes, such as the distribution of
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mineral deposits, will only be relevant to various environ-
mental factors. Location doesn’t matter as long as all the
environmental factors have been sampled. However, such an
assumption is not necessarily valid for Human Geography data
due to the complicated nature of human activities. For instance,
a house’s sale price is affected by numerous factors like the
number of bedrooms, garage space, square footage, and so on.
When stationarity is assumed, the increase of garage space
will cause the same amount of sale price increase everywhere,
which is not the case, as garage space can be much more
valuable in cities than in rural areas. Even for urban areas,
it’s unlikely that Paris shares the same pricing model with
New York. Thus, it makes more sense to think that the sale
price model is affected by “local knowledge” [5], which shifts
over space. This local knowledge is not directly included in
the dataset because it’s difficult to collect or measure, but its
influence on the data is real and observable.

A viable solution to the non-stationarity problem is to build
multiple local models instead of a single average global model.
Each local model represents a subregion of the space within
which the data is relatively stationarity. Many studies took this
route (e.g., [5], [6] and [7]) and obtained significant improve-
ments. However, the fact that local models are only trained
from nearby observations within a certain area (called the
kernel) can be a double-edged sword, and the size of kernels
(called the bandwidth) must be chosen carefully [8]. According
to [9], modeling accuracy will be severely impacted if the
sample size drops below 1000. Thus, a smaller bandwidth
will generate fine-grained models, but each of them is less
accurate. In contrast, a larger bandwidth will be less sensitive
to non-stationarity and tends to generate local models similar
to each other. When data is extremely unevenly distributed, the
majority of kernels will contain so few data that it’s pointless
to adopt the multiple-local-model approach. Figure 1 shows
the Melbourne housing data (ranging from 2016 to 2018),
which illustrates how unevenly distributed data could be for
Human Geography datasets.

To solve this problem, we propose the IDW-RF (Inverse
Distance Weighted Random Forests) algorithm, which adopts
the multiple-local-model approach but allows kernels to over-
lap. Experiments show that IDW-RF performs as well as other
state-of-the-art methods when data is evenly distributed and
outperforms in uneven distribution.
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Fig. 1. Spatial distribution of Melbourne housing data.

II. BACKGROUND

Researchers had been studying how to model non-stationary
spatial data for a long time. Brunsdon, Fotheringham, and
Charlton performed the first well-known research on this topic
in 1996 [5]. In the paper, an algorithm called Geographically
Weighted Regression (GWR) was proposed, whose “main
characteristic is that it allows regression coefficients to vary
across space, so the values of the parameters can vary between
locations” [10]. GWR solves non-stationarity by making it
possible for relationships between features and labels to differ
across spaces, rather than generating an average global model.
Many later studies are based on this multiple-local-model
idea. For example, [6] improves GWR by replacing Ordinary
Least Squares (OLS) — which is used in GWR to generate
local models — with Random Forests and see substantial
improvements, as the Random Forests algorithm is naturally
superior to OLS at modeling spatial data. And [7] allows
different local models to operate at different spatial scales,
thus building more flexible and scalable regression models.

These studies also discussed the problem mentioned above
that the bandwidth of kernels must be carefully chosen to
get any useful models. [5] uses cross-validation to find the
optimal bandwidth. [7] has a complicated weighing method
and invented a Back-Fitting algorithm to solve the bandwidth
selection problem. [6] fuses prediction results from global
and local models, to improve overall accuracy when the local
models are not good enough. However, these methods fail to
discuss the case in which data are so unevenly distributed
that it’s impossible to find a bandwidth that achieves both
high accuracy (favors larger bandwidth) and non-stationarity
(prefers smaller bandwidth). Here, we present a new approach
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that allows local models to be trained from very large kernels
(typically greater than 10% of the entire dataset) so that
bandwidth no longer plays a critical role in the success of
the algorithm. The impact brought by letting kernels overlap
each other is then minimized by fusing all prediction results
with the IDW method.

II1. INVERSE DISTANCE WEIGHTED RANDOM FORESTS

IDW-RF’s design includes five key steps in training and
predicting process, which we detail below.

A. Training: Select Kernel Centroids

As previously mentioned, a kemel is defined as an area in
which a local model operates. The number, location, and radius
of kernels will have a direct impact on the model performance
and, thus, must be carefully chosen. A common way to do
this — as adopted by many other researchers — is to use the
locations of all the data points as kernel centroids, which also
implies that the number of local models will be the same as the
number of data points. The main disadvantage of this method
is that it’s computationally expensive and doesn’t scale well
when the data size increases. In our case, another drawback of
this method is most of the calculations would be unnecessary
and even harmful because the adoption of large kernels means
most kernels will significantly overlap with each other if there
are too many of them.

Here, we use a simple grid-based method to generate kernel
centroids. Within the dataset’s boundaries, space is evenly
divided to grid cells, whose geometric centers are then used
as kernel centroids. The value of G — the size of grid cells —
can be determined by either prior knowledge of the data, an
exhaustive grid search process, or a combination of both. As
a general rule of thumb, if prior knowledge is to be used,
G should be the best guess on the average range within
which data points remain relatively stationary. For example,
when predicting house sale prices, homes within the same
community are generally believed to follow the same pricing
model. In other words, data is stationary on the scale of
communities. So for this case, G can be set as the average
size of communities. However, in most scenarios, when prior
knowledge doesn’t exist or cannot be precisely determined, an
exhaustive grid search will be used to find the optimal value
of G, which will be explained in detail later.

B. Training: Determine Kernel Sizes

There are two types of kernels. Adaptive kernels are defined
by n nearest neighbors, whereas fixed kernels have a predeter-
mined radius r [8]. In the present study, adaptive kernels are
used, since they perform much better when data density varies
across space, which is the main challenge this paper tries to
solve. Instead of n, we use a = f;, where N is the total
number of data points, to get a better idea of what percentage
of data are used to train each of the local models. Similarly
to G, this parameter is also tuned by the grid search process.
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C. Training: Create Local Models

After kernels are chosen, local models can then be trained.
Here we use the Random Forests [11] algorithm to create
local models. As the name suggests, Random Forests use
multiple randomly generated decision trees to predict unknown
observations. Each of the trees is trained by only part (about
two-thirds) of the data points available. Moreover, during the
feature selection process, each decision tree node only chooses
from a random subset of features. The final prediction result
is either a majority vote (for classification) or an average (for
regression) of results from all the trees. The theory behind RF
is that the bagging process will decrease the variance of the
model without increasing the bias, leading to better overall
model performance.

We choose RF to create local models for several reasons.
First, RF will not over-fit no matter how the number of trees is
increased. According to a study of the Random Forests [12],
expected generalization error of ensembling decision trees has
a variance of:

1 - p(z)

var(z) = p(a) - 03,o(2) + L 02 ()

in which M is the size of the ensemble and p(z) is Pearson’s
correlation coefficient between two randomized models trained
from the same data. Thus if p(z) is smaller than 1 (which is
always the case for RF), increasing M (number of decision
trees) will always cause var(z) to decrease. This characteristic
of RF is critical to the success of our algorithm, which is de
facto an ensemble of decision trees that trained on the same
or partially different data.

Second, RF is based on decision trees, which is naturally
good at handling coordinates in geographic datasets. Many
other models have trouble with them because latitude and lon-
gitude will be treated as independent variables if fed directly
into the model. In such a case, loss of spatial information
would be unavoidable, and the model’s effectiveness would be
undermined. As a workaround, researchers often run a feature
engineering process on geographic datasets before training,
to capture the information embedded within data locations
and convert them into additional features. But this method
is often unreliable, and the results largely depend on the skill
of the person who performs the feature engineering process.
But decision trees do not suffer from such complications. If
a leaf node of the decision tree is examined, its criteria are
determined only by the set of ancestor nodes all the way up
to the root, for which the order doesn’t matter. If latitude or
longitude appears in any of its ancestor nodes, like in the
example shown in Figure 2, the leaf node can be considered
as operating within the area defined collectively by all its
ancestor latitude/longitude nodes. This is precisely how we
expect location information to be accounted for.

Additionally, Random Forests is one of the best machine
learning algorithms available and often shows excellent po-
tential when dealing with spatial data, as observed by many
studies, including [13] and [14]. Using RF as the underlying
local model will enable us to inherit all of these advantages.
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Fig. 2. A branch of decision tree trained from Melbourne housing data.

D. Predicting: An Inverse Distance Weighted Approach

To predict an unknown observation, results from all local
models are combined with the following formula:

_ Y wi(@)fi(@)
0= e i)
where
d(z,z;) P, ifd(z,z;)>L

wi(z) = { L», if d(z, ;) < L

Here, f;(z) is the prediction result for unknown observation
z, given by the ith local model. w;(z) is the weight, which
decreases as distance d(z,x;) increases between z and the
local model’s kernel centroid. p is a positive real number,
called the power parameter. L applies a lower bound to the
distance function, to avoid the situation in which z is so close
to a local model that renders all others useless. This situation
is generally not a problem when IDW is used for interpolation
purposes but is harmful in our case. Being close to the centroid
of a kernel doesn’t make the data point a better fit for the local
model than others. As a general rule of thumb, L should be
smaller than G (grid cell size), and here we use L = G/2 in
our model. Its value can be fine-tuned. But experiments show
that as long as L stays close to G/2, its value doesn’t have
an observable impact on overall accuracy.

There are multiple reasons why this inverse distance
weighted approach works. For one, the idea is in accordance
with the first law of geography “everything is related to
everything else, but near things are more related than distant
things”, which was proposed by Tobler in 1970 [15]. Spatial
heterogeneity is accounted for in this method by assigning
larger weights to closer local models. Another reason is
that the adoption of large kernels significantly improves the
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local model’s accuracy, which then benefits the entire model.
Although ensembling local models trained from the same data
could increase the variance of the generalization error, this
possibility is eliminated by adopting Random Forests as the
underlying local model, which doesn’t over-fit no matter how
many decision trees are trained, as discussed in the previous
section.

E. Exhaustive Grid Search with Cross-Validation

So far, the algorithm is almost complete except several
parameters are not yet determined: grid cell size G, kernel
size v, and the power parameter p in the IDW formula. Best
values for these parameters depend on the dataset and have
to be fine-tuned on a case-by-case basis. As a general idea,
datasets with larger scales of non-stationarity tend to favor a
large G value. The smaller the dataset is, the larger o should
be to offset the impact on accuracy brought by small training
data size. And large p values should be used when the data is
highly non-stationary.

To get the best performance, our research utilizes the Grid
Search method to determine the best G, «, and p. The grid
search method runs an exhaustive search on a predetermined
hyper-parameter space. Each parameter has a lower bound,
an upper bound, and the number of steps. The method will
attempt all parameter combinations to find the best one.
This process is considered to be computationally expensive.
However, since we only run this process during the training
stage, it is generally not a problem for most applications that
are not sensitive to long training time.

Still, Grid Search alone is not effective enough as it is
prone to variance problems. Model performance obtained from
one test may differ from the others due to randomness in the
tests performed. If not dealt with, this variance may propagate
further down the line and cause the parameters learned from
the Grid Search process to be biased. For this reason, we add
Cross-Validation [16] to the evaluation process of the Grid
Search. A straight-forward K-Fold Cross-Validation would be
sufficient for a general problem, but the story is very different
for a geographic dataset. A randomly generated training set
from the regular K-Fold algorithm is not necessarily equally
random at all locations. Many researches have noticed that this
could lead to potential issues and proposed different cross-
validation strategies [17]. In our study, we adopt the Block
Cross-Validation method, which splits data into blocks from
which samples are equally withdrawn. For this method, there
is no set rule on how large the blocks should be and how
many folds (i.e., the value of K) work the best. Generally
speaking, the blocks should be of the same scale on which
the data remains stationary. And although a higher K gives
better results, it would significantly extend the Grid Search
process. Thus, K should be set as high as the computing time
limitations allow.

IV. A CASE STUDY: MELBOURNE HOUSING MARKET

In this section, the IDW-RF algorithm will be applied to
the Melbourne Housing Market data (downloaded from the
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Fig. 3. Histogram of Price vs. log(Price).

Kaggle website [18]). The dataset contains 8,841 (records
with missing fields are stripped) real estate transaction records
in the city of Melbourne in Australia from 2016 to 2018,
during which the area was experiencing a housing bubble.
As shown in Figure 1, this is a very typical non-stationary
human geography dataset in which data is extremely unevenly
distributed. In densely populated areas, there are more than
enough data points to outline the Port Phillip Bay’s coast. But
rural areas only see sparse data points scattered all over the
space. Thus, this is a perfect dataset to test the capability of
the IDW-RF algorithm.

A. Data Cleaning and Exploratory Analysis

The original dataset has 21 features which can be catego-
rized into these groups:

o Location related features: latitude/longitude, zip code,

suburb, region, etc.

o Transaction related features: sale price, date, seller and

sale method, etc.

o House related features: the number of bedrooms and

bathrooms, garage space, land size, etc.

Of all these features, the sale price is the target variable
we would like to model and predict. After plotting the house
price value as a histogram, we immediately realize that it spans
over a broad range with a long tail, as illustrated in Figure 3.
Thus we adopt log(Price) — which has a normal distribution —
instead of using Price directly as the target variable. Among
the rest of the features, Latitude and Longitude are the most
important ones giving us the precise location of the house. The
address field is unnecessary as it’s inferior to the coordinates
and cannot provide any other useful information. However,
other location-related features, like zip code and suburb, are
kept even though they are derivable form the coordinates, as
they have sharp boundaries affecting the tax and school district
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of the house. And all transaction/house related features are also
useful.
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Fig. 4. Pearson correlation of all important features.

Figure 4 shows the Pearson correlation heatmap among
the most important features. From the figure, the sale price
has an obvious positive correlation with the number of
rooms/bathrooms and the building’s area (square meters of the
living area). It also has a solid negative correlation with year
built and house type. The sale method (how the house was
sold) is not correlated with anything; thus, it can be removed
from the modeling process. None of the rest of the feature pairs
show a strong positive or negative correlation. Therefore, it’s
safe to retain all of them.

However, Fig. 4 only gives us the global average correlation
among features, which doesn’t tell anything about how it could
vary across space. Therefore, we split the entire coordinate
space into 80 grids (10 x 8). To reduce randomness introduced
by the small sample, grids with too few data points are
removed from the rest of the calculation. In each of the grids
left, the Pearson correlation coefficient is calculated between
all regular features and the target variable log(Price). Then,
all the results are summarized to form Table I. Here, we can
see that Landsize has the largest standard deviation among
all features, which means it’s probably “more non-stationary”
than the others. Nevertheless, almost all features show a great
difference between the minimum and maximum correlation,
which is an indication that the level of non-stationarity cannot
be overlooked in this dataset.

B. Assessment Measurements

Before proceeding, we still need to decide how to measure
the accuracy of our models. The choice of measuring method
would affect the creation of Random Forests and the Grid
Search process during which parameters are optimized. The
most commonly used error measurements are: mean absolute
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TABLE I
STATISTICS OF CORRELATIONS ACROSS SPACE

mean std min max
Suburb -001 0.18 -0.28 0.43
Rooms 068 0.11 0.47 0.87
Type -067 012 -0.84 -0.38
Distance 009 019 -039 022
Postcode 003 015 -0.27 0.27
Bathroom 048 0.12 0.24 0.74
Car 035 011 0.14 0.55
Landsize 031 028 -0.16 0.80
BuildingArea 061 013 0.28 0.83
YearBuilt 028 017 <057 002
0.184 4
gu.laz-
0.180 1
0178+
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Fig. 5. Calibrate Parameters with Grid Search.

error (MAE), mean squared error (MSE), and root mean
squared error (RMSE). Here, we prefer MAE (see the equation
below) as the latter two methods tend to penalize large errors,
which makes them unfavorable in our situation.

MAE = E:‘zl |y1 = xil
n

C. Results

Now that everything is ready, we apply the IDW-RF al-
gorithm to the data. Results returned by the Grid Search are
plotted as an Average-Max-Min chart, as shown in Figure 5.
We can see that a valley is present in all the three graphs,
where MAE is the lowest. According to the results, a kernel
size of 0.22 (meaning 22% of all data points are used to
form the kernel) is optimal for this particular dataset. This
observation matches our theory that when data points are
sparse in most areas, a large kernel will produce better overall
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results. But if the kernel becomes too big, the model will fail
to capture non-stationarity, as all local models tend to behave
the same.

Additionally, the optimal grid cell size is 0.039 (the differ-
ence in the longitude), which translates to about 3.4 kilometers
in the city of Melbourne. And our assumption was that grid
cell size should be roughly on the same scale with which the
data remain stationary. Although for this dataset there is no
way to know on what distance would the house price model
remain stationary, it is reasonable to believe it's of the same
scale of 3.4 kilometers. As for the power factor, its range of
MAE is way smaller than the others. The implication of this
is that the optimization of power factor p takes priority vs.
the others. This makes sense as the local models’ training
areas overlap each other heavily, and the power factor must
be carefully tuned to fuse them correctly.

TABLE II
RESULTS FROM DIFFERENT ALGORITHMS.

MAE
Linear regression  0.308
Neural Network 0.317
Random Forests 0.187
MGWR 0.186
RFsp 0.191
IDW-RF 0.174

As a comparison, we run several other algorithms on this
dataset and list the results in Table II. Unsurprisingly, the
non-geographic algorithms (Linear Regression and Neural
Network) perform poorly, as they are not capable of handling
non-stationary geographic data. We also tested two state-of-
the-art geographic machine learning algorithms RFsp [19]
and MGWR [7], using their R and Python implementations.
Both of them adopt the multiple-local-model method and use
RF as the underlying local model. Results show that their
performance will degrade to that similar to the original RF
for such an unevenly distributed dataset.

V. CONCLUSION

This paper presents IDW-RF, which models unevenly dis-
tributed non-stationary data very well. IDW-RF first split the
entire coordinate space into multiple grids from which kernel
centroids are chosen. It then establishes a kernel for every
centroid by including the nearest data points. Next, local
Random Forest models are trained from these kemels. All
the local models will perform predictions together by fusing
their results with an Inverse Distance Weighted approach.
Finally, an Exhaustive Grid Search with Cross-Validation will
be performed to calibrate the parameters.

The insight of IDW-RF is that by choosing a relatively
large kernel size, local models’ accuracy will be significantly
improved (especially when data are unevenly distributed over
space). On the other hand, the expected generalization errors
brought by allowing kernels to overlap each other are mini-
mized by choosing Random Forest — which doesn’t suffer to
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over-fitting no matter how many decision trees are trained — as
the algorithm to build local models. This method is capable of
handling non-stationary datasets and outperform others when
data is spatially unevenly distributed.
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