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Abslmcl-Non-statlonarity ls often observed in Geographic 
datasets. One way to explain non-stationarity ls to think of it as a 
hidden ''local knowledge'' that varies across space. It is inherently 
dlllicult to model such data as models built for one region do 
not necessarily flt another area as the local knowledge could be 
different. A solution for this problem is to construct multiple local 
models at various locations, with each local model accounting for 
a sub-region within which the data remains relatively stationary. 
However, this approach is sensitive to the size of data, as the 
local models are only trained from a subset of observations 
from a particular region. In Ibis paper, we present a novel 
approach that addresses this problem by aggregating spatially 
similas sub-regions into relatively large partitions. Our insight ls 
that although local knowledge sbifls over space, it ls possible for 
multiple regions to share the same local knowledge. Data from 
these regions can be aggregated to train a more accurate model 
Experiments show that Ibis method can handle non-stationary 
and outperforms when the dataset ls relatively small. 

Index Terms-spatial non-stationarity, R-tree, heuristic search, 
boosting 

I. INTRODUCTION 

Non-stationarity is often observed in Geographic datasets. 
With these datasets, a predictive model learned at one location 
does not necessarily remain effective at other locations. For 
example, when performing topic modeling on documents, 
certain topics - such as "politics" - are presented differently 
in different regions, even where the same langoage is spoken. 
1bis phenomenon is called geographic lexical variation [1] 
and is a major cballenge that one must solve before building 
any accurate topic models. For such data, a single average 
global model is not good enough to accurately describe all 
regions. The source of non-stationarity usually comes from a 
lack of data. In the topic modeling example, if more data is 
available regarding the cultural difference among geographic 
regions, it would help with the model accuracy. In other words, 
non-stationarity has been reduced. The more data we have, 
the more stationary it would be. In the extreme case, if the 
dataset includes all aspects of how every single peison talks, 
it essentially becomes a stationary dataset with which it is 
possible to build a global model with superior accuracy. 

But data - especially Human Geography data - are in­
herently difficult to collect. In our topic modeling example, 
it is impossible to collect every person's data in a certain 
area, no matter how small the area is. Even if one finds a 
way to collect such data, it is also challenging to quantify 
certain variables. For example, house sale datasets are typically 
non-stationary. Models fitted from London would not work in 
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Tokyo. Even in the same city, the model wouldn't be the same 
for all areas. Safety is one of the factors that affect the sale 
price of a house. But how does one measure the safety of 
an area? Besides safety, countless factors can affect the sale 
price of a house, such as traffic, education (school district), 
tax implications, etc. None of these are easy to collect or 
measure. These factors are called '1ocal knowledge" [2] in 
some research. Local knowledge shifts over space and caused 
non-stationarity. It is unknown to researchers, but its influence 
is real and observable. 

Historically, researchers were more focused on Physical 
Geography datasets, which are mostly stationary, as the natural 
processes of Earth - such as mineral deposits and climate -
can be accurately described by environmental factors [3]. If 
all relevant factors are sampled, the model should work no 
matter where it is. But with the exponential growth of Human 
Geography datasets due to the widespread adoption of GPS­
enabled personal digital devices [4], non-stationarity in Human 
Geography data received much more interest from researchers. 

To solve non-stationarity, a popular approach is to build 
multiple local models to account for different regions. The re­
gions need to be small enough that data in them are considered 
to be stationarity or almost stationary. Studies such as [2], [5] 
and [6] took this approach and obtained great results. However, 
the biggest problem with this approach is that local models are 
only fitted to data within a certain region (called the kernel 
[7]), which is a relatively small set comparing with all the data 
available. And studies have shown that small sample size has 
a negative impact on model accuracy [8]. The impact is huge 
when the sample size drops to a certain threshold. Thus, all 
the multiple-local-model approaches must seek a compromise 
between sample size (favors larger kernel size) and the ability 
to handle non-stationarity (favors smaller kernel size). For 
smaller datasets, these approaches essentially deteriorate to a 
one-global-model approach because kernel sizes must be really 
large for local models to produce meaningful results. 

Here we propose the GB-Tree (Geographic Boosting Tree) 
as a novel solution to non-stationarity. Our insight is that 
different regions - even if they are disconnected from each 
other - could share the same models. For example, if we 
examine the house sale price models for all regions in the U.S., 
it would be normal to find multiple regions sharing the same or 
very similar models. If we aggregate data from similar regions 
(we call this procedure boosting), the trained models would 
have much higher accuracy than the individual models due 
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to the increased number of observations. 'Ibis benefit would 
be maxiuriu:d if each of the regions has a small dataset. but 
combined are large enough to gene.rate an accurate model 
ExperimentB show that GB-Tree out-perform other state-of­
the-art methods when the dataset ia relatively small. 

II. BACKGROUND 

Nan-stationarity bas been r.tudied for a long time. Barly 
in 1996, Bnmsdon. Fotheringham. and Charlton proposed 
the GWR (Geographically Weighted Regression) algorithm. 
for this problem. Its "main characteristic is that it allows 
regression coefficients to vary across space, so the values 
of the ptlllllIICters can vary between locations" [9]. GWR is 
designed to allow relationships between features and labels 
to differ across space, which is substantially equivalent to 
building many local models for each of the sub-xegion. 

Many later studies inherited this multiple-local-model idea. 
[5] changed the base modeling algorithm - the method used 
to build local models - from Ordinary Least Squares (OLS), 
which was used by GWR. to Random Forests (RF) and 
observed substantial improvements. Put of the reason why 
this method was succcaaful is that RF can capture some of the 
non-stationarity, thus benefits more from largec sub-regions. 
And [6] further extended the idea by building local models 
at multiple spatial scales, which make it more flexible and 
suitable for dataaets where non-stationarity is observed at 
various scales. 

However, all these methods suffer from the previously 
:mentioned problem that when the dataset is relatively small, 
it is impossible to build effective local models from eac.b 
of the sub-region, which would be even smaller. Some of 
them do adapt to dataset size to a certain degree. But in this 
case, they would simply adopt huge kemel sizes that it is no 
different from building a single global model with the base 
modeling method. Here, we present a new approac:h that solves 
this problem by allowing sub-regions to be aggregated. The 
aggregated sub-regions (called partitions) will have a boosted 
accuracy compuing with treating each of the sub-regions 
individually, thus resulting in improved overall performance. 

III. STUDY AREA 

Throughout the paper, we uae the Melbourne Housing Mar­
ket data (obtaimd from [10]), which contains 8,841 real estate 
transaction records from the city of Melbourne in Australia. 
The records span from 2016 to 2018, during which a housing 
bubble was observed in the area. There arc 21 features in the 
dmaet that can be categoriuid into location, transactioo., and 
house related features. Among all of them, the sale price is 
the target variable to be modeJed and predicted. 

This is a classic human geography dataset in which data 
availability varies depending on the amount of human activity. 
As illustrated in Figure 1, the downtown area had a lot of real 
estate transactions during that period, whereas rural regions 
only have scattered data points. If local models are to be built 
for each of the rural i:cgiooa, there is cert.ainly not enough data 
points to train any meaningful model. 
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IV. GEOGRAPHIC BOOSTING TRBB 

In this section we detail the design and key steps in GB­
Tn:e's training and predicting process. 

A Deftnin.g Spatial Similarity 

Tu aggregate aimilar sub-regions, we first need to define 
what regions are considtted to be similar to each other. Here, 
we introduce the concept of "Spatial Similarity". A region of 
a geographic dataset is said to be spatially similar to another 
region if both regions can be explained by the same or similar 
local models. 

Let: 

• R. denot.es a sub-region in a geographic dataset. 
• X(.R.o) denotes observations within R.. 
• M(R.) denotes the model fitted to X(.R.o) using any 

Ullderlying algorithm. 
• E(M(Ro),R;) denotes the prediction error of applying 

M(Ro) to Ri 
Then, Ro and R; are said to be spatially similar if: 

E(M(R.), R.) ~ E(M(R.), R;) 
and. E(M(R;), Ro) R$ E(M(R;),R; ) 

"With spatial similarity defined, our goal can be described 
as finding all the regiona that are similar to each other 
and aggregate them as Puti.tiona (denoted as P). For each 
Pi, ... , Pn, we will build a corresponding Boosted Model 
(BM). The final model is then comprised of all BM, which 
will predict unknown observations together. 

B. 'le1ting Spatial similarity 

Tu verify if the idea of spatial similarity wmb, a test is 
designed to check. if there is any said spatial similarity in 
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Fig. 2. Spatial similarity test (line graph). 
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Fig. 3. Spatial similarity test (scatter plot). 

the Melbourne House Price dataset. Each time, two random 
regions~ and R3 (they have the same size) are selected from 
the dataset. M(~) and M(R3) are then trained from each of 
the region, using the Random Forests algorithm. After that, 
M(~) is used to predict data points in R3 and the prediction 
error (measured by MAE, Mean Absolute Error) is added to 
the final result set. Same procedure is also applied for M ( R3) 
and~. This procedure is repeated enough times (5000 times) 
to reduce sampling bias. 

The result is shown in figure 2. The distance is the Euclidean 
Distance between latitude and longitude of two region's geo­
graphical centers multiplied by 104 for the sake of simplicity. 
From the graph, we can see that MAE is only low when the 

two regions are very close to each other. In this case, the low 
MAE is actually caused by ~ and R3 overlapping each other, 
thus models trained from ~ and R3 are also similar. After a 
certain distance, the MAE doesn't grow any more and stays 
unchanged no matter how the distance increases. 

When rendering the test result as a scatter plot. as shown 
in figure 3, we have additional observations. The fluctuation 
of MAE in figure 2 actually comes from a few number of 
outliers, which may formed by various reasons. One possible 
reason is that data points are unevenly distributed in the dataset 
space. Thus some sub-regions may happen to have too few 
observations in them to create any accurate models. If these 
outliers are excluded from the result. we can say that MAE 
stays almost the same no matter how distance changes. 

As a conclusion, two regions, even if they are far away 
from each other, could be spatially similar enough that they 
can explained by the same model. By this observation, it 
is possible for us to aggregate spatially similar regions into 
partitions. 

C. Creating Regions 

As the first step of our algorithm, the data space needs 
to be divided into regions. Theoretically any spatial dividing 
algorithm can accomplish the task, such as Grid method, 
Quadtree [11], and K-D Tree [12]. But to get optimal results, 
we choose to use a customized R-tree to perform the task 
of dividing space. R-tree was proposed by Antonin Guttman 
in the year 1984 [13]. Its main idea is to use a minimum 
bounding rectangle (MBR) to group objects within an area, 
and organize them into a hierarchical structure. Unlike many 
other hierarchical trees, R-tree is constructed from bottom up. 
Here, we adopt R-tree for several reasons: 

• A minimum and maximum number of children can be 
specified for each of the node. This flexibility makes it 
possible to create larger MBRs in sparse areas and smaller 
MBRs in dense areas. 

• The choose leaf procedure in the R-tree algorithm is 
highly customizable. In fact, many R-tree variants were 
developed over the years,, like R*-tree [14], R+ tree, 
Hilbert R-tree [15] and so on. 

The problem with the classic R-tree is that it could generate 
very narrow MBRs. We want to avoid such situation because 
far away data points are less likely to be accounted for by 
the same model. The famous first law of geography says 
"everything is related to everything else, but near things are 
more related than distant things" [16]. In accordance with the 
idea, we should try our best to assign close data points to the 
same regions. Thus, squared MBRs are preferable than narrow 
MBRs. 

For this reason, we customize the ChooseLeaf procedure 
of the classic R-tree as follows: 

The ChooseLeaf procedure will traverse the tree to find 
the best placement strategy for the newly inserted Entry. If the 
Entry to be inserted can fit any existing node, it will be inserted 
into that node, obviously. But when inserting the Entry must 
cause enlargement of an existing node, multiple candidates 
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II Select the leaf node that balances 
between enlargement and squareness 

1 Fuactioa Choo11eLeaj(e) 
2 n = root_node 
s while n is not a leaf node do 
4 Initialize best_placement 
5 foreach c in n.children do 
6 ii n is the direct parent of a leaf node then 
7 if placing e in c has less impact 11core 

than best_placement then 
• 1 best...JJlacement = c 

' end 
10 else 
11 if place e in c cause less enlargement 

than best_placement then 
u 1 best...JJlacement = c 
13 end 
1A encl 
15 encl 
16 n = best_placement 
17 mcl 
11 end 

will be compared to decide where is the best fit. For the classic 
R-tree, the simplest and good enough strategy is to place the 
new Entry where would cause the lease enlargement. which 
makes total sense as with smaller nodes, the R-tree will query 
faster. And the original pmpose of inventing the classic R-tree 
is to generate a spatial index which can locate spatial objects 
quickly. 

But in our situation, we don't really care about R-tree's 
query perfomumce, but use it as a spatiaI dividing method. 
Thus we modify the Choose.Leaf procedure to find out the 
best_plaoement that has the least impact_score, whereas 
impact_score is defined as: 

impact_score = enlargement* (Ratio of MBR)2 (1) 

1he impact_score is designed to penalize MBRs basing 
on how 1U1DOW they me. And penalties grow exponentially as 
they become narrower. As a result, this algorithm will generate 
R-tree with more squared MBRs, as shown in figure 4. 

D. Creating Partitiom 

Aftet regions are generated. it is now time to find spatially 
similar regions and group them into partitions. In mathematics, 
the definition of partition is that "a partition of a set is a 
grouping of its elements into non-empty subsets, in such a way 
that every element is included in exactly one subset" [17]. The 
theoretical number of possible ways to partition a set of size n 
is called a Bell Number, which is named after mathematician 
Eric Temple Bell who studied this number in the 1930s. A 
Bell Numb« satisfies a reamence relation [18) : 

Fig. 4. Regiou generated by cuetomiz.ed R-me. 

B,.+i = t ( ~ ) Bk 
k=O 

(2) 

According to [19), the Bell Nmnber grows exponentially: 

Bn - .)n (w(n))n+! exp (w(n) -n-l) (3) 

In the formula above, W(n) is a Lambert W function which 
has a growth rate of logarithm. With this growth rate of B,., 
it is impractical to iterate all the possible combinations of 
partitioning. Thus a heuristic search is needed. 

H we train a global model Mo on the entire dataset, it is 
likely to fit some regions. but doesn't work so well fm the 
rest of regions. Tu improve Mo. we can create a partition Po 
from the regions that fit M 0, and train another model Mi. 
Although Mi is fitted to P0 , there is chance some regiom in 
P0 (the complement of Po. defined as: P0 = {block ~ Po}) 
that may be left out, which could also fit Mi. Next, we test 
Mi on Ron (all the regions) to see which regiom fit Mi best 
(likewise. let's call them Pt). This is essentially a recursion 
in which both M, and P, can keep improving to a certain 
degree. Ideally, the recursion stops when ~+1 is the same with 
P,. In practice, this may never happen, causing the recursion 
to nm indefinitely. Thus we set the stop condition as when 
Pi+t converges with ~. And the convergence threshold can 
be a oomtant or piedetermined number. Tu avoid the situation 
in which ~ fails to converge, a cap should be put on the 
muimmn number of loops. 

So far we only discussed how to generate one partition. Tu 
generate all partitions, we could repeat the procedure again 
and again until all regions are assigned to partitions. But 
here we have a problem that the aforementioned heuristic 
search process does not guarantee it will eventually cover all 
unassigned regions. Some regions may be too much of an 
outlier that they're nevec picked no matter how IIUIDY times 
we nm the heuristic search process. 
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Hence, we introduce two changes to the algorithm. First, 
we allow one region assigned to multiple partitions. Tiris 
is because a region should not be excluded from the next 
heuristic search simply because it has already been included in 
a previous generated partition, as there is a chance this region 
may fit a better partition than the one it's already assigned 
to. What's more, the heuristic search will choose regions with 
least mae values with a hard cutoff point Regions with MAE 
values slightly greater than the cutoff line may still fit the 
partition. Thus, the second change we introduce is a concept 
of similarity score: 

Score(R, P) = (MAE~(~(P)))a (4) 

In the equation above, C(R) is the number of times Region 
R has been included in any partition. As a region being 
included by more and more partitions, its similarity score to 
any partition will decrease, causing it much less likely to be 
included by a lot of partitions. On the other hand, regions 
which have never been included in an partition would have a 
higher chance to be eventually selected by a partition. And a 
is a negative number as the higher MAE it is, the less similar 
a region is to a certain partition. a is designed to add flexibility 
to the similarity score. It is generally recommended to have a 
value between 0 and -1, but the optimal value can be learned 
by an exhaustive grid search process. 

Now the algorithm is almost complete except the number 
of partitions (denoted as K) is not determined yet. Ideally, the 
optimal K value should be the same as how many different 
models are needed to fully describe the entire dataset For 
some datasets, there might be prior knowledge available to 
help determine the value of K. When such prior knowledge 
doesn't exist, one should start with .jN(R) (square root of 
the number of regions) and perform a grid search to find out 
the best K value. 

E. Predicting 

The final model of the Geographic Boosting Tree is com­
prised of multiple boost models, with each of the boost model 
representing a Partition which consists of multiple R-tree 
regions. 

For prediction, one should first use the location of the 
unknown observation to determine which region(s) it belongs 
to. Here, one can do a brute force search, or use the traditional 
R-tree search algorithm to find the correct regions. Remember 
in R-trees MBRs can overlap each other, so it's possible for 
one location to belong to multiple regions. If it doesn't fall 
into any region, then the nearest regions will be used. After 
the regions are determined, one or many partitions that these 
regions are associated to can also be determined. And the final 
predication result should be a majority vote (for classification 
tasks) or an average (for regression tasks) of predictions from 
all models. 

R Clwice of the Underlying Model 

The GB-Tree is actually a framework which can use any 
regular machine learning algorithm as the underlying method 

to train boost models. But unless there is special considera­
tions, we recommend using the Random Forests [20] algorithm 
to create the boost models. 

As suggested by the name, Random Forests algorithm 
train multiple decision trees which are then used to perform 
predictions. Only part of the data is used to train each of the 
decision trees thus they're generated differently. What's more, 
each decision tree node are created from a random subset of 
features as a further step of randomization. The theoretical 
basis of RF is that the bagging of multiple randomly generated 
trees will keep bias the same but decrease the variance of the 
overall model, thus producing a better result than any of the 
individual trees. 

We choose RF as the underlying model because RF is 
based on decision trees, which is inherently able to cap­
ture some non-stationarity within any spatial data. For many 
other models, latitude and longitude is tough to be dealt 
with because they have no way to treat them together as a 
coordinate. And a lot of information would be lost if latitude 
and longitude are treated as separate variables. But decision 
trees are totally different. Any leaf node of a decision tree 
has a set of ancestor nodes with different criteria. If latitude 
or longitude appears in one or many of the ancestor nodes, 
the leaf node can be thought as operating within the region 
defined by all the ancestor nodes with latitude or longitude 
as the criteria. From this aspect, a decision tree can actually 
divide the space into many smaller regions and learn models 
from them. Tiris procedure is not guaranteed and the decision 
tree is not necessarily dividing the space in the best way, but 
this trait is positively enhanced when multiple decision trees 
are trained to construct a Random Forest. 
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We run the GB-Tree algorithm on the Melbourne Housing 
data. A grid search is performed in order to find how the 
algorithm performs under different values of K. The results are 
shown in figure 5 as a line graph. When K is small enough, the 
algorithm essentially becomes the equivalent of the underlying 
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algorithm. And when K is too large, it will try to create a 
local model for every single model, which is definitely not 
the desired result According to the results, K = 14 is a good 
balance and there is no point in increasing K forther as the 
MAE stays pretty much the same when K is greater than 11. 

TABLE! 
RESULTS FROM OTIIBR ALGORITHMS ON THE SAME DATASET. 

MAE 

Linear regression 0.308 
Neural Network 0.317 
Random Forests 0.187 
MGWR 0.186 
RFsp 0.191 

To compare with the others, we also run several other 
algorithms using the same data. Results are listed in table 
I. Algorithms not designed to handle non-stationary spatial 
data, like Linear Regression and Nenral Network, produced 
poor results without snrprise. Two state-of-the-art algorithms, 
RFsp [21] and MGWR [6], which are specifically designed to 
handle such data, actually performed similarly to the Random 
Forests algorithm. This is due to the fact that Melbourne 
Housing dataset is relatively small and the multiple-local­
model approach is not as effective in this case. The GB-Tree, 
however, is still able to capture non-stationarity in such a 
situation. 

V. CONCLUSION 

This paper presents GB-Tree, which solves the challenge 
of unable to create accurate local models due to the limited 
number of nearby observations by creating partitions that 
aggregate spatially similar regions. GB-Tree first divides the 
data space into multiple regions with a customized R-tree 
algorithm for which MBRs are designed to be as square as 
possible. It then groups spatially similar regions into partitions 
using a heuristic search process. Next, boost models are trained 
from each of the partitions, using Random Forests as the 
underlying modeling method. At last, a grid search process 
is added to find the optimal number of partitions. 

By aggregating spatially similar regions into partitions, GB­
Tree can train boosted models from larger datasets with better 
accnracy, in contrast to the traditional multiple-local-model 
methods that only train one local model from one region. This 
method provides a novel way to deal with non-stationarity. It 
can handle non-stationary datasets and outperform other state­
of-art algorithms when the dataset is relatively small. 
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