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Abstract—The Internet of Things (IoT) has been erupting the
world widely over the decade. Smart home owners and smart
building managers are increasingly deploying IoT devices to
monitor and control their environments due to the rapid decline
in the price of IoT devices. The network traffic data produced
by these IoT devices are collected by Internet Service Providers
(ISPs) and telecom providers, and often shared with third-parties
to maintain and promote user services. Such network traffic data
is considered “anonymous” if it is not associated with identifying
device information, e.g., MAC address and DHCP negotiation.
Extensive prior work has shown that IoT devices are vulnerable
to multiple cyber attacks. However, people do not believe that
these attacks can be launched successfully without the knowledge
of what IoT devices are deployed in their houses. Our key insight
is that the network traffic data is not anonymous: IoT devices
have unique network traffic patterns, and they embedded detailed
device information. To explore the severity and extent of this
privacy threat, we design IoTSpot to identify the IoT devices
using their “anonymous” network traffic data. We evaluate
IoTSpot on publicly-available network traffic data from 3 homes.
We find that IoTSpot is able to identify 19 IoT devices with F1
accuracy of 0.984. More importantly, our approach only requires
very limited data for training, as few as 40 minutes. IoTSpot
paves the way for operators of smart homes and smart buildings
to monitor the functionality, security and privacy threat without
requiring any additional devices.

I. INTRODUCTION

The Internet of Things (IoT) has been erupting the world
widely over the decade. The rise of the IoT holds great promise
to transform people’s lives by making society more efficient
in many areas, including smart home and building, smart
grid, transportation, healthcare, manufacturing, etc. In each
area, new IoT-enabled devices are rapidly being developed,
while, in parallel, existing devices are also being augmented
with IoT functionality, i.e., Internet connectivity, remote pro-
grammability, and automation. The total installed base of the
IoT connected devices is projected to amount to 75.44 billion
worldwide by 2025, a fivefold increase in ten years [1].

The network traffic data produced by these IoT devices are
collected by Internet Service Providers (ISPs) and telecom
providers, and shared with third-parties with the goal of
maintaining and promoting the user services. “Any service
that provides Internet access (ISPs, WiFi hotspots, and tele-
com providers) can obviously see what resources users are
accessing. And even with encryption, traffic patterns provide
some information about activity.” [2]. ISPs like AT&T, Com-
cast, Time Warner, Sprint and Verizon are selling personal

network traffic data like web browsing history without prior
user consent before the Federal Communications Commission
(FCC)’s broadband privacy protections due to come into force
later this year [3]. They build substantial datasets on the online
activities of certain demographics and can tell companies who
want to market to. “It is very similar to Facebook, except the
ISPs have a better understanding of who’s using what device
in the home, ” noted Matt Hogan, CEO at DataCoup [3].
Before sharing and selling the network traffic data, it is
recommended that ISPs and third-parties should replace or
remove the MAC address and DHCP negotiation information
for the IoT devices from their network traffic data to avoid any
potential security and privacy issues. Such network traffic data
is generally considered “anonymous” since it is not associated
with identifying device information. In parallel, extensive prior
research work [4], [5], [6], [7], [8] has shown that IoT
devices are vulnerable to multiple cyber attacks and have
significant privacy concerns. For instance, recently, researchers
have found that Belkin Wemo Zero-Day vulnerability [9] and
Samsung SmartThings hub vulnerabilities [10] could leave
the door open for the IoT-based attack. However, people do
not believe that these device-specific attacks can be launched
successfully since the identifying information for their IoT
devices has been removed or slipped from the shared dataset.

Our key insight is that the anonymized network traffic
data is not anonymous: most of the IoT devices have unique
network traffic signatures, and they embedded detailed device
information. And based on this key insight, we can identify
what devices are deployed in a home using its “anonymized”
network traffic data. To explore the severity and extent of this
privacy threat, we design IoTSpot to identify the IoT devices
using their “anonymous” network traffic data. In doing so, this
paper makes the following contributions.
Identification Challenges. We highlight the challenges to
identify IoT devices using their “anonymized” network traffic
data. We discuss the fundamental physical relationships that
govern the network traffic data over time for the widely
deployed IoT devices in detail.
IoTSpot Design. We present the design of IoTSpot, which can
identify IoT devices for a smart home using its “anonymous”
network traffic data. We leverage the Principal Component
Analysis (PCA) algorithm to select the major features that
affect device detection and Random Forest classifier to learn
the device-specific network traffic signature.



Fig. 1. The architecture of our data collection environment that is comprised
of 11 different IoT devices.

Implementation and Evaluation. We experiment our IoTSpot
in 3 real homes. The evaluation shows that our approach has
the F1 score — a standard measure of a binary classifier’s
overall performance—of 0.984, which effectively identifies
IoT devices. Interestingly, IoTSpot achieves similar accuracy
without access to any network traffic data from testing homes
as fully supervised approach with complete access to such
training data.

II. BACKGROUND

There is a significant amount of prior work on classifying
general Internet traffic data. However, the research area that
is aimed at characterizing IoT device network traffic is very
new and still developing. We summarize them as follows,
Application based Classification. For example, recent work
[11], [12] focus on network traffic pattern detection using
application data, e.g., web browsing history, mails, etc. These
work are not appliable to IoT device identification directly
since they require specific application-driven data for training.
Fully Supervised Classification. These approaches typically
require access to the network traffic data from testing sites
to train a reasonable accurate machine learning models. [13],
[14] use Bayesian analytics to classify Internet traffic and it
requires manually labeled data to build a classification model.
However, these labels are not always available, for example,
new homes become online or new IoT devices are added.
Deep Learning based Classification. For instance, recent
work [15], [16] employ Conventional Neural Networks (CNN)
and Recurrent Neural Network to predict the unlabeled de-
vices. The drawback of these approaches is that they require
a significant amount of groundtruth traffic data for training.

Instead, we present a new Machine Learning (ML) – based
unsupervised approach — IoTSpot that can accurately identify
IoT devices using only very limited network traffic data, as few
as ⇠40 minutes traffic data. More importantly, our approach
does not require access to the groundtruth device data from
testing sites to train our ML models.

III. IOT DEVICES NETWORK TRAFFIC ANALYSIS

In this section, we explain how we set up our “mock” smart
homes to collect network traffic data and synthesize traffic
from various IoT devices. We also identify the major features
that can be potentially used to classify IoT devices.

A. Smart Home Setup and Data Collection

We set up our IoT-based smart environment at two different
locations. Home #1 is a private townhouse apartment that has
2 occupants and is located in Miami, Florida. Home #2 is our
lab space that has 4 students staying in the room daily, which is
on the FIU main campus. To collect network traffic data from
all the IoT devices in our “mock” homes, we first deploy a
NETGEAR AC1750 smart Wi-Fi router at each location and
it serves as the internal switch and the gateway to the public
Internet. We flash the router using DD-WRT — a Linux based
alternative opensource firmware. We then install tcpdump on
this gateway to capture the network traffic data. We write bash
scripts to store the traffic data into pcap files on an external
128GB USB hard drive that is attached to the gateway. We
use cronjob to automatically upload the locally stored data
to our remote server in the backend. On the remote server,
we parse the pcap file to our system and group the packets
basing on each device’s IP address. We sort the traffic data
using its timestamp for each device. We then remove the data
of non-IoT devices and other irrelevant data from the dataset.
Our smart home environment has a total of 19 IoT devices.

B. Traffic Data Analysis: Basics

Typically, the traffic data collected from a smart home in
24 hours can be as large as several gigabytes and contains
millions of TCP/IP packets. To understand the “big” traffic
data, we first visualize the amount of packets sent and received
by each device to fingerprint its network traffic. Figure 2
shows the total number of TCP packets sent and received
by IoT devices. Due to the space limitation, we only show
2 devices from different categories: Dropcam (camera) and
Amazon Echo (hub). As we can see from Figure 2 (a) and (b),
at fine granularity, such as ten seconds level, traffic data from
an IoT device shows its strong pattern. Dropcam is streaming
video to its cloud server, and the size of video streaming varies
since the data compression ratio changes based on the content
of the image captured by the camera. And Dropcam’s IP packet
counting follows certain distributions. While, Amazon Echo
has a consistent data flow, but shows data burst from time to
time. Amazon Echo is sending voice data to cloud servers for
command parsing purposes, and the size of voice data varies
depending on the voice and noise from the environment, which
explains the data bursts and why they have different sizes.
In contrast, at a coarse granularity, the traffic data may not
reveal any observable pattern, as shown in Figure 2 (c) and (d).
These graphs show the number of incoming and outgoing TCP
packets in 30-minute intervals over 7 days. At this granularity,
the pattern of traffic data is more related to human interactions.
For example, someone probably connects to Dropcam several
times to check the real-time video footage, which causes the
peaks in Figure 2(c).
Observation: To model an IoT device’s traffic pattern, “raw

”network traffic data is not dependable since at different

granularities we may observe different patterns or not be able

to learn their activity pattern.



(a) Number of packets transmitted per 10 seconds

(b) Number of packets transmitted per 30 minutes
Fig. 2. Traffic Data Analysis: Basics

C. Traffic Data Analysis: Flows

Since traffic packets are generated by IoT devices that
are often interacted with humans in smart homes, the size
of those traffic data packets typically varies for different
devices, and thus it is challenging to apply data analytical
approaches on these “raw” data directly. Besides, only very
limited information can be learned directly from the “raw”
network traffic data packets. The most useful information is
the IP, TCP, and UDP related header information. We leverage
the inner network IPs or the device IDs to isolate each device’s
traffic trace data. Note that, unlike other existing approaches,

our approach does not require the MAC address from each

IoT device as inputs.
We first group packets into TCP sessions (basing on the

source and destination IP/port information for a packet), then
break long TCP sessions into short packet streams (we define
them as “flow”). We define the “flow” as a piece of TCP traffic
data that is comprised of one or many data packets within
a sliding window size �T, depending on how frequently a
local device communicates with its remote server, for instance,
cloud servers. To determine �T, we learn the relationship
between our approach’s accuracy and the size of �T using
experiments that we will discuss in the evaluation section later.
We find the optimal �T is 1 minute for regular IoT devices
using empirical analytics. All the features are extracted at flow
level. One flow is corresponding to one data record in our
training dataset. For instance, assume we have the packets set
{p1, p2, p3, ... pn} in the raw traffic data, after transferring to
the flow set {f1, f2, f3, ... fn}. Our approach guarantees that
for any flow fx, it contains the packet data: pi, pi+1, pi+2, ...
pj , where 1  i  j  n and (pj � pi) · Ti  �T .

D. Traffic Data Analysis: features

After data preprocessing, now we have three layers of data:
raw packets, TCP sessions, and flows. From each layer, we
can extract multiple features for analysis. In Figure 3, we show
four features—TCP header length, TCP window size per flow,
outbound byte ratio, and outbound packet ratio. Dropcam and
Smart Bulb have a fixed TCP header length of 32 and 20,
respectively. The other three devices have several different
lengths due to their different jobs running on these devices.
Interestingly, as shown in Figure 3 (b), TCP initial window
size is the first out-going packet’s window size for a certain
TCP session. The window size may be adjusted throughout
the communication depending on multiple factors including
network latency, data processing speed of the local and remote
device, etc. And the initial window size of a TCP session is
nearly a constant value for a certain device. This indicates that
we may use this strong feature to identify some IoT devices.

Figure 3 (c) shows the probability distribution of X/(X+Y),
where X is the number of outbound packets in a flow, and Y is
the number of inbound packets in the same flow. Figure 3 (d)
shows similar results as in Figure 3 (c), the difference is that it
shows the number of packets instead of the number of bytes.
As we can see from these two figures, some devices show very
strong patterns, while, some other devices show weak patterns.
For example, Dropcam’s outbound bytes ratio is close to 1.0
but the packet ratio is close to 0.5. This is because the camera
traffic is more focusing on uploading than downloading, but it
sends and receives the same amount of packets. We observe
the same behaviors on LiFX Smart Bulb and Wemo Motion
Sensor, while some devices have more complicated patterns
that are not easy to explain or model.



(a) TCP Header Length (b) TCP window size per flow

(c) Outbound byte ratio (d) Outbound packet ratio
Fig. 3. Traffic Data Analysis: features

Observation: Different IoT devices may have different traffic

patterns. Some devices have strong patterns, while, some do

not. For those devices that have strong patterns, we may be

able to model them physically, while others indicate a more

comprehensive and sophisticated modeling such as machine

learning models is necessary.

IV. IOTSPOT DESIGN

Given only anonymous network traffic data, our system—
IoTSpot can identify its source IoT device. IoTSpot’s system
design includes three key steps, which we detail below.

A. Selecting features

For each TCP flow, we extract all features that are available
in TCP header per TCP flow, including—initOutH, initOutW,
initOutD, initInH, outPackets, outEmptyPackets, outBytes, in-
Packets, outBytePerPacket, outEmptyPacketRatio, inBytePer-
Packet, duration, packetRatio, and byteRatio. To analyze the
effects of these features, we leverage the output of their coef-
ficient matrix to learn their relationships between each other.
Table 1 shows correlation coefficients for each traffic metric
using the Pearson product-moment correlation coefficient,

⇢x1,x2 =
cov(x1, x2)

�x1 · �x2

(1)

. Here, cov(x1, x2) is the covariance of the two metrics —
x1 and x2, and �x1 and �x2 are the standard deviations. The
higher the absolute value of the correlation coefficient, the
stronger the correlation between the two traffic metrics—a
positive correlation indicates an increasing linear relationship,
while a negative correlation indicates a decreasing linear

relationship. As shown in Table 1, we find that many features
have strong correlations with other features. The complex

relationships between traffic metrics and device identification

shown in this table motivate our study of automated prediction

models using machine learning techniques in the next section.
B. Identifying features

As discussed in the prior section, we can extract 19 traffic
measurement metrics from TCP flows. However, the relation-
ships among these metrics are complex, and many metrics
show a high correlation with each other. Before building
ML models to learn a device’s traffic signature, we first use
Principal Component Analysis (PCA) algorithm to identify
the most important features. We leverage PCA to convert 19
dimensional data to low dimensional data by selecting the most
important feathers that capture the maximum information in
network traffic data. The advantages of this data processing
are two-folds. First, we significantly reduce the training time
of the ML algorithms using less number of features. Second,
we mitigate the overfitting problem caused by the input of
the duplicated or highly correlated features. We study PCA
accuracy with different amount of features. Eventually, we find
that 11 out of 19 features are important features.

C. Building a characteristic model

Our insight enables us to build a general network traffic
signature model for an IoT device using it’s network traffic
data from one (or many) deployments where it is available,
and use that model to accurately identify the same device
at new locations. We train an ML classifier using Random



initOutH initOutW initOutD initInH initInW initInD outPackets
outEmpty
Packets outBytes inPackets

inEmpty
Packets inBytes

outByte
PerPacket

outEmpty
PacketRatio

inByte
PerPacket

inEmpty
PacketRatioA duration packetRatio byteRatio

initOutH 1.00 0.21 -0.12 0.95 0.16 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.12 0.44 0.24 0.26 0.16 0.29 -0.36
initOutW 0.21 1.00 0.35 0.21 0.44 0.42 -0.01 0.00 0.00 -0.02 -0.01 -0.01 0.08 0.23 0.16 -0.12 -0.04 0.19 -0.09
initOutD -0.12 0.35 1.00 -0.10 0.04 0.83 0.01 0.00 0.03 0.01 0.01 -0.01 0.29 -0.14 0.22 -0.10 -0.07 -0.05 0.19
initInH 0.95 0.21 -0.10 1.00 0.14 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.10 0.38 0.19 0.29 0.15 0.27 -0.31
initInW 0.16 0.44 0.04 0.14 1.00 0.13 -0.02 0.00 -0.01 -0.03 -0.02 -0.01 -0.03 0.25 -0.04 0.32 0.17 0.12 -0.23
initInD -0.01 0.42 0.83 -0.01 0.13 1.00 0.00 0.01 0.00 0.01 -0.01 0.15 0.21 0.13 0.45 -0.20 -0.03 0.03 -0.08
outPackets 0.01 -0.01 0.01 0.01 -0.02 0.00 1.00 0.87 0.35 0.99 0.96 0.11 0.04 -0.03 0.00 0.02 0.02 -0.02 0.03
outEmptyPackets 0.01 0.00 0.00 0.01 0.00 0.01 0.87 1.00 0.01 0.90 0.90 0.10 0.00 0.01 0.02 0.00 0.02 0.00 0.00
outBytes 0.01 0.00 0.03 0.01 -0.01 0.00 0.35 0.01 1.00 0.24 0.24 0.01 0.11 -0.02 0.00 0.02 0.00 0.00 0.02
inPackets 0.01 -0.02 0.01 0.01 -0.03 0.01 0.99 0.90 0.24 1.00 0.98 0.18 0.03 -0.03 0.02 0.02 0.02 -0.03 0.03
inEmptyPackets 0.01 -0.01 0.01 0.01 -0.02 -0.01 0.96 0.90 0.24 0.98 1.00 0.02 0.03 -0.03 -0.01 0.03 0.01 -0.02 0.04
inBytes 0.01 -0.01 -0.01 0.01 -0.01 0.15 0.11 0.10 0.01 0.18 0.02 1.00 0.00 0.03 0.20 -0.03 0.00 -0.05 -0.04
outBytePerPacket 0.12 0.08 0.29 0.10 -0.03 0.21 0.04 0.00 0.11 0.03 0.03 0.00 1.00 -0.26 0.13 0.09 -0.05 -0.06 0.31
outEmptyPacketRatio 0.44 0.23 -0.14 0.38 0.25 0.13 -0.03 0.01 -0.02 -0.03 -0.03 0.03 -0.26 1.00 0.31 -0.31 0.18 0.48 -0.93
inBytePerPacket 0.24 0.16 0.22 0.19 -0.04 0.45 0.00 0.02 0.00 0.02 -0.01 0.20 0.13 0.31 1.00 -0.37 -0.05 0.05 -0.32
inEmptyPacketRatio 0.26 -0.12 -0.10 0.29 0.32 -0.20 0.02 0.00 0.02 0.02 0.03 -0.03 0.09 -0.31 -0.37 1.00 0.11 -0.45 0.25
duration 0.16 -0.04 -0.07 0.15 0.17 -0.03 0.02 0.02 0.00 0.02 0.01 0.00 -0.05 0.18 -0.05 0.11 1.00 0.15 -0.18
packetRatio 0.29 0.19 -0.05 0.27 0.12 0.03 -0.02 0.00 0.00 -0.03 -0.02 -0.05 -0.06 0.48 0.05 -0.45 0.15 1.00 -0.31
byteRatio -0.36 -0.09 0.19 -0.31 -0.23 -0.08 0.03 0.00 0.02 0.03 0.04 -0.04 0.31 -0.93 -0.32 0.25 -0.18 -0.31 1.00

TABLE I
CORRELATION MATRIX SHOWING CORRELATION BETWEEN DIFFERENT IOT NETWORK TRAFFIC METRICS.

Forest to build a customized model for each IoT device using
its network traffic features. Prior work has evaluated a wide
range of ML models that can be potentially applied to identify
IoT devices using their network traffic data, including Sup-
port Vector Machine (SVM), Random Forest, Least Squares
Regression, and deep neural networks. While we evaluate

different modeling techniques in the evaluation section, our

approach is orthogonal to the specific ML model.

V. IMPLEMENTATION

We implement IoTSpot using python. We use the scikit-
learn machine learning library in python to build our machine
learning IoT device identification models. The library supports
multiple techniques including Principal Component Analysis
(PCA), Support Vector Machine (SVM), and Random Forest
and multiple linear regression models. We also use NumPy
and Pandas for the traffic data pre-processing.

VI. EXPERIMENTAL EVALUATION

We first evaluate IoTSpot’s detecting accuracy across 3
smart homes using 1 month of second-level network traffic
data. To quantify our IoTSpot’s identification accuracy, we
compute the F1 score — a measure of a classifier’s accuracy.

F1 = 2TP/(2TP + FP + FN) (2)

Here, TP is the true positive, FP is the false positive and FN
is the false negative. The F1 score is the harmonic average of
the precision and recall where it reaches its best identification
at 1 and worst at 0.

A. Dataset

We use network traffic data from 3 homes, including 2
homes that we instrument in Florida and 1 house in Australia
where network traffic data is made publicly available online.
We first anonymize the network traffic data by removing their
device MAC addresses and DHCP negotiation data. We then
use our proposed data processing approach in prior section to
parse all the traffic data into small “flows”.
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Fig. 5. IoTSpot achieves high accuracy only using 40 “flows”.

B. Comparing with a Supervised Approach

We evaluate IoTSpot’s accuracy to a fully supervised ma-
chine learning approach that has access to all the network
traffic data from testing homes. Figure 4 compares IoTSpot’s
accuracy with that of the supervised approach for each of the
3 homes. For the supervised approach, we use the ratio 7:3 to
split the training dataset. For the unsupervised approach, for
a specific smart home, we train on the other 2 homes and test
on this home. The graph shows that across all the homes, our
system—IoTSpot’s F1 accuracy does not change significantly.
Results: IoTSpot achieves similar accuracy without access to

any traffic data from a testing home as a fully supervised

approach with complete access to such training data.

C. Quantifying IoTSpot’s Accuracy

We next evaluate different conditions that affect IoTSpot’s
accuracy. First, we examine the effect of changing the size of
the training dataset. Figure 5 shows the results. As expected,
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as the size of the training dataset increases, we see an increase
in the F1 score of IoTSpot identification. Interestingly, after
increasing to 40 flows, IoTSpot’s accuracy becomes stable
and stays around 0.92. As we discussed in prior sections,
the upper bound for each flow is 1 minute, which says, on
average, IoTSpot can achieve F1 accuracy as 0.92 using only
40 minutes of traffic data per device. This also indicates
another insight—our approach can still identify IoT devices
accurately when missing their traffic data and having at least
40 minutes of traffic data available.
Results: IoTSpot achieves F1 accuracy as 0.92 when only

using as few as 40 traffic flows. In addition, IoTSpot is

potentially robust to missing traffic data.

Eventually, we examine the accuracy effect of changing
the ML classifiers. As shown in Figure 6, IoTSpot achieves
similar accuracy (0.89⇠0.99) when using a set of ML models,
including Gaussian Naive Bayes, MLP (Neural Network),
Decision Tree and Logistic Regression.
Results: IoTSpot achieves similar F1 accuracy when using

different ML models, Thus, IoTSpot is orthogonal to the

specific ML model.

Limitation: For IoT devices that have the same firmware,
IoTSpot has F1 accuracy as ⇠0.7. This is mainly because these
devices have the same characteristics except their exterior
shapes might look different. For instance, we have Belkin
Wemo and Belkin Wemo Mini Smart Plug deployed in our
“mock” smart homes. These two different IoT devices have
the same hardware and firmware. Thus, in many situations,
they are identified as the same device. While, of course, this
results in the wrong reporting when computing F1 scores.

VII. CONCLUSION

This paper presents IoTSpot, which can identify IoT devices
using their anonymized network traffic data. IoTSpot first
extracts the major features using PCA, then leverages Random
Forest modeling to build a customized network traffic model
for each IoT device. We show that IoTSpot has an F1 score
of 0.984, which can effectively identify 19 IoT devices. In
addition, IoTSpot achieves similar accuracy without access
to any network traffic data as fully supervised approach
with complete access to such training data. IoTSpot enables
numerous cyber attacks on smart homes that are not possible
without knowing what devices are deployed in those homes.
We plan to explore more IoT devices and also design a
new technique to prevent this efficient device identification.
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