
n
r tow

@IEEE TRANSACTToNS oN

KI{OWIEDGE AI{I)
DATA EI{GII{EERIIIG

A publication of the IEEE Computer Society

q ! fls
qq'trL

MARCH / APRIL 1999 VOLUME 1-I NUMBER 2 ITKEEH (rssN 1041-4347)

REGULAR PAPERS
Dynamic Programming in Datalog with Aggregates

Techniques for Increasing the Stream Capacity of A High-Performance Multimedia Senter

Resource Scheduling In A High-Performance Multimedia Sert er

Join Index Hierarchy: An Indexing Structurefor Efficient Navigation in Object-Orientecl Databases

A Hybrid Estimatorfor Selectivity Estimation
Y. Ling, W. Sun, N.D. Rishe, and X. Xiang

265

284

303

321

338

CORRESPONDBNCE
Proof of the Correctness of EMYCIN Sequential Propagation (Jnder Conditional Independence Assumptions

355

1998 TKDE Reviewers List 360

Dr. Naphtali Rishe
Florida International University
School of Computer Science
Southwest 8th St. and 107th Avenue
University Park
Miami, FL 33199

CoupurER
SOCIETY

http://computer.org . tkde@computer.org

.''|{'r
i'- 7

-f,{'/i

S rheJoarnalof
Systems and
Sottwarc

N.Hen<>

ffi
ETSEVIER The Journal ol Systems and Software 45 (1999) 61 78

Architecture-driven modeling of real-time concurrent systems with
applications in FMS 1

Yi Deng *, Chia-Rung Yang
School oJ Computer Science, Florida International Llniuersity, ECS 359, Llniuersity park, Miami, FL 33029, USA

Received 14 March 1997; received in revised lonn 23 June 1997; accepted 22 July 1997

Abstract

petri nets have become increasingly popular for flexible manufacturing systems (FMS) modeling and control because they ac-

curately capture the concurrent, non-deterministic and time-dependent properties of the systems. While offering many advantages,

conventional petri net modeis suffer from some serious problems that limit their usability as design models for complex FMS.

Central to these problems is the lack of an engineering support for incremental design, refinement, and analysis of large-scale

systems. In this piper, we present an architecture-driven approach for the modeling and design of FMS that eflectively addresses the

problems while leveraging the strengths of Petri nets. The approach has two major aspects: The flrst is a Net-based and Object-based

Architectural Model (NOAM) that introduces a well-founded architectural framework into the Petri nets notation and lays a

loundation to support formal design. The second is a modeling method based on NOAM that uses architecture decomposition and

refinement as the basis to reduce design complexity, to provide smooth transition from informal to formal design, and to support

incremental reflnement and analysis. A case study using NOAM for FMS modeling is provided to show the applicability of our

approach. O 1999 Elsevier Science Inc. A11 rights reserved.

1. Introduction

Flexible manufacturing systems (FMS) are aimed to
provide a means to achieve better quality, lower cost,

and smaller lead time in manufacturing. An FMS is a
typical real-time concurrent system composed of a

number of computer-controlled machine tools, auto-
mated material handling and storage systems that op-

erate as an integrated system under the control of host

computer(s) (Greenwood, 19BB). The growing demand

for higher performance and flexibility in these systems

and the interlocking factors of concurrency, deadline-

driven activities, and real-time decision making pose a
significant challenge in FMS design, especially in terms

of control and scheduling. Moreover, uncertainty in
product demand knowledge, finite manufacturing ca-

.C-.*po.aing
author. Tel.: +1 305 348 3748; fax: +1 305 348 3549;

e-mail: deng@cs.fiu.edu
1 This work was supported in part by the National Science

Foundation under Grant No. CCR-9308473, by the Air Force Office

of Scientific Research under Grant No. F49620-96-l-0221, and by

NASA under Grant No. NAGW-4080. The views and conclusions

contained herein are those ofthe authors and should not be interpreted

as necessarily representing the olicial policies or endorsements, either

expressed or implied by the above named Agencies.

0164-12121991$ see front matter @ 1999 Elsevier Science Inc. All rights reserved

PII: S0 I 64- 121 2(98) I 0068 -7

pacity, random machine failures and repair rates further
make the system behavior more dynamic and hard to
predict (Looveren et al., 1986). Given the complexity, an

ad hoc way for FMS design is clearly inadequate, and an

engineering methodology to address the complexity and

dynamics in trMS modeling, design and analysis is es-

sential (Elmaraghy and Ravi, 1992).

Petri nets are a popular mathematical-based, graph-

ical modeling tool for concurrent and distributed sys-

tems (Genrich and Lautenbach, l98I; Ghezzi et a1.,

1991; Jensen,1992; Palaudetto and Raymond, 1993). In
addition to its rigor and analytic capability (e.g., for
deadlock detection, performance evaluation, real-time
schedulability analysis), Petri net models are executable,

and thus can be used as a system prototype for simu-

lation. Furthermore, Petri nets are capable of describing

both software and hardware, system and environment,
at different levels of abstraction. Because of these

strengths, Petri nets are increasingly used as a modeling
tool for FMS (D'souza and Khator, 1994; Solot and

Vliet, 1994).
While offering many advantages, ordinary Petri net

models suffer from some basic problems that limit their
usability and application as a design model for complex

FMS:

62 Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61-78

First, Petri net-based models tend to become too
large even for a modest-sized problem (Murata, 1989).

This makes it extremely hard to build, understand,
change and analyze nets-based models for practical
complex problems.

Second, the primary concern of Petri nets, like many
other formalisms, is behavior modeling and analysis.
Most of Petri net-based models do not provide explicit
or adequate support to modeling, refinement, and
analysis of system architecture - the organization of the
system into components and their interactions at a suf-
ficient high-level of abstraction (Luckham et vl.,
1995a, b), a central concern in complex system design.
This creates a significant semantic and syntactical gap
between an actual FMS design and its Petri net model.
For a typical FMS, the configuration of various hard-
ware components, e.g., machine tools, automatically-
guided vehicles (AGV), buffer stations, are normally
quite stable. The challenge is the "soft" aspect of the
design, i.e., the control and scheduling of the compo-
nents, where repeated changes are to be made, different
design alternatives need to be explored. Without a
clearly defined interface and connections between the
components, any change to the control/scheduling de-
sign will likely have a global impact, which requires re-
working the entire model, and voids the results of
analysis done earlier.

Last but not the least, conventional Petri nets lack
support for incremental design. Constructing a complex
Petri net model is largely an ad hoc rather than an en-
gineering practice. No established methodology or
procedure is available to support systematic design and
refinement.

In this paper, we present a fonnal approach for
modeling and design of FMS that effectively addresses
the above problems while leveraging the strengths of
Petri nets. We discuss this approach from two aspects:

The first is a Net-based Object-based Architectural
Model (NOAM) (Deng et a7., 1996, 1997;Du and Deng,
1995). Building on the theory of Petri nets, NOAM pro-
vides a framework that incorporates well-founded ar-
chitectural design concepts and structure into the abstract
notation of Petri nets. It provides a formal foundation to
support incremental design, refinement, and analysis of
complex real-time systems like FMS. Compared to con-
ventional Petri nets, a NOAM model of FMS design can
be easily extended, refined and changed. Furthermore,
NOAM supports "plug-and-play" in the sense that dif-
ferent subsystem models can be plugged-into a high-level
design to evaluate the alternatives of design without
having to change the overall design structure.

Second, based on the NOAM framework, we further
present a modeling method that defines a systematic and
incremental process to construct, analyze and refine
complex FMS designs in terrns of one or more cycles. In
each cycle, it guides system designer to establish a clear

focus for each step of the design while minimizing dis-
tractions from other design issues. To ease the burden of
constructing a complex formal design from scratch, we
present a mechanism that provides a smooth and in-
cremental transition from an informal to a formal sys-
tem model. The informal phase emphasizes the global
control and communication structure of the system de-
sign, and the formal phase rigorously defines the se-

mantics of the design.
The rest of the paper is organized as follows. In

Section 2, we briefly summarize the application of Petri
nets in FMS and compare our work with existing
structured or object-based Petri net models. In Sec-
tion 3, we introduce the basic modeling framework of
NOAM and provide more background information of
this research. A simple but typical FMS is described in
Section 4, which is used as a case study to illustrate and
demonstrate our modeling approach and its advantages.
In Section 5, we present a modeling methodology for
NOAM, and use the method to incrementally construct
a formal design of the FMS described in Section 4. Fi-
nally, we conclude this paper in Section 6 and point out
lut ure research directions.

2. Related work

In this section, we first briefly summarize existing
work using Petri nets for FMS modeling. We then
evaluate existing efforts to address the problems raised
in the introduction, and compare them to our work.

Petri nets have been applied to the specification,
verification, performance analysis, real-time control and
simulation of FMS. Net-based models have also been
used to obtain production rates, throughput, delays,
capacity, resource utilization, reliability measures and
deadlock avoidance for FMS. The details of these ap-
plications can be found in surveys by D'souza and
Khator (1994) and by Shukla and Chen (1997). Some
typical uses of Petri nets in FMS modeling are listed
below (Brussel et al., 1993; Camurri et a1., 1993; Huang
and Chang, 1992;Knapp and Wang, 1992;Lin and Lee,
1995; Martinez et a1.,1986; Meng et a1., 1995; Qadri and
Robbi, 1994; Solot and Vliet, 1994; Zrfterek, 1995;
Zhou et al., 1992; Zhou et a1., 1993, 1995):
o Nets can be used as a graphical modeling tool to vi-

sualize complex control structure and systems behav-
ior.

o The nets notation precisely captures the precedence
relations and structural interactions of stochastic,
concurrent and asynchronous events, which can be
used to support the developmdnt of operating strate-
gies for work scheduling and job sequencing.

o The executibility of Petri net models enables them to
be used as simulation tools to evaluate control and
scheduling policies.

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61 78 63

o Real-time Petri net models can be used to design and
implement real-time control systems.

o Their analytical capability supports deadlock detec-

tion, performance evaluation, and verification of
real-time schedulability.

o Conflicts and buffer sizes can be modeled easily and
efficiently.

o Net models can help to identify production bottle-
neck, and to assess the capacity and utilization of
equipment.
The focus of this paper is different from the above

studies. While those studies deal with the issue of how to
use Petri nets to address specific modeling and analysis
problems in FMS, the goal of our effort is to develop an

engineering practice to systematically and cost-effec-

tively apply Petri net theory in complex FMS modeling,
design and analysis.

The problems associated with Petri nets are well-
documented, and have been the subject of many inves-
tigations. Some early techniques to resolve the problems
include high-level Petri nets (Genrich and Lautenbach,
1981; Jensen,1992), which introduce variables into to-
kens, and enable a more compact system model, and
hierarchical Petri nets (Jensen, 1992), which describe

systems in terms of hierarchically structured subnets.

Although the hierarchical net models introduce hierar-
chical structure into the net notation, the subnets do not
directly correspond to specific design concepts, and
there is no mechanism to ensure that the subnets are

self-contained modules with clearly defined interfaces.
Consequently, any change to a subnet (or supernet) may
affect any other part of a system model.

One promising way to handle complexity is to in-
troduce the concept and structure of object into the
formal notation. The modular and encapsulated nature
of object, and its support for hierarchical modeling
provide a way to manage complex model building. In
addition, the object model offers a natural paradigm for
distributed systems because objects naturally model the
autonomous and cooperating entities.

Based on the object concept, several structured Petri
net models are proposed. Among them, PROTOB
(Baldassari and Bruno, 1991) is proposed for process

control systems modeling. and is based on an extended
data flow model and Petri nets, which specifies systems

as inter-related objects with I/O ports as their interface
of communication. In PROTOB, the object (module)
inner control structure and communication parts are

clearly separated and described using different repre-
sentations. The former is represented using PROT net,
an object-based extension of Petri nets, and the latter is
defined by input/output places and the links between
them, which simulates transmission lines that define the
route of messages (tokens). The types of input and
output places connected by a link must be the same

because the link is not allowed to have any procedure to

adapt to change message type. It is unclear how the
formal semantics of Petri nets is preserved under the
different representations, and how to describe real-time
properties since no formal notation of time is given in
the description of the model.

The Cooperatiue Objects language (Bastide et al.,

1993) is designed to facilitate the specification of objects
with concurrent behavior. In Cooperative Objects, a
system component (object) is modeled by two tightly
coupled subnets, one for describing the interface and
behavior of the component, and the other for the im-
plementation of the behavior. The objects are connected

together based on client-server relationship, where the
interface specifies the services provided to, and the im-
plementation specifles the services (if any) required of its
environment. This model does not have a formal defi-
nition of time or time-dependent properties in its rep-
resentation. Furthermore, since part of the inter-object
communication is described in the implementation of
the object, any change to the implementation may aflect
the control structure of the entire model. This setup is

inconsistent with the architectural principles described
in (Luckham et al.,1995a, b), and affects the stability of
the design.

In OPl,{ets (Lee and Park, 1993), a system component
(object) is modeled by a high-level Petri net with input/
output gates and queues as its interface to its environ-
ment. Objects are encapsulated to ensure modularity.
High-level components can be constructed by using
lower-level objects as building blocks. Communication
between objects are established by connecting the in-
terfaces of related objects with gates that form a subset

of the transitions. An application of OPNets in FMS
modeling and analysis is presented in Wang, 1996,
where they are used to represent part of an object-ori-
ented Petri net cell control model (OPNCC). Among the
above models, OPNets is most close to NOAM. They
differ in two aspects: First, as indicated by the authors
(Lee and Park, 1993), OPNets don't contain real-time
notation in their definition, which is neOessary to des-

cribe real-time constraints and time-dependent priori-
ties. Second, for a OPNet model to be semantically
complete and executable, a system must be decomposed
to the lowest level where system components are prim-
itive sequential objects. NOAM, on the other hand,
provides an explicit notion of module specification (MS)
and module design (MD) (see Section 3), which enable us

to model a system at arbitrary level of abstraction.
Another structured net model is Communicating

Time Petri Nets (CmTPN) (Bucci and Vicario, 1995).

Unlike the above models, CmTPN has a well defined
real-time semantics, and supports reachability-based
compositional verification that helps to reduce the
complexity of analysis. In CmTPN, self-contained time
Petri nets (modules) communicate with environment via
reading andwriting places (trtorts'). A reading place and a

64 Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61 78

writing place connect to each other through one-to-one
channels.

In addition to the above models, there are also some
other Petri nets-based models employing the object
concept. Examples are OBJSA nets (Battiston et a1.,

1988) and POT (Engelfriet et a1., 1990). However, these
models do not provide a comprehensive structuring
mechanism like the models mentioned above. Although
most of these models provide certain support to describe
system structure, architectural representation and design
are neither a primary concern nor explicitly addressed.
This problem is consistent with the nature of the object
model. That is, the object model is desirable for con-
structing, manipulating and reusing components ol
systems. However, what is missing from this model is a
"global system view" - the plan of how the components
fit together to form a coherent system (Luckham et a1.,

1995a. b.).

3. A net-based and obiect-based architectural model

In this section, we present the NOAM framework
and notation. Since the main focus of this paper is

modeling methodology rather than formal semantics,
the use of mathematical notation is avoided in our dis-
cussion whenever possible. The formal definition of the
NOAM representation can be found in (Du and Deng,
199s).

3.1. The modeling framework of NOAM

The objective of NOAM is to serve as the foundation
for a for:rnal engineering methodology for real-time
distributed system design. To achieve this goal, NOAM
possesses certain basic properties or features. In this
section, we discuss what these properties are, present the
basic framework for NOAM, and show how the
framework supports the properties. We focus on the
concepts associated with the NOAM framework, while
deferring the discussion of specific notation and its se-

mantics to later sections.
As a design representation (as opposed to a behav-

ioral model), NOAM should accurately describe the
organization of the system it models. In addition to
system behavior, NOAM also describes how the com-
ponents of the system work together to achieve such a
behavior. This is exactly the issue of architecture. For a
real-time distributed system like FMS, some basic issues
include decomposition of the system into components,
the global control structure, the communication and
synchronization of the components, and the time-de-
pendent system behavior embodied by such an organi-
zation.

Complex system design is an evolutionary process. A
good design model should be flexible enough to allow

frequent changes to the design and to support the ex-
ploration of various design alternatives, while minimiz-
ing the impact ol such changes to the overall design.
This is especially important to FMS modeling, where the
physical configuration and the functional behavior of its
hardware components, e.g., machine tools and AGVs,
are quite stable and static. The central issues of design
are the coordination, control and scheduling of these

components. For a complex FMS, it is necessary to
experiment with different alternatives of control and
scheduling policies against the same hardware configu-
ration. It is therefore highly desirable to be able to
"plug-in" the speciflcations of various control modules
to a FMS model without having to make major changes
or re-construct the entire system model each time.

The modeling and design of a complex FMS must be
a systematic process. An ad hoc way of modeling is not
only difficult and hard to apply in a large scale, but also
prone to errors and hard to achieve a system structure
that is extensible and maintainable.

Last but not the least, a good FMS model must
support analysis and verification of important system
properties as the design euolues, which may take place in
forms of either formal verifications or simulation and
prototyping. This requires that a methodology that
progressively produces complete, analyzable and exe-

cutable design models of the FMS at different levels of
detail, and a proper balance between expressiveness and
analyzabllity.

In the following, we discuss the framework of
NOAM, and show how NOAM supports the above
features. The basic structure of a NOAM model is il-
lustrated by Fig. 1. A NOAM model is layered specifi-
cation of a FMS organized under two basic levels of
abstractions: Module Specification (MS) and Module
Design (MD). An MD describes a design of a subsystem
in terms of the connection and interaction of its com-
ponents, e.g. CNC machines, AGV or Cell Controller,
where each component is represented by an MS, which
describes the communication interface (in terms of input
and output communiccttion ports) and the required be-
havior of the component, hence the name of MS. A
component may represent the entire FMS, a subsystem
(such as cell controller, AGV, CNC machine and loadi
unload station, etc.), or a primitive object (such as op-
erator and transporter). It is specifled in Fig. 1, for in-
stance, an interaction between MS2 and MS3 must be
synchronized with MSl. The focus of MD is the struc-
ture and control of the system, while the focus of MS is
the specification of the component.

The concept of MS is different from the concept of
object interface in an object-oriented model, and differ-
ent from the existing object-based Petri nets models.
First, all connections between a component and its
environment are specified in the interface. This is in
contrast to the Cooperative Objects model (Bastide et al.,

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61-78

Fig. 1. The basic structure oINOAM

65

envircnment

Level i- I

1993), for example, where outgoing connections are

defined in the implementation of the object. Conse-
quently in NOAM, inter-component dependency at level
i-l of the design is determined solely based on the MSs,
and independent of designs at the next and more de-

tailed level. This is essential in achieving design stability
(D'souza and Khator, 1994). Second, in addition to the
signature information about the operations of the
component, which defines an object-oriented interface,
an MS also contains the semantics of these operations
including the changes they cause to the state of the
component, inter-dependency and temporal ordering
among the operations, synchronization among inputs,
timing constraint of each operation. Therefore, an in-
terface speciflcation in NOAM fully specifies the re-
quired behavior of the corresponding component.
Any level of a NOAM specification is self-contained,
analyzable, and executable. Consequently, a complex
system can be designed, specified, and analyzed at
a high-level and then gradually refined (or automati-
cally transformed) into a more detailed and realistic
design.

The NOAM model has several desirable properties:
First, a module, whether an MS or MD, is a self-con-
tained entity, which interacts with other components
only through its communication ports. The internal de-

tails of the module are encapsulated and hidden from
others. This feature significantly reduces the burden of
complex FMS modeling as it effectively draws a boun-
dary between different components. Thus, the model of
each component or subsystem can be constructed in-
crementally. Any change to the internal structure of a

module will not affect other parts of the design so long
as its interface defined by its communication ports re-
mains the same.

Second, the concepts of MS and MD provide an
abstraction to support incremental design and explora-
tion of alternatives of design. To see why, consider a

NOAM design at level i-l as illustrated in Fig. l, one

can incrementally replace the specification of a subsys-

tem (MS) with an MD that confi.rms with the interface
of the MS and represents the design of the subsystem at
the next and more detailed level if so desired, and do so

in such a way that no other part of the design needs to
be redone. Furthermore, we can "plug-in" different
MDs in place of the same MS that represent the different
design alternatives to the same subsystem to readily
compare and evaluate the different designs without
having to reconstruct the entire system model every
time.

Third, the correspondence between MS and MD
helps to enhance design traceability that are crucial to
ensure design correctness and consistency for complex
systems like FMS. MS represents the desired behavior of
a system component, while MD describes a design that
is consistent with the behavior. By systematically re-
placing MSs with matching MDs, we can consistently
trace and analyze how a complex system requirement is
satisfled by progressively detailed designs. By evaluating
whether the design of a subsystem (MD) is consistent
with the corresponding MS, we can determine whether
the subsystem design is correct or consistent with its
requirements.

Together, these features lay a foundation for a sys-

tematic approach for complex FMS design that is

lacking in the ordinary Petri nets. Furthermore, as will
be discussed in the later sections, the NOAM framework
is integrated with a formal notation of time based on
Time Petri nets (TPN) (Merlin and Faber, 1976) for
modeling and analyzing the temporal and time-depen-

Module Design (MD)

66 Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61-78

dent behavior inherent to FMS, which is missing in
other structured or object-based Petri net models like
OPNets (Lee and Park, 1993).

3.2. Oueruiew of NOAM notation

Fig. 2 shows the MS of an abstract component Ml.
The outer box with round corner identifies the boundary
of the component. The circles with different fillings
drawn on the boundary are called communication ports.
The ports are a special class ofPetri net places, and they
define the component interface, from which messages or
signals arrive al or leave the component. A port with an
inside cross (e.g., gr) is called an input port. An input
port can receive messages (tokens) of a specified type.
The message may represent an invocation to an opera-
tion defined on Ml or a signal. An input port is defined
as an r-tuple:

< port-nqme, input-parameter-list >, where

port-name is the name of the associated operation and
input-parameter-list (omitted in this example) specifies
the format of the input token. A port with an inside
triangle (e.g. Sr) is called an output port, from which a

communication (via token) to another component is
specified. It is defined as a quadruple:

< port -name, dest - obj ect -id, dest -port -name,
argument /lsf >, where

port-name is the name of the port; dest-object-id and
dest-1tort-name ate the names of destination component
and the port on the component, respectively; and mgu-
ment_list specifies the format of the token to be sent to
the destination component. The token may represent a
piece of dala, a command or a signal.

Inside the MS is Time Petri Net (Berthomieu and
Diaz, l99l; Merlin and Faber, 1976) specifying the be-
havior of the component. Informally speaking, the net is
a bipartite graph consisting of two disjoint sets of nodes:

places, denoted graphically by circles, and transitions,
denoted by boxes. A labeled and directed arc connects a

transition to a place or vice versa. Given a transition l, a
place p is called an input (or output) place of r if there is

an arc from p to z (or from r to p). The set of input (or
output) places of r is denoted by I(t) (or O(l)). The label
on an arc from p to r (or from / to p) is denoted by L(p,t)
(or L(t,p)).

The places represent passive elements of a net, such as

states or conditions. A place may hold one or mote to-
kens. (The maximum number is defined by the capacity
of the place, which has a default value of oo if not
specified.) The assignment of tokens at a particular place

is called the mnrking of the place. The assignment of
tokens to all places in the net (at a given time instant) is

lhe marking of the net (at that instant), which defines the
state of the net (hence the component it specifies).

The transitions model dynamic elements, e.g., (timed)
actions or events. A transition / may be associated with
a logical expression e(l) serving as the guard for lhe
corresponding event or action. By default, e(t):7pry9.
As shown in Fig. 2, t may be associated with a time
interval r(t):(t*in, /.ur), where lmin, lmax e Q,where Qis
the set of non-negative rational numbers, and
tmin (t.u". The time interval defines a duration during
which r may fire (i.e., the event or action associated with
/ may occur) from the time it is enabled. If not specified,
the default time interval is (0, oo). To model deadline-
driven behavior, NOAM uses strong time semantics,i.e.,
an enabled transition must fire within the time bound by
(t.in, t.u^) if it is not disabled by the firing of another
transition.

The labeled arcs L represent a flow relation used to
model control/data flow between the places and transi-
tions. When a transition / fires, tokens specified by L(p,t)
for each p e I(t) are removed from p and tokens specified

by L(t, p) for each p e O(t) are deposited in p, thus
changing the net marking and, consequently, the state of
the system.

Using the above notation, the essential behavior of a
component in a real-time concurrent system can be
precisely and conveniently specified. For example, the
MS in Fig. 2 specifies the following properties, among
others:
c High-leuel abstraction The entire operation associat-

ed with port 91 is specified by a single transition 11.

The required time duration for the operation is
(0,5), i.e., it must be completed in at most flve time
units from the time the corresponding message is re-
ceived.

. Mutual exclusion. Operations (associated with ports)
gy and 92 are mutually exclusive; the winner must ob-
tain the token in place sr.

o Concurrency. Since operations associated with 91 and

92 do not have mutual dependency, they may be exe-
cuted in parallel.Fig. 2. An example of module specification (MS)

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61-78 67

o Synchronization.The processing of messages (tokens)
arriving at gates 8: and g4 must be synchronized at
transition la, which may mean that the execution of
93 requires a reading at l+ of sensor data coming from
94, for example.
In addition, each MS should have an initial marking,

representing the initial state of the object when it is

created. In the example, the initial state is defined by the
token in place s1.

While the MS specifies the behavior of a subsystem,
the MD describes a design that is consistent with the
behavior specified by the MS. It is in the MD where the
subsystem specified by the MS is decomposed into inter-
connected sub-components, communication and syn-
chronization with its environment is expressed, and
control flow of the operations defined in the MS is de-

tailed. Fig. 3 shows an imaginary module design for the
MS in Fig. 3. The round-box icons (called MS icons)
marked Mll.MS and M|2.MS, which represent the
MSs of the sub-modules created during the decompo-
sition. With this structure, a designer will be able to treat
a sub-module as a black box and focus on the archi-
tecture of the system. Formal specification for the sub-
modules can be made subsequently.

From Fig. 3, it can be seen that the actions or oper-
ations represented by transitions 11 and t2 in Fig. 3 are
now consolidated into the sub-component Mll (notice
transitions 111 and tp mark the beginning and end of
action 11, respectively). The time interval (0,10) origi-
nally associated with action /1 is now allocated to newly
identified module Ml1. In addition, the interface of the
MD remains the same as the interface specified by the
MS to enforce consistency of design. Since MS and MD
represent different aspects of the same subsystem, con-
sistency between the two levels of specification must be

maintained to support traceability. NOAM provides
basic rules for this purpose. For example, as shown in
Figs. 2 and 3, all places, including ports, that appear in
the MS must appear in the MD as they should have the
same interface, and same model of module state. They
should also have the same initial marking (initial state).

4. A simple but typical FMS

In this chapter, a simple but typical FMS is described,
which is based on a real-world manufacturing automa-
tion project documented by a machine tool builder's
casebook. This example FMS will be used throughout
this paper to illustrate our approach of FMS modeling.

The FMS model, as shown in Fig. 4, is composed of
one cell controller, seven computer numerical control
(CNC) machines, two load/unload (L/UL) stations, one

work-in-process (WIP) rack, 20 load/unload buffer sta-

tions, one rail guided vehicle (RGV), and two auto-
mated guided vehicles (AGV$.

Parts enter and exit the system at the L/UL area and
move tolfrom machines on AGV. Pallet-fixture combos
are used to carry the parts while the parts are moved by
the AGV or are waiting for processing in buffers. There
are buffer stations in front of the L/UL area and each

CNC machine, which hold incoming and outgoing parts
waiting for AGV to pick up or for being processed by
the CNC machine or operator. An operator is needed at
the L/UL area to inspect the parts and to perform the
load/unload operations.

Machines 1-4 represent four identical Milwaukee-
Matic 800's (MM8), Machine 5 and Machine 6 are two
identical Horizontal Head Changers (HHC), and Ma-
chine 7 is a Special Finish Boring Station (SFBS). Parts

Fig. 3. An example of a rnodule design (MD).

68 Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61 78

ilachining Centers

I

AGV I

Parking - :,
Area /' i

' ll,,,
...,:... ,-1-, r

itiiiir
1.......: 1.....i lll

t\l
r\l
t -l

I

I

I

t
- '/

E@offi
**

ffiffi8

Ultrd
Cell Contrcller

M*hine 7

tlachining Centers

Fig. 4. A simple but typical FMS.

can be processed by any identical machines for the same
operations. There are buffer stations in front of each
CNC machine. A machine buffer has space for four
workpieces, where only three of them can be occupied at
the same time, and one is always reserved for the active
workpiece.

In the loadiunload area, the part with the highest
priority is loaded with a pallet-fixture combo by oper-
ator on the L/UL station. A loaded workpiece is then
moved to an empty buffer station and awaits an AGV
coming to pick it up. The WIP rack acts as a buffer to
temporarily store the unloaded workpieces. In other
words, after a workpiece was unloaded by the operator,
the part will be moved to the WIP rack if this part is not
ready for the next operation. Meanwhile the unoccupied
pallet-fixture combo will be moved to an empty buffer
station. Parts, stored in the WIP rack, are waiting for
the next available pallet-fixture combo in order to have
the next operation. The buffer stations are used to store
the workpieces (loaded with a pallet-fixture combo) and
the pallet-fixture combos. Two of the buffer stations are
for the active stand, where AGV can pick up or drop off
the workpiece. There is one RGV running on a bi-di-
rectional rail. It provides transportation and shuttle for
workpieces and pallet-fixture combo between load/un-
load stations and buffer stations.

The idle AGV is directed by the cell controller to pick
up a workpiece with the highest priority and brings it to
its destination. AGVs have to inform the cell controller

and wait for next instruction after completion of a job.
If there is no incoming job waiting for an AGV, the
AGV will return to its parking arca.

This system is controlled by a cell controller, which is
the most important component in a FMS. Cell con-
troller, acting as a commander, coordinates all the
movements of individual objects based on certain
scheduling policy.

For the sake of clarity, we limit the number of raw
parts to four types. As shown in Table l, there are four
types (A, B, C, and D) of parts, each part may need
more than one operation. There are four types (W, X, Y
and Z) of pallet-fixture combos, where parts have to be
loaded with corresponding types of pallet-fixture com-
bo, specified in Table 1, for the specific operation. For
example, the first operation of type A part is loading
with type W pallet-fixture combo. This operation may
take 300-400 time units. The second operation is ma-
chining by one of the four identical CNC machines, and
this may take 2100 time units. After the second opera-
tion, type A part will be back to load/unload station,
and unloaded and reloaded with type X pallet-fixture
combo by the operator. The next operation (operation
5) is machining by a CNC machine M5 or M6. Opera-
tions 6 and 7 will have the part unloaded and reloaded
with type Y pallet-fixture combo, and operation 8 will
have the part machined by CNC machine M7. Finally,
type A part will be unloaded by an operator, and this is
the final operation.

AGV 2

Mehine 5

Y. Dmg C.-R

Table 1

Parts routing and processing time information

Operation # Processing time Pallet combo Operation
(second) type

Part type: A
1

2

-)

4

5

6

7

8

9

Part lype: B
1

2

3

4

5

6

7

8

9

10

11

12

Part type: C
1

2

3

4
5

6

7

8

9

10

11

l2

Part type: D
I
2

3

4

5

6

7

8

9

10

i1
12

Yang I The Journal of Systems and Software 45 (1999) 61-78

method supports an incremental process to construct a

complex FMS model from informal to formal, from
highJevel to detailed representation, thus significantly
reducing the complexity of modeling. It is shown that,
by basing our method on the decomposition and re-
finement of system architecture, our approach closely
assembles practical design, and can be easily integrated
into a practical system design process. At each stage, our
method creates an FMS design that is complete, exe-

cutable and analyzable. It is also shown that the NOAM
interface structure effectively encapsulates the internal
details in component design, thus helping to isolate the
effect of changes local to the component and supports
the exploration of design alternatives.

5. l. Modeling methodology

Mathematical-based models are normally hard to
understand and use in large-scale system design in part
because of the lack of association between the abstract
notation and practical design concepts, and the lack of
guidance as how to apply the formal representation in
the design process. The modeling methodology outlined
below addresses the problems by providing an incre-
mental process for constructing complex formal design,

and a smooth transition from informal to formal design.
By introducing the concept and framework of system
structure in NOAM, we lay a foundation for a system-
atic approach to FMS design that takes advantage of
the rigor and analyzability of formal notation. In the
meantime, we provide a way to control the complexity
by applying the principle of separation of concerns lo
help designer to establish a clear focus at each step of the
design and to minimize distraction from other design
issues. The NOAM design method consists of the fol-
lowing steps:

1. Define system interface. This step defines the interface
of interaction between the system (note: the term sys-

tem is tsed to denote an entire system, a subsystem,
or a system module depending on the stage of design)
and its environment in terms of inputloutput ports. As
part of the specification, the type and format of data
that can be channeled through each port are defined
in terms of token format. Once the system interface
is defined, it serves as the sole communication chan-
nel to/from the system. Informal description about
the ports can be used at this step.

2. Design a system architecture that mqtches with the in-
terface. This step corresponds to top-level architec-
tural design consistent with the system interface
defined in the last step. It decomposes the system into
sub-systems (or components) and the interactions be-
tween them. For each sub-system, its interface is de-
fined. The system architecture is specified in terms
of time-dependent connections and synchronization
between the sub-systems' interfaces described using

69

300-400

2100

100 200

300-400
I 500

100-200

300-400
1200

240-360

300-400
2400
100-200
30H00
1 800

100-200
30H00
2100

100 200

300,400
I 500

240-360

300 400
2100
100 200

300-400
2t00
100 200

300-400
1 500

100 200
300 400
1 200

24C 360

300-400
1 500

100-200
300 400
I 800

100-200
300 400
1 500

100 200

300-400
1200
240 160

Load
i|'4Ulil{2tM3lll'l4
Unload
Reload
M5/M6
Unload
Reload
M7
Unload

Load
MllM.zlM3lM4
Unload
Reload
M5/M6
Unload
Reload
};dUM2lM3/M4
Unload
Reioad
M7
Unload

Load
Mll}'l2/My}44
Unload
Reload
M1lll2lM3ll;d4
Unload
Reload
M5/M6
Unload
Reload
M7
Unload

Load
M5/M6
Unload
Reload
Mu}'I2lM3l},44
Unload
Reload
M1/M2/M3/M4
Unload
Reload
M5/M6
Unload

w

5. Architecture-driven FMS modeling based on NOAM

We present in this section a systematic method of
using NOAM for FMS design driven by the decompo-
sition and refinement of system architecture. The ex-

ample FMS described earlier is used as a case study to
demonstrate the applicability of our approach. The

70 Y. Deng, C,-R. Yang I The Journal of Systems and Software 45 (1999) 61-78

Time Petri nets notation. Informal notation maybe
used at this step.

3. Construct MS for euery component created in the ar-
chitecture. While the primary concern of Step 2 was
the interaction and synchronization between the
sub-systems, this step is to define the behavior of
the subsystems consistent with their interface specifi-
cation. In other words, a module specification (MS)
for each sub-system is constructed. Again, informal
notation may be used. Upon the completion of this
step, a complete (but may be informal) architectural
model of the system is produced.

4. Substitute informal representation with formal nota-
tion. At this step, any informal description used in
Steps l-3 is transformed into a formal one based
on the formal NOAM notation. Upon the comple-
tion of this step, we now have a complete, executable
and analyzable formal model that represents the top-
level design of the system.

5. Conduct model analysis or eualuation (optional). For-
mal verification, simulation and/or prototyping can
be performed against the architectural model pro-
duced in Step 4, if desired.

6. Create sub-architectures. At this step, the module
specification (MS) of each sub-system is examined.
If a sub-system is too large for direct implementation,
use the corresponding MS as the basis (which de-
scribes the interface and required behavior for the
sub-system), and repeat Steps 1-5 to develop a sub-
architecture for the sub-system. If necessary, more
than one sub-architectures that confirms to the same
interface and behavioral requirements can be devel-
oped, and plugged in the position of the MS to eval-
uate different design alternatives (this maybe
necessary for certain critical components, e.g., Cell
Controller of an FMS).
In the above procedure, the informal steps concern

about the framework and communication structure of
system design, and allows designer to focus on the

Raw
PJts
Ent€r

Slst€nt

global control structure. The formal modeling step
provides a transition to translate such a design into the
formal definition of NOAM.

5.2. Systematic modeling of FMS: a case study

In this section, we use the example FMS described in
Section 4 to illustrate how to apply the NOAM mod-
eling method to support incremental design of FMS.

5.2.1. Define top-leuel system interface
At this first step of design, we consider the entire FMS

as a single component. As the part process plans and raw
parts are sent to this system, the system outputs the
process reports and finished parts after a certain time.
We model the FMS as an object, which has an interface
with four input/output ports. Fig. 5 shows this interface
and Table 2 details the descriptions for the interface.

5.2.2. Informal model of top-leuel architecture
We first decompose the FMS into four critical com-

ponents: Cell Controller, AGVs, CNC Machines and Z/
UL system. Cell Controller describes the cell controller;
AGVs represent all of the automated guided vehicles; L/
UL system represents all the components in load/unload
area, which may include load/unload stations, WIP
rack, RGV, load/unload buffer stations and operators;
and CNC Machines include all the CNC machines, The
relationship between the components is shown in Fig. 6.

The FMS is controlled by the Cell Controller which
coordinates all the movements of individual compo-
nents. AGVs, CNC Machines and LIUL system receive
operating instructions from Cell Controller and report
their current status to Cell Controller. L/UL Area and
CNC Machines must coordinate with AGVs for the
transportation of workpieces.

The block diagram of Fig. 6 can be translated into an
informal version of NOAM design incorporating the
interface specification of Fig. 5. The resulting topJevel

Ptl
Proc€ss
Repo.ts

Fhbhed
Prts
Exit

Sptem

Fig. 5. The FMS interface

Y. Deng, C.-R

Table 2

The interface descriptions of the FMS

Yang I The Journal of Systems and Software 45 (1999) 61-78

of the component, which is achieved using standard Petri
net techniques. The MS is shown in Fig. 8. The meanings
of the transitions (representing actions or events) and
places (representing states or conditions) in the MS are
informally described in Tables 4 and 5, respectively.

In the specification of the Cell Controller, inhibitor
arcs are used to describe the priorities ofthe transitions,
which share the same resources. For example, transition
t1 canbe enabled and fired only ifthere is no token in
place p, because /6 has a higher priority than t7.

Moreover, t6 aan be enabled and fired only if there is no
token in places p2 and p3, this indicates /6 has lower
priority than t7 and ls. We also observe that raw parts
can be loaded if there is no WIP waiting to be loaded/
unloaded and parts in WIP rack can be loaded if there is
no WIP in the LiUL buffer station. This scheme controls
the quantity of WIP and provides decision information
on load/unload scheduling.

B. Module specifcation of CNC Machines.
As another example of module specification, the MS

for CNC Machines is similarly constructed based on its
interface definition and the required functions. Here we
simply list the result of the specification. Table 6 de-
scribes the CNC machines' communication ports,
Tables 7 and 8 describe the transitions and places of the
MS.

The MS shown in Fig. 9 describes a brief work cycle
of the CNC machines. A workpiece is delivered to ma-
chining center by an AGV (g) and moved (la) to ma-
chine buffer station (pq).If the machine is idle (p1) and a
machining instruction is received (gr), a workpiece is
moved to machining position (11) and waits to be ser-
viced (trt2). A processed workpiece is then moved to
machine buffer (r3) and waits to be delivered back to L/
UL area by AGV (po).

5.2.4. Formalizing top-leuel design
Up to this point, we have incrementally constructed

the topJevel architecture of the FMS. The design is
informal in the sense that the communication ports,

7t

Ports Type Interpretations

8t
8z

9z

8q

Input New process plans received
Input Raw parts enter the system
Output Finished parts exit the system
Output Cuffent process reports are sent to the supervisor

module design (MD) is shown in Fig. 7. In this design,
the Cell Controller sends process instruction to each of
the other components (e.g. L/UL Area, AGVs and CNC
Machines), which in turn report their processing status
to Cell Controller. There are interfaces between AGVs
and LIUL Area, and between AGVs and CNC Ma-
chines. These interfaces model the transfer of parts be-
tween different components.

An additional task of this step is to adequately specify
the interfaces for each newly identified component or
sub-system (i.e., Cell Controller, LlUL Area, AGVs and
CNC Machines), which are discussed in the next sub-
section.

5.2.3. Module specffication of the components
Having decided the overall system structure and

communication pattern, we now proceed to module
specifications (MS) of the newly identified components.
Because of space constraint, only the MSs lor Cell
Controller and CNC machines are provided here.

A. Module specffication of Cell Controller.
The communication interface of Cell Controller de-

scribed by input/output ports are specified in the top-
level design. A more detailed description of these ports
are provided in Table 3.

Based on this interface specification, a module speci-
fication of the Cell Controller that describes its functions
and behavior can be constructed. Because the main
purpose of this paper is to investigate modeling frame-
work and methodology, we will not provide detailed
discussion about how to construct the time Petri net in-
side the MS describing the state transition and behavior

Fig. 6. Relationship of sub-systems in the FMS

72 Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 6l-78

Fig. 7. TopJevel module design of the FMS.

places, and transitions are described using the natural
language instead of the formal notation. This informal
design process is important, however, because it allows a
designer to focus on the conceptualization of design
without having to worry about the details of formal
Petri net notation. This can also be viewed as a part of
the incremental formalization process, in which we focus
on structural formalization of the design, while delaying

Table 3

Communication ports for the Cell Controller

the semantic formalization, so as to reduce the burden
of considering too many things at the same time, thus
reducing the complexity of design at each stage.

Since the informal design already has a relatively
formal structure, and provides a complete context for
the model elements such as ports, places and transitions,
it also makes the translation of these informally de-

scribed elements much easier task. In this section, we use

FmryoP
55@as

Load^rnloed
AE

Ports Interpretations

8t

8q

8s

8t
8s

8g

8to

8tt
8tz

8rq

8ts

9te

New process plans received
Send the load instruction to L/UL_Area to direct operator to perform the loading of a raw part
Send the load instruction to L/UL_Area to direct operator to perlorm the loading of an in-process workpiece
Send the unload instruction to L/UL_Area to direct operator to perform the unloading ol an in-process workpiece
Send current completed process report
Receive a process report from L/UL_Area
Receive a message indicating that a pallet-fixture combo becomes available
Receive a message indicating that an operator becomes available
Send the routing instruction to AGV
Send the process instruction (NC programs etc.) to CNc_Machines
Receive a message indicating that an empty buffer space becomes available in machining center
Receive a message indicating that a WIP in the L/UL buffer station waits to be delivered

Receive a message indicating that an AGV becomes available
Receive a message indicating that a WIP in the machining center waits to be delivered
Receive a message indicating that a WIP in L/UL buffer station waits for unloading
Receive a message indicating that a part is moved to WIP rack

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 6l-78

AGV
Avdabb

Pr{
Pl@
PEE

Ptl
in

wlPRd(

wP M&fim
,,;1,- -coier-&rff6.Sttb *ffi

UUL M-tsmng
Ara CatEa

RqGd Butler

AGV Ad*

Rnh
Lod

wlP
tod i

lNtnElbr

wlP
Unld I

lmtrEtirr
lletirim
lngndin

h
Pffi
R€pat

Pd.afbdxr
Cmbo

Adabb

O0r€fa
Arl* Rcning

lndnrlbr

Fig. 8. Module specification of Cell Controller

the CNC Machines as an example to show the result of
formalization.

Fig. l0 denotes the same CNC Machines specifica-
tion as shown in Fig. 9. The difference is that the in-
formal description of the ports, places, transitions, and
arcs are replaced with corresponding formal description
as follows:

Formql definition of communication ports:

gri (Drop6p, AGVs, Machinep.oooo, (AGVTD))
gz: (Drop-off, (AGVrD, Partlp, Palletlro.))
8z: (Pick-up, (AGVrD, Partp))
gq: (Pick61, AGVs, Machinep1"L.o, (AGVrD,

Partle, Oper ationft , Pa I I etryr"))

Es: (Bufferauu66t., Cell6or1ro1"., MB4uu1u61",

(Machinep))
ga: (Reqoou, Cellsonlrol.r, MR"qoou,

(Partp, Machinele, Operationft))
8t'. (Mr..t,u"tio., (Partp, Machineyp, Operation#))

Take input port gz as an example. The definition gr :
(Drop-off ,(l GVlp,Partp,Palletlro.)) means that the
type of operation represented by the port is Drop-off,
the input data required by the operation has the struc-
ture (AGV_ID, Part_ID, Pallet_Type). Similarly, output
port 91 represents an outgoing flow that acknowledges

that the Drop-off operation has been successfully com-
pleted. Notice that there is no need to explicitly specify
in the lormal definition whether the port is an input or
output port, which is implicitly determined by the di-
rection of its adjacent arcs.

Formal definition of transitions:

ti x(t1) : (60, 90);
e(tt) : (gr.Machine_ID :

: pl.Machine-ID) (g7.Part ID =
: pa.part ID);

rz: t(rz) - (1200. 2400):
/:: r(1:) :(60. 90):
t4i x(ti : (60, 90);
t5: r(t5) : (60, 90);
e(ts) : (g,.Part ID :: p6.Part ID).

The definition of /1 indicates, for instance, that the
action (load workpiece into machine) must take place
within 60-90 time units from the moment the opera-
tion is enabled; and the condition (guard) for the
action to take place is that the requested machine is
available (gT.Machine_ID: :pl.Machine_ID) and
the part to be processed is waiting in the buffer
(g7.Part_ID - :pa.Part_ID). Combined, the definition
specifies not only the timing but also the logical

l5e

r

74

Table 4
Transitions of the Cell Controller

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61-78

Transitions Interuretations

trts
t6

t1

ts

te

tn
ttt
tn

Calculate the priorities of incoming jobs based on a dispatching rule
Direct operator to load a raw part with the highest priority
Direct operator to load a WIP with the highest priority
Direct operator to unload a WIP with the highest priority
Request AGV to deliver a workpiece with the highest priority from machining center to L/UL buffer station
Request AGV to deliver a workpiece with the highest priority from L/UL buffer station to machining center
Request AGV to return to its parking area
Create process report

Table 5

Places of the Cell Controller

Raw parts wait for loading
Parts in WIP rack waiting for loading
Workpieces in LfuL buffer station waiting lor unloading
Operators available to perform the load/unload operation
Parts in machining center waiting to be delivered
AGVs available
Parts in L/UL buffer station wait to be delivered
Empty buffer spaces available in the machining center
Pallet-fixture combos available

Table 8

Places in the MS of the CNC Machines

Places Interpretations

CNC machines available for next job
Parts ready to be processed by CNC machine
The processed parts waiting to be moved to a buffer station
Parts waiting to be processed
Transporter is idle
Parts waiting to be transported to the LlUL area

(AGV_ID, Part_ID)
(AGV_rD)
(Part_ID, Pallet_Type)

(Part-ID, Pallet-Type)
(Part_ID, Machine_ID, Operation#)
(Machine_ID)
(Part_ID, Machine-ID, Operation#, Pallet_Type)

(Part_ID, Machine_ID, Operation#, Pallet_Type)
(Part-ID, Machine_ID, Operation#, Pallet_Type)
(Part_ID, Machine_ID, Operation#, Pallet_Type)

Places Interpretations

Pr
n1

Pt
Pq

Ps

Pa

P7

Ps

Ps

Pr
D1

Pt
Pc

Ps

Pa

output flow for every operation defined by the transi-
tions.

Formal de.finition of arcs;

Table 6

Communication ports of the CNC_Machines Qtl

azi

azi

aqi

asi

aai

Al'.

AA'.

AS'.

Qto'.

al,'.
ani

8q

8s

Interpretations

Inform AGV that the transport of workpiece is completed
Receive a message indicating that AGV has arrived to drop
off part
Receive a message indicating that AGV has arrived to pick
up part
Inform AGV that the transport of workpiece is completed
Inform Cell Controller that an empty buffer space becomes
available
Inform Cell Controller that a workpiece waits to be

transported
Receive workpiece machining instruction

Table 7

Transitions in the MS ol the CNC Machines

Part is moved into the machining position from
machine bufler
Part is processed by CNC machine

Processed part is moved to buffer from the machining
position
Part is moved from AGV to buffer station
Part is moved from buffer station to AGV

an| E

erq (Machine_ID)
arsi (Part_ID, Machine_ID, Operation#)
arc'. (Part_ID, Operation#, Pallet_Type)
ant (Part_ID, Operation#, Pallet_Type)
Qn| t
api (AGV_ID, Part_ID)
azoi (AGV_ID, Part_ID, Operation#, Pallet_Type)
azi (Machine_ID)

From the above discussion, it can be seen that gener-
ating formal specification of the design is reasonably
straightforward given the informal design. A major rea-
son for this is due to the fact that the global control
structure, the datalcontrol flow, and the context for each
operation has been explicitly defined and specified. Given

Transitions Interpretations

t1

t2

t3

t4

t5

requirements for the action. Furthermore,
of arcs, shown below, precisely specifies

the definition
the input and

hF
betsG. .hfr&fi

hB G;

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 6l-78

Madlit*lg
lmMih

Msdhhecff Roqu..t
8ufic AGv

A[l$b

Fig. 9. Module specification ol the CNC Machines.

M_har1t6on
(h_lD,Mdrirlo_lO,Opcslid#)

'75

Pi:k-up
(AGv_rD,h_rD)

AGVT.M&hiE_Pid(_Ok
(AGV_ID,H_rD

Opcatiq*,Pd€l_TD.)

Cd_Cdltda.MB_At rido Cdl_Ccfdc.M_Rq_AGV
(libhir_lo) (Prl_lD,rrdrina_lD,OFalidf)

10. Formal module specification (MS) of CNC Machines.

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 61-78

this information, a designer can fully concentrate on
enforcing the preciseness and consistency of the design.

Upon the completion of this formalization step, we
have a complete, both in terms of structure and se-

mantics, architectural model of the FMS regardless of
whether further decomposition or refinement is needed.
This model is executable, and thus can be used as a
system prototype for experimental evaluation. It is for-
mally verifiable using any existing Petri net verification
techniques. This gives us an opportunity and tools to
incrementally evaluate each stage of the design process.
This feature not only reduces the complexity of analysis,
but also allows us to promptly detect and correct design
faults as they occur, thus preventing them from propa-
gating to later design or implementation stages where
correction of the same errors are much more difficult
and costly.

5.3. Discussion

We have shown how to incrementally proceed to
achieve a formal design model of FMS based on
NOAM. Moreover, we provide an easy way to modify,
refine and decompose the design, or to explore different
alternatives of design.

For instance, the design of CNC Machines shown in
Fig. 10 may be too simple to describe the behavior of
Transporter, which transports workpiece between AGV
and machine buffer station. and between machine and

Drapdf
CmC6aed

AGV AFiYd
to

AGV Ariv€d
to

machine buffer station. Fig. 11 shows a refinement of
CNC Machines, where we refine the specification of the
Transporter and model the dispatching rule using First-
Come-First-Served (FCFS) policy. The reflnement will
not affect or alter the other components in the same level
or the upper level because the interface of CNC Ma-
chines remains the same. This is a very important ad-
vantage in complex system modeling.

In order to meet different requirements, we may
change the associated action or logical expression of a
transition. For example, a transition can associate a

different program to calculate the priorities ofjobs based
on a different scheduling rule. We may also use a func-
tion to calculate the workpiece machining time or AGV
traveling time more precisely. Obviously, these modifi-
cations can be easily done, and, more importantly, they
don't require any changes to our module specification or
the system structure.

Another advantage of our approach is that it pro-
vides a systematic approach for subsystem decomposi-
tion. For example, we can decompose the L/UL Area
into three sub-components, L/UL Buffer Station, RGV
and LIUL Station, if a more detailed and precise design
is needed. A corresponding module design (MD) of L/
UL Area then needs to be created, which, of course, has
to satisfy the behavior specified by the MS. Because the
interface of the LiUL Area defines a cleff boundary of
the subsystem, the relationship of LIUL Area with other
components will not be affected. It should be noted that

MahhiE Cqts
Buffa

AElablc

Fig. 11. Refinement of CNC_Machines

Mehhhg
lrdrudir

R€qrt
AGV

Y. Deng, C.-R. Yang I The Journal of Systems and Software 45 (1999) 6I-28 7',l

the design of a component interface is crucial. With a
careful analysis, a good interface design will minimize
the effect of modification and decomposition in the
overall design.

6. Conclusion

We have presented an architecture-driven formal
approach based on Petri nets for the modeling and de-
sign of (FMS), which effectively addresses the problems
of Petri nets as a design model of complex real-time
concurrent systems. Through the case study, we have
demonstrated that our approach, centered around the
NOAM, provides a systematic way to incrementally
construct, refine and analyze complex FMS models. It
uses architectural decomposition as the basis to reduce
design complexity, to provide smooth transition from
informal to formal design, and to explore design alter-
natives. A NOAM model of FMS is much more com-
pact, is consistent with practical system design both
syntactically and semantically, and has a structure that
is more readable, changeable and extensible.

Based on the framework of NOAM, we are investi-
gating two open issues. The flrst is analysis techniques
that allow us to compositionally verify time-critical
system properties, such as real-time satisfiability and
schedulability. Because NOAM allows more complex
connection and synchronization structure among con-
current modules, it introduces additional complexity for
compositional analysis. Second, what NOAM (and
other Petri net-based formalisms) describes is the oper-
ational model of a real-time system. It does not explicitly
describe the required real-time properties or constraints
that the modeled system must satisfy. (One may argue
that the model itself represents the requirements that the
final operational system must satisfy. These require-
ments, however, are buried in the operational structure,
and are extremely difficult to identify.) We are working
to extend NOAM by integrating its Petri net-based op-
erational notation with a logic-based descriptive nota-
tion, so that the resulting model provides a foundation
to enhance and ensure the traceability of system design
against real-time constraints in the design and refine-
ment process.

References

Baldassari, M., Bruno, G., 1991. PROTOB: An object-oriented
methodology for developing discrete event dynamic systems.
Computer Language l6 (1), 39-63.

Bastide, R., Sibertin-Blanc, C., Palanque, P., 1993. Cooperative
Objects: A concurrent Petri net-based object-oriented language.
ln: Proceedings of the IEEE lnternational Conlerence on Systems,
Man and Cybernetics, pp. 286-291.

Battiston, E., De Cindio, F., Mauri, G., 1988. OBJSA nets: A class of
highJevel Petri nets having objects as domains. In: Rozemberg G.
(Ed.), Advances in Petri nets '88, vol. 340, Lecture Notes on
Computer Science, Springer, 1988, pp. 20 43.

Berthomieu, Diaz, M., 1991. Modeling and verification of time
dependent systems using time Petri nets. IEEE Transactions on
Software Engineering 17 (3), 259-27 3.

Brussel, H.V., Peng, Y., Vallckenaers, P., 1993. Modeling flexible
manufacturing systems based on Petri nets. Annals ol the CIRP 42
(1),479484.

Bucci, G., Vicario, E., 1995. Compositional validation of time-critical
systems using communicating time Petri nets. IEEE Transactions
on Software Engineering 21 (12),969-991.

Camurri, A., Franchi, P., Gandolfo, F., Zaccaria, R., 1993. Petri net
based process scheduling: a model of the control system of flexible
manufacturing systems. Journal of intelligent and Robotic Systems
R qq t?1

Deng, Y., Du, W., Attie, P.C., Evangelist, M., 1996. A formalism for
architectural modeling of distributed real-time systems. Proceed-
ings of 8th International Conference on Soltware Engineering and
Krowledge Engineering. Lake Tahoe, Nevada, pp.408 417.

Deng, Y., Lu, S., Evangelist, M., 1997. A lormalism for Architectural
modeling and prototyping of distributed real-time systems. Pro-
ceedings of the 30th Hawaii International Conference on Systems
Science, Maui, Hawaii.

Du, W., Deng, Y., 1995. Formal notation of NOAM. Technical
Report. School ol Computer Science, Florida International Uni-
versity, Miami, FL.

D'souza, K.A., Khator, S.K., 1994. A survey of Petri net applications
in modeling controls lor automated manulacturing systems.
Computers in Industry 24, 5 16.

Elmaraghy, H.A., Ravi, T., 1992. Modern tools for the design,
modeling and evaluation of flexible manufacturing systems.
Robotics & Computer-Integrated Manufacturing 9 (4), 335-340.

Engelfriet, J., Leih, G., Rozenberg, G., 1990. Net-based description of
parallel object-based systems, or POTs and POPs. In: de Bakker,
J.W., de Roever, W.P., Rozenberg, G. (Eds.), Foundations of
Object-Oriented Languages, vol. 489, Lecture Notes on Computer
Science, Spinger, Berlin, pp. 229 2'73.

Greenwood, N.R., 1988. Implementing Flexible Manulacturing Sys-
tems. Halsted Press, New York.

Genrich, H.J., Lautenbach, K., 1981. System modelling with highJevel
Petri nets. Journal olTheoretical Compute Science 13, 109 136.

Ghezzi, C., Mandrioli, D., Morasca, 5., Pezze, M., i991. A unified
highJevel Petri net formalism for time-critical systems. IEEE
Trans. ol Software Engineering 17 (2), 160 l'71.

Huang, H.P., Chang, P.C., 1992. Specification, modeling and control
of a flexible manulacturing cell. International Journal ol Produc-
tion Research 30 (11),2515-2543.

Jensen, K., 1992. Coloured Petri Nets, vol. i. Springer, Berlin.
Knapp, G.M., Wang, H.P., 1992. Modeling ol automated storage/

retrieval systems using Petri nets. Journal of Manulacturing
Systems 11 (l),20 29.

Lee, Y.K., Park, S.J., 1993. OPNets: an object-oriented high-level Petri
net model lor real-time system modeling. Journal of Systems
Software 20 (l),69 86.

Lin, J.T., Lee, C.C., 1995. A CTPN-based scheduler for a flexible
manufacturing cell. Journal olthe Chinese Institute ofEngineers 18
(s),6ss 672.

Looveren, A.J., Gelders, L.F., Wassenhove, V., 1986. A review of
FMS planning models. In: Andrew K. (Ed.), Modelling and Design
of Flexible Manufacturing Systems. pp. 3 31.

Luckham, D.C., Kenny, J.J., Augustin, L.M., Vera, J., Bryan, D.,
Mann, W., 1995a. Specification and analysis of system architecture
using Rapide. IEEE Transactions on Software Engineering 21 (4),
336,355.

78 Y. Deng, C.-R Yang I The Journal of Systems and Softv,are 45 (1999) 6l-78

Luckham, D.C., Vera, J., Meldal, S., 1995. Three concepts of system
architecture. Technical Report. Stanford University.

Martinez, J., Alla, H., Silva, M., 1986. Petri nets lor the specification of
FMSs. In: Andrew K. (Ed.), Modelling and Design of Flexible
Manufacturing Systems. pp. 389406.

Meng, J., Soh, Y.C., Wang, Y., 1995. A TCPN model and deadlock
avoidance lor FMS jobshop scheduling and control system. IEEE
International Workshop on Emerging Technologies and Factory
Automation, Paris, France, pp. 52I-532.

Merlin, P., Faber, D.J., 1976. Recoverability of communication
protocols. IEEE Transactions on Communication COM-24 (9).

Murata, T., 1989. Petri nets: properties, analysis and applications.
Proceedings of the IEEE 77 (4), 541-580.

Palaudetto, M., Raymond, S., 1993. A methodology based on objects
and Petri nets for development of real-time software. Proceedings
of the IEEE International Conference on systems. Man and
Cybernetics 2, 701-7 10.

Qadri, F., Robbi, A., 1994. Timed Petri nets for flexible manulacturing
cell design. IEEE International Conlerence on Systems, Man, and
Cybernetics. Texas, pp. 1695-1699.

Shukla, C.S., Chen, F.F. The state-of-the-art in intelligent real-time
FMS control: a comprehensive survey. Journal of Intelligent
Manufacturing, to appear in 1997.

Solot, P., Vliet, M.V., 1994. Analytical models for FMS design

optimization: A Survey. International Journal of Flexible Manu-
facturing Systems 6 (3),209-233.

Wang, L.-C., 1996. The development ol an object-oriented Petri net
cell control model. International Journal on Advanced Manufac-
turing Technology 11, 59-69.

Zuberek, W.M., 1995. Schedules of flexible manulacturing cells and
their timed colored Petri net models. IEEE International Confer-
ence on Systems, Man, and Cybernetics. New York, pp. 2142
2147.

Zhou, M.C., Dicesare, F., Rudolph, D.L., 1992. Design and imple-
mentation of a Petri Net based supervisor for a flexible manufac-
turing system. Automatica 28 (6), 1199-1208.

Zhou, M.C., McDermott, K., Patel, P.A., 1993. Petri net synthesis and
analysis of a flexible manufacturing system cell. IEEE Transactions
on System, Man, and Cybernetics 23 (2), 523 531.

Zhou, Q., Wang, M., Dutta, S.P., 1995. Generation of optimal control
policy for flexible manufacturing cells: a Petri net approach.
International Journal of Advanced Manufacturing technology 10,

59-65.

Yi Deng received the B.S. degree in Computer Science from the Uni-
versity of Science and Technology of China in 1983, the M.Sc., and
Ph.D. degrees, both in Computer Science, from the University of
Pittsburgh in I 990 and i 992, respectively. He has been on the laculty in
the School ol Computer Science, Florida International University the
State University of Florida in Miami, since 1992, where he is currently
an Associate Professor, and directs the Advanced Distributed Systems
Engineering Lab. His research interests include distributed systems,
real-time systems, and software engineering, especially software ar-
chitectwe and formal methods. His research has been supported by
NSF, USAF Rome Lab, AFOSR and NASA. Dr. Deng is an Asso-
ciate Editor for the International Journal of Software Engineering and
Knowledge Engineering, and co-chairs the Program Committee for the
1998 International Conference on Soltware Engineering and Know-
ledge Engineering.

Dr. Deng is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Chia-Rung Yang received the BA degree from the Tankang University,
Taiwan, ROC, in 1991, and the M.Sc. degree from Florida Interna-
tional University in 1996, both in Computer Science. He is currently a
Product Engineer at the Acer Latin America Inc., where he is re-
sponsible for new product development and testing, as well as trans-
lering new products into mass production. His research interests
include soltware engineering and system testing.

