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ABSTRACT
There are millions of web tables with geographic data that
are pertinent for big data integration in a variety of do-
main applications, such as urban sustainability, transporta-
tion networks, policy studies, and public health. These ta-
bles, however, are heterogeneous in structure, concepts, and
metadata. One of the challenges in semantically extracting
geographic data is the need to resolve these heterogeneities
so as to uncover a conceptual hierarchy, metadata associated
with instances, and geographic information—corresponding
respectively to ontologies, elements that we call features, and
cell values that can be used to identify geographic coordi-
nates. In this paper, we present an architecture with meth-
ods to: (1) extract feature-rich web tables; (2) identify fea-
tures; (3) construct a schema and instances using RDF; (4)
perform geocoding. Preliminary experiments led to high ac-
curacy in table identification and feature naming even when
compared to manual evaluation.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Query
formulation

General Terms
Algorithms, Experimentation

Keywords
Geographic data, Web tables, Information extraction, Se-
mantic data integration, Geocoding, Spatial databases, GIS

1. INTRODUCTION
We have a vision in which domain experts in urban sustain-
ability, transportation networks, policy studies, and pub-
lic health extract and integrate geographic data from sev-
eral web pages to build links among data so as to be able
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to derive complex interrelationships. However, there is a
large gap between this vision and reality: the web contains
millions of tables [7]. Several of these web tables are pub-
lished as reports or historic data by organizations such as the
U.S. Bureau of Transportation Statistics,1 CityOfChicago,2

and Pearson Education.3 We refer to these tables that con-
tain high-quality relational data as feature-rich. These data,
which provide information about real-time events, are usu-
ally described using three important dimensions—spatial,
temporal and thematic [20]. Although these tables expose a
wide range of information, they are often confined to a par-
ticular theme depending on the purpose of a website. For
example, a table on a website dedicated to “Precipitation
in Chicago” may show the monthly average rainfall/snowfall
specific to a Chicago subregion. Further, many of these ta-
bles are manually created. Their purpose is to be interpreted
by humans not by machines and, quite often, their underly-
ing databases (when they exist) cannot be web queried.

However, automatic extraction is needed. For example,
consider another website containing data on “Disease statis-
tics in Illinois” showing the influenza daily statistics in var-
ious cities. Here, the disease statistics may be reported in
percentage with a column header like Statistics (%) or the
date in M/D/Y format. We refer to these implicit metadata
elements as features. A domain expert could examine the ta-
bles to understand how the different values and features are
linked and then proceed to perform the correlation between
precipitation and influenza values in Chicago. While this
approach may sound feasible for two tables, the complex-
ity of relating a large number of tables manually makes the
task nearly impossible. Thus, we would like to develop an
automatic system that can uncover the semantic links that
relate data in those tables.

We refer to the process of linking data by automatically
identifying and mapping the underlying semantics as data
integration. In our example, the only data point present
in both tables is the geographic component—Chicago—and
even this common point may or may not be directly per-
ceived, depending on how the connection to Chicago is es-
tablished. For example, some data may have been collected
at the level of wards, while other data may come from a
sensor network placed with no connection to the city’s ad-
ministrative units.

Apart from spatial heterogeneity, tables may have differ-
ent temporal resolution (monthly, daily) and different con-

1http://www.rita.dot.gov/bts
2https://data.cityofchicago.org/
3http://www.infoplease.com
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Figure 1: Screenshot of a web page that includes a table.

cepts (precipitation, influenza) or the same concept and dif-
ferent names (influenza, flu). To facilitate information ex-
traction that takes time, space, and other attributes into ac-
count, with the goal of integrating data to allow for geospa-
tial queries and for data visualization on a map, a well-
founded and robust methodology is needed.

We note that some research problems that are appar-
ently related to this paper are in fact quite distinct. In
one of them, behind the tabular data representation, there
are databases. The tabular data result from queries made
through forms to those databases. The goal is to use those
forms as gateways to the databases so as to crawl the so-
called “deep web” [19]. Other work considers templates for
shopping web sites, which have a “consistent” (even if het-
erogeneous) display of the hierarchies of products (and of
their attributes) on those web sites [25]. In our work, do-
main databases and forms are often absent and common
templates are hard to find. Other work directed to shop-
ping sites identifies semi-structured tables using a classifi-
cation algorithm [8] instead of templates that extract at-
tribute/value pairs [25]. Because of their use of a classifi-
cation algorithm, there are similarities with our work, yet
there are also important differences because the shopping
and geospatial domains differ substantially.

In this paper, we present several elements of an architec-
ture for semantically extracting geographic data from web
tables. Such elements provide the following functionalities:
• Automatic identification of feature-rich web tables.

• Automatic feature tagging within the tables, includ-
ing the tagging of measurement units and of temporal
data.

• Ontology construction from table captions and com-
plex tables with nested headers.

• Geocoding [28] with disambiguation methods using the
constructed ontology.

The main goal of our information retrieval task is to pro-
duce appropriate data in a semantic web format to facilitate
both geospatial and semantic queries on them. This work is
a part of our larger semantic framework GIVA, which com-

bines geographic data extraction, geospatial and temporal
data integration, visualization, and analytics [10].

The rest of this paper is organized as follows: Section 2
explains the features and characteristics of typical web ta-
bles that contain geographic information. In Section 3, we
overview the architecture of our system. Section 4 describes
the preliminary implementation of the main architectural
components of our system and presents experimental results.
In Section 5, we make several observations and outline fu-
ture work. Section 6 covers related work on semantic data-
extraction from tables and place name disambiguation in
geocoding. Finally we draw some conclusions in Section 7.

2. WEB TABLES
A screenshot of a web page with a feature-rich table is

shown in Figure 1. We use this example throughout this
section to describe various characteristics of a web table.

2.1 Uses
Web tables are not only used for representing relational

(feature-rich) data but for various other purposes [7]. For
instance, in Figure 1, the <table> tag is used to place the
horizontal menu bar at the top, advertisements at the right,
and the actual feature-rich table in the center contributing
to a total of three tables.

2.2 Heterogeneity
Tables exhibit heterogeneity in several ways [9]. In our do-

main, heterogeneity is mainly due to the presence of nested
headers that inherently possess multiple features. We con-
sider the following three heterogeneity types.
Structural. Most web tables have a table header (defined
by <th>) and table columns (defined by <td>). Both of
these are created inside a table row (defined by <tr>). If
table headers are defined in a single row:

<tr>
<th>City</th>
<th>State</th>

</tr>
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then this representation is similar to that of a table in a rela-
tional database. Recovering the semantics from such tables
is an easy task especially when the headers are well defined.
Several tools such as D2R [6], Triplify [2], or Karma [21]
perform this operation on tables of a relational database.
However, most of the web tables have a blend of simple
headers and nested headers. For example, in Figure 1, the
first column City has a simple structure while the second
and third columns define a hierarchy by means of nested
cells. We refer to such differences as structural heterogene-
ity in web tables.
Conceptual. Although a web table can be confined to a
specific theme and purpose, there are also situations where
data about multiple concepts are described in the same ta-
ble. Figure 1 shows this heterogeneity by displaying three
different concepts, namely Average monthly temperature, Pre-
cipitation, and Snowfall, in a single table.
Metadata. Metadata is defined as data about data. In web
tables, it could be any information that summarizes the en-
tire table (table caption) or could be the information present
in the table headers that describes data in the respective
columns. Usually, every table has a caption associated with
it, generally placed above it. However, identifying the cap-
tion automatically is challenging due to the variations in web
page layouts. For example, in Figure 1, the table caption Cli-
mate of 100 Selected U.S. Cities is not present immediately
above the table but a few lines above it. The table header
is also an important source of metadata. That is, metadata
is often implicit whether in the caption or present elsewhere
in the web page. We refer to the implicit metadata elements
as features, which are further discussed next.

2.3 Features
Table headers contain a variety of features. We will dis-

cuss here some of the important features that are useful for
geographic information retrieval. Table 1 shows a few ex-
amples of features available in table cells.

Spatial Albany, N.Y.; Anchorage, Alaska
Temporal Jan.; Oct.
Units ◦F; (in.); (days)

Misc Snowfall2

Table 1: Some features present in the web table
shown in Figure 1.

Spatial. Many web tables that contain geographic infor-
mation have data in one or more columns with location
information, such as cities, parks, or counties. This kind
of information does not make sense without identifying the
associated metadata. For instance, the word “Cook” is rec-
ognized as a county (in Illinois) only if the respective column
header is properly identified. There are also situations where
city and state names are combined in a single cell as in “Al-
bany, N.Y.” introducing challenges in data extraction.
Temporal. Temporal data represented in HTML tables can
be specific (02/11/2013 01:24:03), approximate (Oct, 2012),
or a range (May-June 2013). Approximate temporal data
can also be represented as a temporal range. For example,
October 2012 represents the range October 1-31, 2012. This
kind of interpretation is required when performing temporal
queries.
Units. Any historic data or reports that involve numbers

will have measurement units, which may be encoded in the
table headers as shown in Figure 1 or within the data cells
such as $12,000 or 1.2in.
Ambiguities. Ambiguities are common in geographic data
extraction. For example, in Figure 2, “Lincoln Park” is an
ambiguous location that may refer to a neighborhood in
Chicago or Albany. Superscripted symbols (or numbers)
may also introduce ambiguity. For instance, the number “2”
in the unit m2 (square meter) is different from the same
superscript in Snowfall2.

3. ARCHITECTURE
In this section, we propose an architecture for our system

for the semantic extraction of geographic data from web ta-
bles and describe briefly its components. The architecture
is shown in Figure 2. In this section we will be making
use of NLP techniques. In what follows, terminology that
represents tags and patterns (e.g., DT, NN[*], JJ[*], VBP,
PP NN) is taken from a well-known Part-Of-Speech (POS)
tagging technique [26].

3.1 Table Extraction
To identify feature-rich tables, we use a decision tree clas-

sifier with features listed in Table 2. This model is then
trained using 500 heterogeneous web tables. Each feature-
rich table is given a unique Table ID and its position in the
original web page is marked using a label. This position
information will be later used to identify table captions as
described in Section 3.3.

Feature Value
Number of Columns S(1-3), M(4-7), L(>7)
Number of Rows S(1-5), M(6-10), L(>10)
Number of <img>, <object>
tags in tables cells

S(1-3), M(4-10), L(>10)

Background color difference
between the rows

True, False

Font weight difference between
the rows

True, False

Presence of <th> in first two
rows

True, False

S, M, L = Small, Medium, Large

Table 2: Decision tree features for table extraction.

3.2 Preprocessing
A feature-rich table is preprocessed in order to convert it

into a table matrix. The rows of this matrix that correspond
to the table headers are referred to as header cells and the
rest as data cells. To create this matrix, we first identify
the table headers using the <th> tags. The initial matrix
is generated by expanding rowspan and colspan tags. Then,
a POS tagger runs on the data cells. The cells that contain
multiple concepts (noun groups [NN*] separated by com-
mas) are split to form a final matrix as shown in Figure 3.
Because of this expansion, the dimension of this matrix may
not be the same as that of the original table. We use the ta-
ble matrix throughout our architecture for data extraction.

3.3 Feature Extraction
This component identifies several features as described in

Section 2.3 and labels them appropriately using NLP tech-
niques.
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Figure 2: System architecture.
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Figure 3: Creation of the table matrix.

3.3.1 Caption
In order to capture the table caption from a web page,

we use a greedy approach on the most frequent HTML style
tags that are used to define a caption. The text content
above the web table is scanned bottom-up. The first iden-
tified text block with the following HTML tag priority is
taken as the caption: (1) <h1> to <h6>; (2) HTML style
tags (e.g., <b>,<i>,); (3) <span> with font related CSS-
styles. If no caption is identified at this stage, then the web
page title (defined using the <title> tag) is taken as the
caption. This caption is then annotated to identify the POS
tags. Predefined phrases such as Table 1: and This table ex-
plains, English articles (DT) and symbols are removed. The
remaining text becomes the caption, which is a noun group
(NN[*]) with or without adjectives (JJ[*]).

3.3.2 Location
To identify a column containing location information, we

first perform entity recognition on the header cells using a
custom dictionary. This dictionary is created using the fea-
ture codes from GeoNames.4 This mechanism assists in the
identification of headers such as those that describe States
or Parks. However, such clear headers may be often unavail-
able. To resolve this, we perform POS tagging on random
rows of data cells to identify only the noun groups. These
words are used to extract a maximum of ten sample sen-
tences from 13 million English pages of Wikipedia, which
we have indexed locally. The sentences then become an in-

4http://www.geonames.org/export/codes.html

put to a Named Entity Recognizer (NER) that annotates a
data cell as a location, person, date, etc. We use a label LOC
to indicate the data cells that contain location information.
While it is true that this method performs accurately only on
a well phrased sentence, it still helps us to separate location
data from the rest. For example, a flight status web table
may contain a Status column with words such as “Delayed”
or “On time” in the data cells. This column can easily be
eliminated as it would be annotated as a verbe tense (VBP)
and a preposition followed by a noun (PP NN), respectively.

3.3.3 Measurement units
Units are identified by creating templates that use a dic-

tionary of measurement units [35]. These templates are ap-
plied to the cells and the units are tagged and separated
from the numeric values appropriately. A label UNIT is
assigned to the appropriate cell along with a link to the dic-
tionary item. For example, the cell value “$12,000” will be
annotated as “UNIT{$}, VALUE{12000}”.

3.3.4 Temporal data
We use custom templates to identify and translate the

temporal data into a string. An assumption that we make is
that the date is in M/D/Y format and the first three compo-
nents of the time are H:M:S. The identified temporal infor-
mation is converted into a temporal range of GMT strings
with begin and end date. For instance, Oct, 2012, will be
assigned a label TIME: 10/01/2012 00:00:00 to 10/31/2012
23:59:59. Default values are used; for example, the begin-
ning of a month is its first day at time 00:00 unless otherwise
specified.

3.4 Ontology Extraction
Ontologies play a key role in the semantic realization of

data and for facilitating heterogeneous data integration [4].
We use RDF/S to express our ontologies. We take advantage
of most of RDF Schema properties to construct an ontology.
We extract the hierarchy and data from the table caption
and table matrix as described below.

3.4.1 Schema
The RDF schema is constructed using the table caption

and the header cells of the table matrix. The default classes
and properties that will be present in the schema are listed
in Table 3.

The Geometry class will take the data type rdfs:Literal.
This class will be populated with locations as described
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Classes: Geometry, Date, BeginDate, EndDate, Unit
Properties: hasGeometry, hasBeginDate, hasEndDate, hasUnit

:BeginDate rdfs:subClassOf :Date
:EndDate rdfs:subClassOf :Date

Table 3: Default classes and properties.

in Section 3.5. The Date class will take the data type
xsd:dateTime to represent a temporal range. Apart from
this, all classes will have rdfs:comment that will be popu-
lated as described in later sections. We do this to facilitate
more accurate data integration using our ontology mapping
system AgreementMaker [11, 15].
Caption. We construct a hierarchy from the table caption
using a priority set of POS rules as listed in Table 4. The
symbol “→” indicates immediately follows. The noun group
(NN[*]) is used to construct the class name. An rdfs:label
is assigned for a human readable version of the class name.
The table URL along with a Table ID will become the URI.
To populate rdfs:comment, we use our local Wikipedia repos-
itory to search and extract the first two sentences from the
Introduction section of Wikipedia pages as a comment, pro-
vided there are no ambiguities. A has relationship property
is assigned between two resources based on the hierarchy.

Node POS Rule Hierarchy
1 IN → NN[*] Root
2 JJ → NN[*] Child of Node 1
3 TO → NN[*] Child of Node 2
4 Default Root

Table 4: POS rules to identify a hierarchy from a
table caption.

Header cells. The hierarchy of the associated table is
formed by looking at how the header cells are arranged. The
features labeled in these cells are used along with the hier-
archy to construct a schema using is-a relationships [14].
Based on the position of IN and TO, a class name genera-
tion takes place. For instance, the class name for Number of
years observed will be Observed Years. The empty header
cells are replaced with names based on the corresponding
data cell labels. For instance, if the data cells are labeled as
LOC then the header cell falls under the class Location. A
default class name Data is used otherwise. Cells labelled as
UNIT will populate rdfs:comment using measurement dic-
tionary units.

3.4.2 Instances
We use the constructed RDF Schema and create RDF

triples using the data cells of the table matrix. Because we
deal with geographic data and historic reports, every row of
a data cell has multiple concepts within it. As an example,
Figure 1 contains three different concepts that are tempo-
rally distinct. To generate triples, we define a unique Record
ID and generate a triple for every concept that is shown in
the sample triple data of Figure 2.

3.5 Geocoding
The process of identifying the associated geographic co-

ordinates from textual data is referred to as geocoding [28].
This processes should inherently possess capabilities to dis-
ambiguate locations so as to determine the exact geographic

coordinates. We describe here our methods to identify geo-
graphic coordinates and how we disambiguate those coordi-
nates by using the ontologies constructed by our system.

3.5.1 Geographic coordinates
We use two different systems to extract geographic coor-

dinates: GeoNames5 and PostgreSQL (with PostGIS6 ex-
tension). For any location, GeoNames returns Point data
with an appropriate feature class (e.g., airport, park, coun-
try, or mountain), which we refer to as Geo-Context. How-
ever, because of our focus on big data integration (spatial
and temporal), a simple point data for a location will not be
sufficient. Any location that is spread across the geography
of the globe is a region that may be defined by a polygon
or a polyline. For instance, a ZIP code spreads across a re-
gion and not just a point. Although such information may
be unavailable for all locations on the planet, geographic in-
formation such as boundaries of cities, counties, states, ZIP
codes and water bodies in the U.S. are made available to
the public by the U.S. Census Bureau,7 the U.S. Geological
Survey (USGS),8 and others. We spatially index these data
in PostgreSQL. We maintain only four kinds of relevant in-
formation in the database: ShapeId, Geometry, Name, and
LocationType. All data cells labeled as LOC in table matrix
are used for geocoding using GeoNames. If a place is un-
ambiguous, a geospatial query Contains is performed in the
local database to identify the shape information. The re-
sults of this query are also added to Geo-Context. Once the
entire table matrix is processed, the disambiguation process
takes place as described in the next section.

3.5.2 Disambiguation
One of the major challenges in geocoding is the disam-

biguation of a toponym (place name). Context information
is necessary for any disambiguation method to work well.
Further, Tobler’s first law of geography states that “Every-
thing is related to everything else, but near things are more
related than distant things” [37]. Thus, distance also becomes
an important metric in disambiguation.

We use the context as well as the distance to disambiguate
the toponyms as illustrated in Figure 4. The Table-Context
is a list of RDF labels (rdfs:label) retrieved from the con-
structed schema and a list of all unambiguous geocoded
places. We use a similarity matcher from the Agreement-
Maker ontology matching system, which has the advantage
of being extensible [11]. For this concept-based string sim-
ilarity algorithm a similarity threshold can be set. We run
it on top of Geo-Context and Table-Context. The matcher
is modified to use our custom dictionary (see Section 3.3.2)
and WordNet [29]. The output of this matcher is a con-
fidence value that ranges between 0 and 1. For matching
using the distance metric, we use both Context and mea-
sure the distance on a map using the geographic coordinates.
The distances are always measured between the unambigu-
ous place names (in Figure 4, “Chicago”) and the ambiguous
place names from Geo-Context. The distances are rescaled
to a numeric range between 0 and 1 (1 being the farthest
point identified on the map). We use these two results to
disambiguate the place names.

5http://www.geonames.org/
6http://postgis.net
7http://www.census.gov/geo/www/tiger/
8http://www.usgs.gov/
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Figure 4: Disambiguation for “Lincoln Park” using Base Similarity Matcher and a distance metric. In a
distance metric, the blue point indicates the unambiguous location and the thick red line indicates the
shortest distance.

After disambiguation, a triple is created with an appropri-
ate shapeId as shown in Figure 2 using the model described
in Table 3. If shape information from PostgreSQL cannot
be retrieved, the unambiguous point coordinates are stored
in the database using a triple.

4. EXPERIMENTS
We use 20 web pages from three different web sites—the

U.S. Bureau of Transportation Statistics,9 National Oceano-
graphic Data Center,10 and Pearson Education11—for ini-
tial system testing. These web pages contribute to a total
of 56 tables of which only 30 are feature-rich. The pages
are checked for missing HTML tags and are corrected us-
ing HTML Tidy.12 The tables are extracted using a typical
DOM parser and every table is saved as an HTML file. We
use WEKA [18], an implementation of the C4.5 [33] deci-
sion tree algorithm for table extraction. For all of the NLP
based tasks, we use Stanford’s NLP tools13 and Jena [27] for
ontology extraction.

We measure the accuracy of each component, as shown
in Table 5. It is calculated as the number of correctly iden-
tified elements/total number of correct elements. The table
extraction failed to identify one feature-rich table leading to
96.6% accuracy. Feature extraction gave a mean accuracy
of 92%. Ontologies were manually evaluated by giving more
importance to the constructed hierarchy than to their rep-
resentation in RDF. Therefore, we increased errors in the
following order: (1) invalid hierarchy; (2) improper class
names. We do not measure the quality of the class names in
relation to the linked open data. This leads to an accuracy of
91%. Geocoding had an accuracy of 85.5%. We also report
different results on disambiguation in Table 6. The maxi-
mum accuracy was attained when we placed larger weights

9http://www.rita.dot.gov/bts
10http://www.nodc.noaa.gov/
11http://www.infoplease.com
12http://www.w3.org/People/Raggett/tidy/
13http://nlp.stanford.edu/software

for Distance Metric (DM) while combining it with the Base
Similarity Matcher (BSM) of AgreementMaker. The base-
line accuracy of 40% is achieved using only unambiguous
place names retrieved through geocoding. Although this
evaluation is made on 30 place names only, we find our dis-
ambiguation methods that use ontologies to be working well
and therefore worthy of being tested more extensively.

Component Accuracy (%)
Table Extraction 96.6

Features

Caption 92
Location 95
Units of Measurement 89
Temporal 93

Ontology Extraction 91
Geocoding 85.5

Table 5: Accuracy of the architectural components.

Disambiguation Accuracy (%)
BSM + DM 85.5
BSM 81.5
DM 78
Baseline 40

Table 6: Geocoding accuracy.

5. DISCUSSION
For the Table extraction component, we found that not all

tables were constructed using the <table> tag. A few tables
used <div> and some were not formatted properly, thus
reducing accuracy. One major assumption we make is that
the web tables contain geographic information in at least one
column. In the future, we would like to include features to
identify tables that contain geographic information through
annotations.
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Feature extraction was particularly challenging when we
encountered more complex tables that had lengthy table
captions or column headers. For instance, we found the
following table header (from www.bts.org) with an unfa-
miliar unit of measurement: “Distance Shipped (Based on
Great Circle Distance)”. Further, there is no description or
conversion method associated with the measurement units.
We plan to use an ontology for measurement units such as
OM [34]. This ontology could help in unit conversions, which
can further assist in visualization. We also note that the
footnotes marked by a superscripted number/symbol pro-
vide useful information. In Figure 1, the superscript “1”
contains the text “Years 1971-2000”, which may assist in ex-
tracting temporal features.

We found that the performance of the ontology extraction
component depends largely on the extent to which the En-
glish phrases are well-formed. For instance, our POS rules
failed to identify the hierarchy from the table caption be-
cause of incorrect tagging. In some cases, the word “like”
was tagged as IN (a subordinating conjunction) and VBP
(a verb tense) interchangeably. Further, our class name cre-
ation does not try to retrieve suggestions from Linked Open
Data (LOD) such as DBpedia.14 However, this drawback
can be removed in the future by using AgreementMaker for
LOD [12, 13].

Geocoding and toponym disambiguation constitute a wide
research area. In this paper, we introduced preliminary
methods to demonstrate how we combine semantic and ge-
ographic data in our architecture and how we use ontologies
for disambiguation. We uncovered the need to combine man-
ually multiple columns (e.g., Apartment number, Street and
City) for geocoding. Also, disambiguation methods were not
accurate in the absence of context and unambiguous place
names, which are used for the disambiguation process.

Another future improvement to the system is the conver-
sion of the entire architecture to a single machine learning
model. In fact, this was the main reason behind using the
table matrix as it provides a well defined structure for au-
tomatic processing. We also use the scale of 0 to 1 for the
matching metric in Section 3.5.2 for this reason. We plan to
look into GeoSPARQL15 and investigate the usage of tools
like Parliament [3] into our architecture.

6. RELATED WORK
Quercini and Reynaud [32] address the challenging prob-

lem of discovering entities by annotating web tables. They
focus on the problem of data extraction from Google Fusion
Tables [17] to create a repository of information on points
of interest in cities. They identify geographic entity types
such as restaurants, cities, museums using a domain ontol-
ogy and use the annotated data to develop a search system
that can answer queries. Their information extraction focus
is therefore different from ours; another difference is that the
tables they consider are well-structured and contain homo-
geneous features in a single column. Other related work is
by Lieberman et al. [24], which identifies location informa-
tion from spreadsheets. However, this approach relies on the
column headers to identify: (1) whether they have location
information; (2) the type of location such as county, city or
state. When these headers are missing—which is often the

14http://dbpedia.org/
15http://www.opengeospatial.org/standards/geosparql

case with web tables—data extraction will be incomplete.
There has been considerable work performed using seman-

tic data extraction [2, 5, 16, 21, 30, 36, 38] with the aim
of publishing linked open data. For instance, Knoblock et
al. [21] present a methodology to build data models by look-
ing at the semantics of well-structured data (KEGG path-
way16 data sources) with user interaction. The key con-
tribution in this work is that a better semantic description
is achieved by allowing users to refine it manually using a
GUI. Similarly, Venetis et al. [38] present a system to ex-
tract table semantics by creating a database of class names
and relationships and by annotating structured tables. Al-
though both approaches present accurate methods to con-
struct an ontology from tables (by proposing algorithms for
class name labeling), they deal with tabular data that are
well-structured with easily identifiable and explicit features
(e.g., tables from Wikipedia or relational databases). Fur-
ther, features within tables and geographic data were ig-
nored. There are also tools such as Triplify [2] and D2R [5]
that publish RDF triples from relational databases.

Andogah et al. [1] use a list of ranked unambiguous place
names from text documents for disambiguation. The doc-
uments are first sent to a tagger to recognize place names,
organization names, and person names. For each document,
the location type (such as continent, country, or city) is iden-
tified using unambiguous place names. This identified loca-
tion type is used to filter other place names that are ambigu-
ous in the document. There are other approaches [22, 23, 31]
where the authors use either information about location
types or geographic coordinates to apply statistical meth-
ods such as Pointwise Mutual Information (PMI) or Log-
Likelihood Ratio (LLR) to disambiguate. However, all of
them are focused on documents or web pages. One could
argue that extracting context information from text docu-
ments is somewhat easier than identifying context from a
web table.

In summary, while some approaches focus on semantic
data extraction and others on geographic data extraction,
we have not found other approaches that need to consider
both like we do, given our aim to perform geospatial data
integration and visualization.

7. CONCLUSIONS
In this paper, we proposed an architecture to extract se-

mantic and geographic data for big data integration. In
particular, we described the level of complexity and meta-
data heterogeneity typically found in web tables and pro-
posed methods to extract data from those tables. Our re-
sults show that the architectural components that we de-
signed can: (a) deliver appropriate data that can be used
for geospatial data integration, and (b) identify key features
to perform integrated data visualization on maps and charts.
We also discussed various challenges and proposed ideas to
solve them. Our future work is to improve the current ar-
chitectural system components that we described here and
make a more exhaustive evaluation on much larger corpora.
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