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ABSTRACT
The availability of a wide variety of geospatial datasets de-
mands new mechanisms to perform their integrated anal-
ysis and visualization. In this demo paper, we describe
our semantic framework, GIVA, for Geospatial and tempo-
ral data Integration, Visualization, and Analytics. Given a
geographic region and a time interval, GIVA addresses the
problem of accessing simultaneously several datasets and of
establishing mappings between the underlying concepts and
instances, using automatic methods. These methods must
consider several challenges, such as those that arise from het-
erogeneous formats, lack of metadata, and multiple spatial
and temporal data resolutions. A web interface lets users
interact with a map and select datasets to be integrated,
displaying as a result reports where values pertaining to dif-
ferent datasets are compared, analyzed, and visualized.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Query
formulation

Keywords
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1. INTRODUCTION AND MOTIVATION
Spatio-temporal data are a fundamental resource for a

variety of applications including those in public administra-
tion, transportation networks, and environmental studies.
Within environmental studies, a possible scenario entails
the study of two indicators: flu and precipitation to detect
if they are correlated or if, for example, precipitation is a
predictor of flu occurrences. Other scenarios may compare
dependencies between these two indicators in two different
cities. This scenario is depicted in Figure 1.

Several indicators can be studied at the same time and
multiple dependencies considered in the emerging urban
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metabolism field [9]. To conduct these studies, vast amounts
of geospatial information must be accessed and integrated
using automatic methods, so that environmental scientists
do not have to manually establish connections among highly
heterogeneous data. We have been considering several sce-
narios motivated by two projects in which we collaborate,
namely BURST (Building Urban Resilience and Sustainabil-
ity)1 and TerraFly [17]. Both projects are intended for ex-
perts in a variety of domains including urban metabolism
and public health (BURST), hydrology and disaster mitiga-
tion (TerraFly), and transportation (BURST and TerraFly).

In this demo, we describe a semantic framework, GIVA,
for Geospatial and temporal data Integration, Visualization,
and Analytics. Using this framework, users can select re-
gions in a map, specify time intervals, and select datasets to
produce reports where values pertaining to different datasets
are compared, analyzed, and visualized.

At the core of GIVA is its capability to deal with data,
metadata, and their heterogeneity, by addressing the fol-
lowing issues: (1) wide variety of formats, both standard-
ized (e.g., GML, KML, Shapefile, MapInfo TAB) and non-
standardized (e.g., HTML tables and flat files); (2) lack of
metadata, which stems in great part from non-standardized
formats; (3) multiple spatial and temporal resolutions, due to
different data acquisition techniques (e.g., surveys for cen-
sus data and sensing methods for precipitation); (4) different
vocabularies and schemas, which are created by diverse or-
ganizations (an example in public administration is that of
land use codes [18]) and is illustrated for the two cities of Fig-
ure 1. In addition, there are overarching issues when dealing
with geospatial data, namely that of uncertainty [15, 19].

2. FRAMEWORK
This section introduces our semantic framework (Figure 2)

and describes briefly its components.

2.1 Data Extraction
Data of interest to geospatial information appears in a

variety of formats, which we represent in the hierarchy of
Figure 3. We refer to the formats approved by OGC2 and
that implement its standards as standardized and the rest
as non-standardized data formats. A geographic component
in these data formats uses geodetic systems such as WGS84
and geometric objects (e.g., polygon, polyline).

However, GIS data that are represented in web tables or
text need special processing. Web tables are primarily con-

1http://www.burst.uic.edu
2http://www.opengeospatial.org/standards/is
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Figure 1: Comparison between two cities. Dashed edges represent concept similarity, dotted edges represent
time or location similarity, and solid thick edges represent correlation between values of different concepts.

structed using the <table> tags for a variety of purposes
such as, HTML forms, calendars, page layout, and relational
data. However, in many cases web tables (even if they origi-
nate from relational databases) are not feature-rich because
they do not contain clearly represented headers. The ex-
traction of the corresponding feature-rich tables entails the
identification of the headers (which are sometimes nested)
and the storage of the table to produce a feature-rich table,
which is stored in a structured file. For this kind of extrac-
tion we use a machine learning approach that encompasses
a decision tree classifier model (C4.5) [16] using 20 different
heuristics (including number of columns, rows, font size, and
color) and trained it on 100 web tables with GIS data.

2.2 Data Translation
Data translation is the process of translating data from

one format to another. Clean abstraction of data formats
and methods to perform data translation are required for
a sound solution to data integration [1]. Thus, before we
attempt to create geospatial mappings between these data,
they are translated into a common spatial data format. One
issue is that non-standardized formats require semantic pro-
cessing to identify the appropriate column headers that con-
tain information about spatial coordinates and time stamps.
We use string matching on the column headers and perform
random sampling on the values to find pattern similarities.
For instance, this ensures that an unclearly named column
header (e.g., Pos) that contains geospatial coordinates (e.g.,
-85.46, 42.32) will be identified as indeed containing spatial
coordinates and its name associated with a correct mean-
ing. Further, data in non-standardized formats may contain
implicit geographic components (e.g., Illinois). Special pro-
cessing and techniques are required to identify these implicit
geographic components as described in Section 2.4.2.
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Figure 2: GIVA framework.
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Figure 3: Hierarchy of spatial data types.

2.3 Ontology Extraction
The hierarchical characteristics of geospatial classification

schemes can be modeled using a part-of or is-a relation-
ship [4]. We have also devised methods to extract ontolo-
gies from a variety of formats, including from relational ta-
bles, XML, and RDF documents and to merge ontologies
using matching and a data exchange approach by consider-
ing a global ontology [5]. This merging method is further
described in Section 2.4.1 but we mention it here because it
is related to recent ontology extraction approaches that use
data exchange, machine learning, and user interaction [11].

2.4 Matching
The semantic integration of geospatial data requires the

identification of correspondences among ontology concepts,
properties, and instances, using syntactic and semantic char-
acteristics of the ontologies, a process called ontology match-
ing or alignment. The output of this process is a set of
mappings. For spatial and temporal data, the spatial and
temporal attributes of the data will also be considered.

2.4.1 Semantic Matching
Ontologies exhibit structural and conceptual heterogene-

ity, which we attribute to data creation by different orga-
nizations. The alignment of these ontologies require the
sophisticated combination of various mechanisms geared to
the identification of various classes of similarities. We use
AgreementMaker [3], which is a proven system for ontology
matching. AgreementMaker is also used for the mapping
of the ontologies that are extracted from relational, XML,
and RDF sources, enabling the mapping of similar concepts
independently of where they appear (e.g., titles of relational
tables, names of properties, or values). Data integration is
achieved by rewriting a query expressed in terms of an ontol-
ogy to another ontology using the established mappings [5].
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AgreementMaker uses machine learning techniques to au-
tomatically change its configuration to maximize precision
and recall [2].

Figure 4: Comparison of values across data sets.

2.4.2 Spatio-Temporal Matching
Two important tasks to be addressed by this component

are described below:
Resolving implicit geographic component. The pro-
cess of assigning apposite geographic coordinates is referred
to as geocoding, and that of identifying a geographic context
is referred to as geoparsing [13]. For instance, geocoding
helps in identifying the word Illinois and assigning its respec-
tive geographic component (e.g., state boundary of Illinois),
if available. However, geospatial ambiguities often exist. For
instance, the Illinois river may refer to the river in the state
of Illinois or to the river of the same name in the state of
Oregon. We implement geoparsing using a Named Entity
Recognition (NER) technique and use semantic mappings
as discussed in Section 2.4.1 for geocoding.
Managing spatial and temporal resolution. Hetero-
geneities in spatial and temporal resolution are introduced
when data are published using different data acquisition
techniques. For instance, precipitation data may be pub-
lished associated with different areas depending on the den-
sity of the placement of the gages or the assumed cover-
age of each of them (e.g., a rectangle in a grid or a circle).
We deal with this integration problem by introducing a new
spatial resolution method that establishes a grid. The inte-
gration is performed by partitioning the space and comput-
ing a weighted average of the values in each of the original
datasets, as illustrated in Figure 4. This produces a new
dataset at a new resolution. Uncertainty increases when
the dimensions of the grid are small in comparison with the
measurement resolution, hence the grid dimensions can be
defined depending on the dataset and the desired level of
uncertainty. Temporal resolution can be resolved similarly.

This technique can be used when considering datasets
about the same concept, for example rainfall or about differ-
ent concepts, for example if the user wants to build a dataset
about precipitation starting from two datasets about rain-
fall and snowfall. In this case, we can merge the datasets
by adding the values of the two original datasets and by in-
troducing an appropriate uncertainty value associated with
this merging. Correlation between the datasets (instances)
(see Figure 4) can assist the semantic matching process.

2.5 Storage Systems and Application
Our framework includes two different types of storage sys-

tems. A Spatial DBMS is used for storing and indexing geo-
graphic data and a Triple Store is used for handling semantic
data and also to store the final alignments. A Hybrid Query
API combines the query functionality of these two systems.
An Application (web or stand-alone) is necessary to com-
municate with the other components of the framework and
for the user interaction. This application also acts as Web
Feature Service (WFS) interface to publish the integrated

Figure 5: GIVA web interface design.

data to the domain stakeholders. For this demonstration,
we develop a web application. The implementation details
are described in Section 3.

2.6 Visualization and Analytics
We consider two components: one for visualization and

the other one to support analytic methods.
The visualization component is fundamental to develop in-

formation processing in the context of different stages of sci-
entific research and decision making. A use-based approach
has long been proven to be an effective way to reinforce
human understanding of abstract data [12]. We implement
both an interactive map and plots for multidimensional visu-
alizations, such as star plots and parallel coordinates graphs,
where users will be able to display one or multiple variables
simultaneously as shown in Figure 5.

The analytics component aims at providing the scientists
with a suite of statistical models for spatial data exploration
and multivariate analysis. We offer libraries for spatial auto-
correlation and spatial regression as well as for factor anal-
ysis. In particular, we implement measures of spatial auto-
correlation, such as Moran’s I and Geary’s C, and libraries
to run OLS regression and spatial lag models. However,
the analytics tool is meant to be an extensible part of the
framework according to the needs of the scientists.

3. IMPLEMENTATION
We use PostGIS, a well-known spatial extension of the

PostgreSQL database system, as our Spatial DBMS and
OWLIM [10], an RDF database management system im-
plemented in Java, as our Triple store. We develop a Hy-
brid Query API in Java to interlink PostGIS and SPARQL
queries. The Data Extraction is developed using WEKA’s [8]
implementation of C4.5 algorithm to train the model and to
extract the feature-rich web tables. The extracted tables
are converted to a tab delimited file. Data translation is
implemented in an XML framework that extends GDAL [7]
to extract geospatial data with proper handling of geodetic
systems. This module also implements the semantic process-
ing techniques described in Section 2.2 to handle flat files
(CSV and TSV). For Ontology Extraction, we use Apache
OpenNLP3 as an NLP toolkit and DBpedia4 to receive sug-
gestions for class names during the ontology construction.
Automatic ontology extraction is a complex task and its
performance depends on the organization of the schemas.

3http://opennlp.apache.org/
4http://dbpedia.org/
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To overcome this issue, we allow users to optionally review
the extracted ontology. The resulting RDF-Schema is used
to generate triples. Semantic Matching is performed using
AgreementMaker [3] and Spatio-temporal Matching uses the
Hybrid Query API and an implementation of a matching
mechanism as described in Section 2.4.2. A web interface is
developed using the latest web technologies, namely AJAX
and jQuery. For visualization and analytics, we use the in-
teractive JavaScript visualization library—D3.js.5

4. RELATED WORK
A mobile application for an urban environment is pre-

sented by Della Valle et al. [6] to answer semantic queries
such as finding the nearest tourist spots. Their data prepa-
ration module handles Point data from several ESRI Shape-
files, which are then manually processed and converted into
an RDF format using PostGIS. These data are used along
with an earlier platform that they developed, which pro-
vides SPARQL end points and a semantic framework with
a reasoner to answer queries.

Urbmet6 is an interactive map application to analyze ur-
ban data. Datasets about energy, material, and population
are processed manually to provide reports for the very spe-
cific purpose of displaying potential spatial patterns that
exist among them. Many similar applications can be found
in OpenCityApps.7 However, each of these applications is
limited to providing visualizations or reports for pre-defined
purposes and does not support data integration.

Middel presents an integrated framework for visualizing
multivariate geodata [14]. The framework stores the spatial
data mapped to uniform grids that cannot be changed and
uses multinomial logistic regression to estimate characteris-
tics of two different attributes for visualization. The draw-
backs with this method are: (1) the possibility of a large
amount of generated gridded data that could drastically re-
duce the performance of the system; (2) the potentially large
addition of uncertainty in the partitioned grids that can im-
pact the quality of the visualization.

In all of the systems we reviewed, there is no process that
automatically integrates heterogeneous datasets. Also, the
heterogeneity that is present in the data formats or metadata
is either not resolved or is resolved manually.

5. CONCLUSIONS
We have introduced GIVA, a semantic framework that

assists domain experts in integrating highly heterogeneous
datasets and in analyzing and visualizing dependencies
among them. The system supports three types of users:
administrator , domain expert, and casual user, with differ-
ent types of access. Given the complexity of the overall
framework—in fact, we could not find any framework whose
overall functionality can be compared in breadth with the
one we propose—it is the case that every component of the
framework offers opportunities for expansion and for im-
provement.
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