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Abstract—Infrastructure as a Service (IaaS) clouds promise
unlimited raw computing resources on-demand. However, the
performance and granularity of these resources can vary widely
between providers. Cloud computing users, such as Web de-
velopers, can benefit from a service which automatically maps
performance non-functional requirements to these resources. We
propose a SOA API, in which users provide a cloud application
model and get back possible resource allocations in an IaaS
provider. The solution emphasizes the assurance of quality
of service (QoS) metrics embedded in the application model.
An initial mapping is done based on heuristics, and then the
application performance is monitored to provide scaling sugges-
tions. Underneath the API, the solution is designed to accept
different resource usage prediction models and can map QoS
constraints to resources from various IaaS providers. To validate
our approach, we report on a regression-based prediction model
that produces mappings for a CPU-bound cloud application
running on Amazon EC2 resources with an average relative error
of 17.49%.

Index Terms—cloud computing; QoS; resource allocation.

I. INTRODUCTION

Cloud computing presents the illusion of infinite capacity
of computational resources. In the case of Infrastructure as a
Service (IaaS) clouds, these resources are typically offered in
bundles with specific amounts of CPU, Memory, and Network.
Solution developers are thus presented with the problem of
ensuring the performance non-functional requirements of an
application by mapping it to one or more of these bundles, and
to monitor and change this mapping if the workload changes.
We present our work on an autonomic service which monitors
Quality of Service (QoS) metrics of cloud applications and
suggests bundle mappings which would ensure the required
performance.

The problem of resource allocation in the cloud has been
studied before, and various techniques to solve it has been
proposed. Ganapathi et at. [1] utilize statistical machine learn-
ing to predict resource usage of an application in the cloud.
Islam et al. [2] estimate CPU resource usage by simulating a
cloud provider. Previous solutions have monitored low-level
resources for their prediction, i.e., they would monitor CPU
usage. Our solution targets QoS assurance by learning if
the currently allocated resources are delivering the required

QoS constraints. That is, we monitor if the application’s
performance non-functional requirements are being met (e.g.
the response time), and based on this knowledge, we then
adjust the resource allocation.

The key idea of our solution is the use of a Service
Oriented Architecture (SOA) approach in which users provide
a descriptive model of their application and get back mappings
in various IaaS providers. These mappings emphasize the as-
surance of the Quality of Service metrics from the applications
model. An initial mapping is done based on heuristics, and
then we monitor the application’s performance to provide
scaling suggestions via a callback interface. Underneath this
API, the solution accepts different resource usage prediction
models and allows allocation in different IaaS providers.

The main technical challenges of this work were the ex-
perimentation with alternative regression techniques, and the
implementation of a resource usage prediction engine. In this
work, we propose the use of a linear regression model that
provides adequate performance as well as good accuracy.
For the implementation of the engine, we developed a rule-
based system that calculates which IaaS resource bundles can
ensure the applications QoS constraints. The solution then
recommends the bundles with the best fit for various IaaS
providers.

To validate our approach, we present three experiments.
In the first experiment, we test for correct behavior with a
simulation test that sends an application model and monitoring
data to the prototype system. In our second experiment, we run
the same model against a real IaaS environment. We gather the
performance data and then scale the application according to
the solution’s suggestions. Finally, we also present a time and
scalability analysis of the solution. The results show that the
prototype correctly ensures QoS constraints of a CPU-bound
cloud application.

The main contributions of this paper follow. First, we
present the design of an autonomic solution for cloud appli-
cation resource mapping and scaling based on monitoring of
QoS constraints. Second, we provide details on a prototype
implementation and how we dealt with the technical chal-
lenges. Finally, we asses the validity of the idea by presenting
experiments on functionality and scalability.
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II. BACKGROUND AND METHODOLOGY

A. Background

1) Previous Work: This work is part of our overarching
“Distributed Ensemble of Virtual Appliances” (DEVA) project.
In [3], we discussed the advantage of simplifying the solution
development workflow by presenting the developer with a
model-based visual designer to draft the software dependen-
cies and resource requirements of their cloud application.

In [4], we formally defined our DEVA model approach. This
model is based on the notion of Virtual Appliances, defined by
Sapuntzakis et al. [5], that represent self-configurable software
applications and OS as updatable image files. These appliances
can be instantiated on top of IaaS providers such as Amazon
EC2 [6]. DEVAs represent groups of Virtual Appliances with
QoS constraints between each appliance, and general policies
for the whole ensemble.

2) Problem Definition: Given that we have a model of an
application’s architecture and its desired QoS constraints, we
can think of a model-to-instance transformation to different
IaaS providers. For this transformation to work effectively,
we also need a model representation of the performance of
the application on top of resources from any given provider.
That is, given a DEVA model, known IaaS providers and
its bundles, and potentially known workloads, we want to
transform the model (i.e. map the model) to instances that
would ensure the QoS constraints specified in the model.

B. Methodology

1) Approach: To do this QoS-to-Resources mapping, we
propose the steps illustrated in Figure 1. First, a user designs
the DEVA model in the DEVA-Designer. When ready to
deploy, the user chooses an IaaS provider. This request is
(1) sent to a Transformation Engine, which has no previous
knowledge of the submitted model, and thus delegates the
creation of a preliminary mapping to an API Mapper (2). The
Engine then makes the proper API calls to the specific IaaS
provider (3). The IaaS provider (4, 5) instantiates the model.
Note that the IaaS provider does not know about DEVAs,
and only processes its own API calls. Note further that in
this work we assume that the software provisioning is already
done, i.e., that virtual appliances are available in the provider’s
image repository. Monitoring is done on each appliance to
gather QoS data (6, 7). This data is eventually (8) fed back
to the Transformation Engine. The Engine then (9) decides
whether the currently assigned resources are appropriate for
the QoS specifications in the model. If it is the case that a
change of resource allocation is needed, the engine delegates
the construction of a change request (10), and then sends that
change to the IaaS provider (11). Finally, the provider makes
the necessary changes to the instance to better comply with
the model’s QoS constraints (12).

2) Limitations: Our approach depends on previous moni-
toring data to make good resource mappings. To have good
sample points, we propose the following. As we target cloud
applications, the cloud developer (i.e. the user of our solution)

first deploys their application in a “staging” mode. In this
mode, the cloud developer runs performance tests on his
application using different IaaS bundles. These performance
tests generate data points that are sent to the proposed
Monitoring API, and therefore improve the accuracy of our
solution. As typical IaaS instances are billed by the hour,
the cost of launching an application on different bundles for
performance testing is negligible compared to the eventual
QoS improvement. Although we are working in automatizing
this learning phase, we do not report it as part of this paper.

III. DESIGN AND IMPLEMENTATION

In this section, we report on the main objectives driving the
design of our solution. We also include implementation details
on how we dealt with the technical challenges.

A. Design
We have designed the Transformation Engine as a service.

In designing this service, we had two main Design Objectives:
1) to have a simple interface that can be used by our

research team as well as others, and
2) to create a service that supports various resource map-

ping techniques for experimentation.
Although this work is integrated with the DEVA-portal

project, it can also be used as a stand alone solution. This
is why we chose to interact in terms of Resource Description
Framework (RDF) [7] tuples. That is, the API expects and
returns DEVA models wrapped in this interoperable model
representation framework. Other research teams can use our
mapping service by either using our DEVA modeling ap-
proach, or by first parsing their application representation
to a DEVA using techniques such as OWL’s Web Ontology
Language [8]. This allows us to comply with Design Objective
1.

Table I presents the proposed REST API. We chose the
REST technology because of Design Objective 1. First, a
POST is done as explained in Section II-B1. This request
has to include the DEVA model to be transformed. The API
processes the model and responds with a link to the newly
created resource. A subsequent GET to that link will return
the transformed DEVA with the newly generated mappings.
An API call to delete a mapping is also provided.

Monitoring data is expected as POST requests that include
data points. The data points collected include the amount of
the metric being monitored. A callback API subscribes with a
POST or unsubscribes with a DELETE consumer that want to
monitor model changes. Model mapping changes trigger these
callbacks. Note that this design does not hint at any specific
resource allocation technique, and thus allows us to implement
a solution that complies with Design Objective 2.

B. Implementation
Underneath the API, the transformation engine is imple-

mented as a simple resource usage prediction framework. For
an initial mapping, the solution follows the steps presented in
Figure 2. First, the DEVA model is received by the API. Then,
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Fig. 1. UML Collaboration Diagram modeling the interaction of the solution with an IaaS provider.

REST HTTP API Description
POST
/deva/mappings

Expects: a DEVA model in RDF format in the body.
Optional: a :callback URL parameter if a callback URL is provided, then it will be subscribed to this mapping.
Returns: a HTTP 201 created status, with a link to the newly created mapping. Note that clients must persist the
:uuid for later recall. Error: An HTTP 400 bad request if the model could not be parsed as a valid DEVA RDF.

GET
/deva/mappings/:uuid

Expects: empty body Returns: an RDF/XML representation of the DEVA model with the mapping done to all
supported IaaS providers. Error: a HTTP 404 not found if mapping does not exist.

DELETE
/deva/mappings/:uuid

Expects: empty body Returns: a HTTP 200 OK.
Error: a HTTP 404 not found if mapping does not exist.

POST
/deva/mappings/:uuid/data point

Expects: performance monitoring data of appliances of the specified mapping. Data Point should specify Appliance
id, Connection id, and data value. (I.e. {appliance = 2, connection = {db-consumer, db-provider}, data value =
500} ) Returns: a HTTP 200 OK. Error: a HTTP 404 not found if mapping does not exist.

POST
/deva/mappings/:uuid/subscriptions

Expects: an URL callback address to query when/if the specified mapping changes. Mappings could change in
response to underprovisioned / overprovisioned resources as attested by monitoring data. The URL can be any valid
endpoint. Returns: a HTTP 200 OK. Error: A HTTP 404 not found if mapping does not exist. Error: A HTTP
400 bad request if the callback URL is not provided or malformed.

DELETE
/deva/mappings/:uuid/subscriptions

Expects: A :callback url parameter. Returns: A HTTP 200 OK.
Error: a HTTP 404 not found if mapping does not exist.
Error: A HTTP 400 bad request if the callback parameter is not provided or malformed.

TABLE I
APPLICATION PROGRAMMING INTERFACE FOR THE SOLUTION.

the model is processed by a set of rules that identify the virtual
appliances included. For each one of the virtual appliances, a
check is done on whether the engine has sufficient data to
apply resource usage prediction based on machine learning
techniques. If no sufficient data points have been gathered,
then the solution applies a set of heuristic rules. If sufficient
data is present, then it applies machine learning. In any case,
a transformed model is created which includes IaaS bundles
mappings. In the current prototype, we built an engine that
utilizes rules to accomplish the above steps. Specifically, we
are using the rules inference support that comes with the JENA
2.6.4 semantic web framework [9].

For the machine learning phase, we chose a multivariate
linear regression model. We are experimenting with other
machine learning techniques, but we only report on the
regression-based one in this paper. The machine learning
module receives the data points collected from the Monitoring
API (see Figure 1) and estimates the QoS being achieved
with the current resource allocation. In general, the parameters

estimated are as follows:

targetMetric = A1 ∗ CPU +A2 ∗Memory +

A3 ∗Network +A4 ∗Workload+B

Where the targetMetric would be the metric we are
trying to ensure. Each one of the Ai coefficients describe how
important the estimation of the ith term is.

For example, given enough data points, a CPU-bound ap-
plication will have a large A1 coefficient compared to the
others. The Workload and the targetMetric are known,
but the CPU , Memory and Network parameters are not.
This formula has three degrees of freedom, therefore trying to
optimize the parameters would be expensive and many data
points would be needed.

To avoid this expensive calculation, we apply a key insight:
given that most IaaS providers offer bundles, rather than
arbitrary combinations of CPU , Memory and Network, we
can reduce the complexity of the problem by estimation on
bundled resources instead of trying to guess if an application
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Amazon [6]
(“Instance type”)

t1.micro: 2.2Ghz (varies), 613MB, “Low” network
m1.small: 1.1GHz, 1.7GB, “Moderate” network
m1.large: 4.4GHz, 7.5GB, “High” network
m1.xlarge: 8.8GHz, 15GB, “Moderate” network

Rackspace [11]
(“Flavor”)

Flavor 1: 256 MB RAM Flavor 2: 512 MB RAM
Flavor 3: 1024 MB RAM Flavor 4: 2048 MB RAM
Flavor 5: 4096 MB RAM Flavor 6: 8192 MB RAM
Flavor 7: 15872 MB RAM

ElasticHost [10]
(No bundles.)

Anything in the following ranges:
2-20Ghz CPU, 1-8GB RAM

TABLE II
EXAMPLE RESOURCE BUNDLES OF THREE IAAS PROVIDERS.

is bound by any specific resource:

targetMetric = A1 ∗Bundle+A2 ∗Workload+B (1)

We further reduce the calculation and estimation errors by
keeping a regression table that includes all available bundles.
This effectively reduces the problem to a simple linear regres-
sion:

Bundle −→ targetMetric = A1 ∗ Load+B (2)

Table II presents a sample of the resource bundles available
from three different IaaS providers. For each provider, we
construct a regression that matches each of their resource
bundles against the application, and then we choose the best
fit (I.e. the cheapest one). Some targetMetrics should be
approached by the left, and others by the right, so we take this
into account for the fit. For example, a “maximum response
time” metric would be fit by the left, while a “minimum
required throughput” metric would be fit by the right.

Note that some IaaS providers, such as ElasticHost [10],
do not provide discrete bundles and instead the customer
can choose exactly the amount of resources needed. In these
cases, we simply quantize the range according to the bundles
available from an arbitrary competitor.

IV. EXPERIMENTS AND ANALYSIS

The following experiments were designed as a proof of
concept for our approach. For each one of them, we describe
the experiment, present results and elaborate a short analysis.

A. Experiment 1 - Simulation

For this experiment, we test our Transformation Engine
with a DEVA model composed of one Virtual Appliance that
simulates the behavior of a CPU-bound Web Framework like
Ruby on Rails. The model includes a maximum response time
constraint. We first train the system with synthetic data points
that cover various IaaS standard bundles as seen in Table
II. After the training, we observe what mappings the system
suggest to comply with different response time targets for
a fixed workload of 3 request per second. Figure 3 shows
the results. On the x-axis, we present response time targets,
while on the y-axis we present the suggested mapping to the
bundles of a particular IaaS provider. Note that this experiment
is a validation of the approach and that the numbers do not

reflect the real performance of the IaaS service from Amazon,
Rackspace or ElasticHost.

Subfigure 3a presents the simulation results for mapping
the model to the bundles of Amazon. As can be seen, for
very strict response times of 100 to 400ms, a mapping to a
“m1.xlarge” bundle is required. As the response time con-
straint relaxes, the solution maps the model to smaller resource
bundles.

Subfigure 3b presents the simulation results for mapping the
model to the bundles of Rackspace. Although the mapping was
gradual on the case of Amazon, in this case we can observe
that for a CPU-bound model and a target response time of
around 600ms, the solution suggest that we switch from a
“flavor 4” bundle to a “flavor 6”, skipping over “flavor 5”.

Subfigure 3c presents the simulation results for mapping the
model to the quantized bundles of ElasticHost. According to
the simulation, a mapping can be achieved for targets above
450ms, yet a response time of 425ms or less can not be
achieved.

B. Experiment 2 - Real Allocation
For this experiment, we train the system in a similar way as

in Experiment 1, but data is gathered from real instances on
Amazon EC2 running a CPU-bound Ruby on Rails applica-
tion. We provision instances for the standard Amazon bundles
as seen in table II and then we generate a positive slope linear
workload on each of the bundles to gather performance data
points. We plot the mapping our solution recommends for
workloads of 3, 6, and 10 requests per second. We also include
two additional baseline mappings for comparison: a mapping
that always over-provisions, and a mapping that always under-
provisions resources.

Figure 4 presents the results. Note that the baseline mapping
that always under-provisions is not able to fulfill the QoS,
while the baseline that always over-provisions can fulfill the
QoS, but utilizes a maximum of resources all the time. We
can observe that our solution suggests bundle mappings that
depend on the target metric, in this case the response time, as
well as in the workload. Further, our solution fulfills the QoS
of the application with a minimum relative error of 5.61%,
maximum of 34.07%, and average of 17.49%.

C. Experiment 3 - Time and Scalability Analysis
For this experiment, we asses the time complexity and

scalability of the solution. We ran these experiments on a
2.8GHz Intel i7 quad core machine with 8GB of available
RAM. Figure 5 presents the results.

For the time analysis, we use the solution’s API to POST a
new model, POST a variable number of performance samples
to the monitoring API, and then GET back the transformed
models with mappings. Note that this is a worst case scenario,
as normally the performance samples will not be gathered
this fast. On subfigure 5a, we plot the response time of our
solution against the number of collected data points from
the monitoring API. The results suggest that the prototype
can respond to GET model requests, which could trigger the
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Fig. 2. UML Activity Diagram modeling the steps to map a DEVA model to IaaS Resources.
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Fig. 3. Evaluation of the solution using simulated data points for a fixed workload of 3 request per second.
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Fig. 4. Evaluation of the solution running a CPU-bound application on top
of Amazon EC2. Note that results are discrete data points, but are shown with
lines with points.

machine learning algorithm, in less than a second for up
to 256 gathered data points. For a sample size of 512, we
get a response time of 1116ms. For bigger sample sizes, the
performance starts to quickly degrade in a quadratic manner.
Nonetheless, experiential data suggest that we only need the
performance test data points that we discussed in Subsection
II-B2 and recent workload data points to achieve acceptable
accuracy.

For the scalability analysis, we fix the acquired data points
for a particular model to 64, and plot the response time of our
solution against concurrent GET model requests. Subfigure
5b presents the results. The solution can achieve a subsec-
ond response time for up to 32 concurrent requests. At 64
concurrent requests, the solution can respond in an average of
1170ms. For bigger concurrent requests, the performance starts
to quickly degrade in a quadratic manner, even more so than

in the previous experiment. For practical cases, our solution
can respond to a maximum of 100 concurrent requests with
an average response time of 2000ms.

V. RELATED WORK

In [12], Stewart and Chen presented an implementation
of an offline profile-driven performance model for cluster-
based multi-component online services. Their model includes a
detailed specification of the application. Although our solution
also utilizes a detailed specification of the application, our
work in [3] makes it straightforward for a solution developer
to construct it. Additionally, we do online monitoring of the
application to respond to workload changes. In [13], Sadjadi
et al. proposed a regression model that estimates CPU usage
for long-running scientific applications. In our work, we are
estimating bundles of CPU, Memory, and Network, and the
solution is targeting web cloud application worklaods.

In [2], Islam et al. estimate CPU usage by simulating a
cloud provider. They contrast the use of linear regression
and neural networks. Our work includes both a simulation as
well as a real experiment of the solution on top of Amazon
EC2, although we do not compare different machine learning
models. In [14] Villegas and Sadjadi presented an IaaS solution
that can have as input a model of a cloud application with
non-functional specifications. Our work is complementary, as
our DEVA models could be used for input to their solution.
Also, in our work, we do not assume that the IaaS provider
understands our model, and thus our solution is IaaS-agnostic.
In [1], Ganapathi et al. utilize statistical machine learning to
predict resource usage of an application in the cloud. Their
workload is similar to the workload of [13], that is, batch
processing of long-running jobs. We focus on web cloud
application workloads.
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Fig. 5. Time and Scalability Analysis of the solution.

Some IaaS clouds like Amazon’s EC2 already provide an
auto-scaling API [6]. These APIs monitor low-level resources
like CPU-usage, instead of our approach of directly monitoring
key QoS metrics like response time. These vendor APIs
focus on resource usage, while our solution’s focus is on
application performance non-functional requirements (i.e. QoS
constraints).

In [15], Ejarque et al. propose the usage of semantics for
enhancing the resource allocation in distributed platforms.
They propose a set of extensions in resource ontologies and
a set of rules for modeling resource allocation policies. A
similar approach has been followed in their subsequent paper
[16]. In these two cases, rules are used to model equiva-
lences and mappings between the different cloud providers
models. Thus, when the system receives a request following
a providers model, it can be automatically transformed to
another provider by applying the mapping rules to the original
request. Our work is complementary, as we apply this rule
mapping approach to a different problem. We map application
descriptions, provided as DEVA models, into IaaS resource
bundles.

VI. CONCLUSION

In this paper, we first presented the design of an autonomic
solution for cloud application resource mapping and scaling

based on monitoring of QoS constraints. We then provided
details on the prototype implementation and how we dealt with
the technical challenges. Finally, we assessed the validity of
the approach by presenting experiments on functionality and
scalability.

For future work, we intend to expand the prototype in two
directions. In the near future, we will introduce other machine
learning algorithms into our resource allocation framework
and produce a comparison to see which techniques work best
for this problem. In the longer term, we intent to expand
our solution to consider not only vertical, but also horizontal
scaling of Virtual Appliances. That is, to dynamically modify
the DEVA model architecture if the QoS requirements are hard
to achieve with the current one.
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