. A Pipelined Query Processor for Distributed
Multi-Databases ~

Chung-Min Chen  Ruibiao Qiu  Naphtali Rishe
School of Computer Science
Florida International University
Miami. FL 33199

This paper describes a pipelined processing technique for queries involve data from dis-
tributed, autonomous relational databases. We highlight the basic idea. present a prelim-
inary result, and sketches the planned work towards the development of a more complete
multi-database query processor based on the proposed idea.

Accessing Distributed Autonomous Databases The advance of relational
database technology in the past decade has made efficient storage and manipulation of
massive data easier than ever. Accompanied with the wide adoption of relational database
management systems (DBMS) is the diverse choices in commercial DBMS products. Due to
certain technical or strategic considerations. a company mayv need to use several DBMSs from
different vendors. These DBMSs are often installed on separate machines (servers) which
are connected through a LAN. This results in a loosely-coupled multi-database environment:
most of the time the DBMS servers operate on their own. but from time to rime thev have
to cooperate with each other to handle queries that require data from more than one server
(such queries are known as global queries). Efficient global query processing has been one
of the kev research areas in multi-databases.

Autonomous database servers in a multi-database environment can only communicate
with each other through a high-level query interface: SQL (Structured Query Language). the
standard query language for relational databases. The implication is that to evaluate a global
query. the query must be first translated into a sequence of sub-queries in SQL format. which
are then scheduled and submitted to respective database servers for execution. Consider for
example a join query Ry X R, where tables R; and R, reside at database servers DB; and
D B, respectively. To perform the join. we must first retrieve R, from DB;. send it to the
site of DB+, and import it into a temporary table, say T. in DB» (or the other way around
by moving R»). Since all operations must be carried out at the SQL level. the local join
query T ™ R, can not be issued until R; is completely imported into 7. Thus. the total
turnaround time is the sum of two sequential steps: table staging ! (denoted T + R;) and

L local join (T' ™ R,). The sequential delay could become intolerable when the join query
involves large or many tables.

Pipelining Join Queries with Double Buffers We claim that a global join
query can be sped up by overlapping the table staging and local join operations. This is
based on the following observations: (1) table staging is usually communication and CPU
intensive (due to the overhead of network protocol stacis. data format conversion. aud e
repetative SQL INSERT commands needed to populate the temporary table T with the
records received from R;p), and (2) local join is disk IO intensive. Thus. in a sequential

“This research was supported in part by NASA (under grants NAGW-4080, NAG5-5095, and NRA-97-
MTPE-05), NSF (CDA-9711582, IR[-9409661, and HRD-9707076), ARO (DAAH04-96-1-0049 and DAAHO4-
06-1-0278), Dol (CA-5280-4-9044), NATO (HTECH.LG 931449), and State of Florida.

I Table staging may be performed by overlapping communication and importing.

0-7803-4391-3/98/$10.00 1998 IEEE 1

(@]
N




execution, the disk is partly idle during table staging, while the CPU is mostly idle during
local join. If we manage to overlap these two steps, better resource utilization and thus
shorter query turnaround time can be achieved. However. since all operations must be
handled at the SQL level, applying pipeline at the granularity of tuples (records) requires
the execution of an INSERT and a JOIN command at the D B, server for each tuple received
from R;. The excessive SQL statement processing and database access costs mayv well offset
the time saved by pipelined processing.

To make pipeline processing beneficial, we have devised a pipelined algorithm called
fragmented join which avoids excessive SQL and database access overhead. The idea is to
divide R; into a number of smaller, fixed-size tables (called fragments), and pipeline data
staging and local join at the granularity of fragments. To achieve parallelism. subsequent
fragments are imported, in turn, into two temporary tables, T and T' (the double buffers).
While a buffer is engaged in the local join operation with R», the other buffer can be used
to import the next fragment from R;. These two buffers exchange roles alternately for
subsequent fragments. Thus, if R, is divided into n fragments as B; = UL, R, ;. and at a
certain point of time buffer T is holding fragment R ;, then the local join query T X R, and
the staging of next fragment 7" « Ry ;+; are performed simultaneously. The final result is
simply the union of all the sub-results since R} X Ry = UL (R;; X R»).

The total turnaround time of a fragmented join depends on the fragment size. To
determine a good fragment size, we have devised a constant-time heuristic algorithm that
computes a fragment size based on certain table statistics (which are attainable from most
database servers) and a calibrated linear cost model for both insert and join operations.
We have implemented the fragmented join algorithm in a multi-database environment that
contains two autonomous ORACLE 7 servers. A sample experimental result is shown in
the table below which compares query turnaround time (in seconds) of the fragmented join
and a sequential algorithm. at different sizes of R, (in unit of 1.000 tuples). Each R, tuple
occupies 40 bytes. Table R, contains 12,000 tuples, with a tuple size of 150 bytes. Using a
self-computed fragment size, the fragmented join algorithm is able to shorten the turnaround
time of the sequential algorithm by 30-40% in most cases. The last row shows the fragment
size (in unit of 1,000 tuples) calculated and used by the fragmented join algorithm.

[ Risize | 08 | 16 | 24 | 32 | 40 [ 48 [ 56 [ 64 [ 72 | 80 |
| fragmented | 16 21 | 39 47 61 70 76 90 99
sequential 18 34 48 68 86 104 | 120 | 145 | 169 | 179 |
frag. size | 0.27 | 0.53 | 0.60 | 0.64 | 0.80 | 0.96 | 0.93 | 1.07 | 1.02 | 1.14 |

Summary In this paper we have described the basic idea of the fragmented join algo-
rithm which is aimed to reduce turnaround time for global queries in a distributed multi-
database environment. In addition to shorter query turnaround time, the fragmented join
has two other advantages. First, it takes much shorter time than the sequential strategy
to produce the first tuple. The improvement is about |Ry|/|R: ;| times faster. Second.
the fragmented join algorithm requires only a temporary disk space of twice the fragment
size. This could be a significant save over the sequential strategy which requires a tempo-
rary disk space for the entire table R;. Presently, we are undergoing the implementation
of a first proof-of-concept multi-database prototype that incorporates the pipelined tech-
nique described above. To make the fragmented jein algerithin pracuically useful, we are
expanding the algorithm to handle join queries that involve more than two tables. This
requires formation of a multi-level pipeline tree and determination of the fragment size at
each join node. We are also exploring adaptive techniques that would adjust the fragment
sizes dynamically during long query execution based on real-time feedback.

133




