
p"tq-

IEEE lnternational PerfonnanGG,
Gompriling, and Gommunications

Gonference

llE

Conference Proceedi ngs
lPccc 1998

TempelPhoenix, Arizona, U.S.A.
February 16 - 18, 1998

Ixsrrrurr or ElncrRlcAl AND
Elecrnoxlc Eucwrens

IEEE CouvtuNIcArIoNS
Soclsrv

TagrB op ConrENTS

Track 1: Parallel and Distributed Systems

1.1 Parallel Computing

1.1.1 Planning Management of Multiagent-Based Distributed Open Computing Environment Model
He. Y., Cooley D.H., and Zhang J., Utah State University

].].2BenchmarkingaNerworkofPCsRunningParallelApplications
Hollingsworth J.K., Guven E., and Akinlar C., University of Maryland

L I .3 Near-Optimal Broadcast in All-Port Wormhole-Routed Hypercubes Using Error Correcting Codes
Ko H., Latifi S., University of Nevada Las Vegas, and Srimani P.K., Colorado State University

l.l .4 Heuristic Algorithms for Priorih- Assignment in Flow Shops
Etemadi R., Majumdar S., Carleton University, Canada, and Karam G., AT&T

1.2 Distributed Algorithms

1.2.1 A Practical Building Blockfor Solving Agreement Problems in Asynchronous Distributed Systems . . 25
Hurfin M., Raynal M., and Tronel F., IRISA, France

1.2.2 Chunnel Reification: A Reflective Modelfor Distributed Contputation

Ancona M., Dodero G., Gianuzzi V., DISl-University of Genova CazzolaW.,
DSI-University of Milano

1.2.3 A Fault Tolerant Distributed Sorting Algorithm in Tree Networks
Alad G., Universite catholique de Louvain, Belgium; Beauquier J., Tixeuil S.,

Universite de Paris-Sud, France; Chacko J., Datta A.K., University of Nevada Las Vegas

1.2.4 A Fault Tolerant Token Passing Algorithm on Tree Neworks
Alad G., Universite catholique de Louvarn, Belgium; Beauquier J., Johnen C.,
Universite de Paris-Sud, France; Datta A.K., Thiagarajan V., University of Nevada Las Vegas

1.3 Distributed Databases

1.3.1 Performance Comparison of Three Alternatives of Distributed Multidatabase
Systems: A Global Query Perspective
Chen C.-M., Sun W., and Rishe N., Florida International University

1.3.2 Efficient Quorum Operations in Replicated Databases
Helal A., MCC Corporation

L3.3 The Effect of Object-Agent Interactions on the Performance of CORBA Systems
Abdul-Fatah I., Nortel Technologies, Canada; Majumdar S., Carleton University, Canada

*Paper was not available at time of printing

15

32

5t

44

53

60

67

PERFORMANCE COMPARISON OF THREE ALTERNATIVES OF
DISTRIBUTED MULTIDATABASE SYSTEMS: A GLOBAL QUERY

PERSPECTIVE

Chung-Min Chen, Wei, Sun and Naphtali Ri,she

High Performance Database Research Center
School of Computer Science

Florida International Universitv
Miami, FL 33199

E-mail: chungmin@cs.fiu.edu

jr
EIffi#.
r?:l

l:l
: i:'

.'''
tl! ..

:llr
r_,i

#
F

d$,.

ABSTRACT

Diversity and evolution in database applications
often result in a multidatabase environment in which
corporate data are stored in multiple, distributed data
sources, each managed by an independent database man-

agement system. One of the essential functions of a
multidatabase system is to provide inter-database ac-

cess: the capability of evaluating giobal queries that
require access to multiple data sources. This paper

compares three common relational multidatabase ap-
proaches: lhe lederoted approach, the goteway ap-
proach, and the rniddleware approach from the per-
spective of global query performance. In particular, we

examine their architectural impact on the applicability
of pipelined query processing techniques and load bal-
ancing. We present a performance comparison based

on a detailed simulation. The study suggests that the
middleware approach, which is the most cost-effective
solution among the three, provides better or compaxa-
ble performance to the other two approaches.

I. INTRODUCTION

A. multidatabase system is a collection of intercon-
nected database systems (or data sources). Each data
source is governed by an independent database manage-
ment system (DBMS). Most of the time these DBMSs
operate autonomously, but from time to time they need
to cooperate with each other on answering global queries

- queries that require access to more than one data
sources. Multidatabase systems are common in to-
day's enterprise-level information systems, ofben a re-
sult of certain application requirements or other strate-

This research was supported in part by NASA (under grants
NAGW-4080, NAcb-b095, and NRA-97-MTPE-05), NSF (CDA-
9711582, IRI-9409661, and HRD-9707076), ARO (DAAH04-96-
1-0049 and DAAH04-96-1-0278), DoI (CA-5280-4-9044), NATO
(HTECH.LG 931449), and State of Florida.

0-7803-4468-b/98 $1o.oo o 1998 IEEE

gic considerations [7]. Multidatabase systems are of-
ten configured in a distributed, client-server comput-
ing architecture: each componenet DBMS is instalied
and operates on a dedicated sen)er machine, whereas
database applications axe run on client machines. All
servers a^nd clients are interconnected through a com-
munication network. The servers retrieve data from the
databases in response to client requests.

There are three common alternatives to establish
a multidatabase system: the "federated" approach, the
"gateway" approach, and the "middleware" approach i.
Both the federated and gateway approaches use an inter-
database-access-enabling DBMS to handle global queries.
The only difference is that the federated approach adds
a dedicated DBMS, whereas the gateway approach ex-
tends one of the existing servers to include such capabil-
ity. The middieware, in contrast, is merely a softwaxe
that coordinates the DBMS servers for collaborative ac-
tivities. A middieware is noi a fuliy loaded DBMS and
must rely on the component DBMS servers to evalu-
ate global queries. Middleware products are appealing
to many mulitdatabase users as they a.re less expen-
sive a^nd more portable than the other two alternatives.
However, there has been some doubt about the use of
middleware due to a performance concern: the lack of
an internal DBMS for efficient global query processing.

This paper examines the impact of the architec-
tural differences arnong the three aforementioned mul-
tidatabase system approaches on the perfgrmance of
global queries. We investigated this issue by analyzing
the implications on applicability of pipeline, commu-
nication overhead, disk IO overhead, and load balanc-
ing. In particular, we seek answers to the following
questions: (1) Is the performance of the middleware

iThe terms "federated", "gateway", and "middleware" have
been used broadly, sometimes ambiguously, in the literature to
mean the kinds of software that enable inter-database access.
Our use of these terms in this article does not necessarily reflect
exactiy what is interpreted by others.

53

approach comparable to that of the gateway approach
? (2) Does the federated approach, at the cost of an
additional server, achieve a performance gain (with re.
spective to the middleware and gateway approaches) in
proportion to the cost ?

There has been much research work on heteroge-
neous or multidatabase systems that focused on such is-
sues as architectural design, schema integration, query
optimization, and transaction processing (e.g., [6], [11],

[1] and [10]). None of them, to the best of our knowl-
edge, has addressed the comparative performance issue
related to the three models described above. Recent
examples of federalted multidatabase systems include
DATAPLEX [] and DB Integrator [9]. Many rela-
tional DBMS vendors have also supported their own
DBMS products with gateway access to other DBMSs
(e.g., ORACLE's Open Gateways and Sybase's Omni-
Connect). Some eariy research prototypes, for exam-
ple, Mermaid [13] and MDAS [5], can be considered
middleware systems. Recentiy, middieware products
from third-party vendors have been emerging in the
market (e.g., Intersoiv's DataDirect ODBC Driver and
Information Builders's EDA/SQL). The most recent in-
dustry deveiopment on multidatabase architectures and
APIs can be found in [8].

II. THREE MULTIDATABASE
APPROACHES

A. Federated Approach

Figure 1 shows a federated multidatabase system.
In this configuration, a separate federal DBMS (FDBMS)
server with inter-database access capability is added
to the system. The FDBMS has its own reiational
data storage system and query evaluation engine, and
must provide, for each type of DBMS it supports, a
sofbware module that performs necessary SQL dialect
translation and data format conversion. Local queries

- queries that access data in a single data source - are
processed at the respective DBMS server. The FDBMS
server is used exclusiveiy for processing global queries.

It decomposes a global query into a number of remote
sub-queries and a local assembly sub-query. The remote
sub-queries must be expressed in SQL format and sent
to the respective DBMSs for execution. The assem-

bly sub-query, which is executed at the FDBMS server,
collects the results from remote sub-queries and merges
them into a final result. The outlined arrows in the fig-
ure indicate the data flow directions in the execution of
a global query. Having its own relational database en-
gine, the FDBIVIS may speed up the assembly sub-query
by pipelining the input data streams from other servers

with the local assembling operations. This avoids the

need to store the input data streams explicitly on the
local disk first.

B. Gateway Approach

Figure 2 shows the gateway approach for a mul-
tidatabase system. In this setting, one of the exist-
ing DBMS servers in the system is enhanced with the
inter-database access capability. This DBMS, called
a gateway DBMS (GDBMS), assumes two roles: a.s

an autonomous DBMS server that continues to pro-
cess local queries, and as a federal DBMS that handles
global queries. Fbom the view of global queries, the
internal workings of the GDBMS is simiiar to that of
a FDBMS. The difference between the two is config-
urational rather than architectural. Just like the fed-
erated approach, the gateway approach may also take
advantage of pipeiined query processing at the GDBMS
server. In addition, global queries which involve tables
stored in the GDBMS will not need to send these table
across the network to a remote site. This is a potential
performance gain over the federated approach which
requires all tabies to be staged at the FDBMS. The
main problem with the gateway approach is that the
GDBMS may become the bottleneck as it is overloaded
with giobal and local queries.

C. Middleware Approach

A middleware is a software that supports global
queries in a multidatabase system by reiying only on the
processing power of the component DBIVISs. Figure 3
shows a multidatabase system using a middleware. The
middleware, though drawn separately, can be run at
any of the DBMS server machines. It accepts and gen-
erates, for each global query, an execution schedule that
contains a number ofsub-queries (to be executed at var-
ious DBMS servers) and necessary data transfers be-
tween the servers. The middleware is responsible for
routing the sub-queries to the servers, translating SQL
dialects as needed, converting data from one format to
another, and coordinating data exchanges between the
servers.

A middleware can only interact with the database
servers through a high-level query interface (typically a
call-level SQL). And since it does not have its own rela-
tional DBMS engine, pipelined global processing is not
applicable. Rather, temporary tables must be created
in some of the servers to hold intermediate results or
remote tables. In comparison to the federated and gate-
way approaches, the need to hold data in temporary ta-
bles incurs extra IO overhead and increases the load on
server disks. However, the middleware approach has
a better load balancing nature since the workload of
globai queries is equally distributed among all DBMS

54

-:w
{nL.
, iijl

!i

Figure 1: Federated Approach

'r:i

:ti:

'?'
.1!,

;r{,,
f;ii,

4;'

igr'
!t:
M

m, the number of buckets, is chosen so that a one-
block output buffer can be allocated for each bucket.
An output buffer is flushed out to the disk when it
is full or when the partition is finished. In the probe
phase, each pair of buckets .B7,, and Bs,; are compared
for matching tuples. We assume that each bucket .B",;
along with the hash index always fi.ts in the memory.

When both relations are located at the same site
(the case for a local join query), the partition phase
accounts for one pass of read and one pass of write for
both relations 2; the probe phase accounts for a.nother
pass of read for both relations. We call this a loc-Ioc
hash-join, indicating both operands are local relations.
We will describe next the variants of hash-join aigo-
rithms that can be applied to global queries in each of
the three muitidatabase approaches. To faciiitate the
discussion, we call the DBMS server at which the final
result is assembled the join site. A relation is a locol
relation if it is located at the join site, otherwise it is
called a remote relation.

4.1. Federated Variants

In the federated approach, both operand relations
of a global join are remote to the FDBMS server and
thus must be accessed through the network. Since the
FDBMS has its own query evaiuation engine, the par-
tition phase can be performed directly against the in-
coming data streams in a pipelined manner, without
having to first store the data in temporary tables. In
other words, the input of the remote relation from the
network are overlapped with the partition task. Once
the partition is done, the probe phase can proceed as

usual. We call this a str-str hash-join, indicating that
both join opera"nds are in the form of data streams. The
overali disk IO cost of a str-str hash-join is the same as

2Assuming all disk blocks, except the Iast one, allocated to
the buckets are completely filled so the total size of the buckets
is the same as the original size of the input relation.

Middleware

::_' Colmunldllori I Cohmunleilori i

sotthn , I sot**

,Ej@iitEjt-@l
DB Server 1 DB Server 2 -

I I comhunldflonJl
I sot*- lll+l

1 lgqp-foan9l

DB Server 3

Figure 2: Gateway Approach Figure 3: Middleware Approach

servers. Another merit of middleware has to do with
the cost: being a "lightweight" software, a middleware
is usually priced iower thari the other two approaches,
consumes relativeil' few resources, and possibiy requires
less administration.

III. MULTIDATABASE JOIN PROCESSING:
PIPELINED VS. NON-PIPELINED

Global queries are indeed distributed join queries

[12]. Distributed join processing in a multidatabase
system differs from that in a traditional distributed
database system in that the relaiions stored in au-
tonomous DBN{S servers are accessible only through
SQL interfaces. The implication is that pipelined pro-
cessing is rather limited in multidatabase systems. In
the follon'ing, we describe variants of distributed join
algorithms, with different degrees of pipeiining, that are
applicable in the three multidatabase alternatives and
discuss their performance implications. We consider
both hash-join and merge-join strategies [12], with fo-
cus on the former. In this study, we do not consider
index-join strategies using pre-eristing indices as the
federated approach can not utilize any pre-existing in-
dex, neither do we consider nested-loop join strategy as
it is much less efficient than hash-join. Throughout the
discussion, we consider an equal-join query r Xr..4=s.A s
where r and s are relations located at different sites and
A is the .ioin attribute.

A. Hash-Join Algorithrns

Figure 4 outlines a basic hash-join algorithm. The
algorithm consists of two phases: the partiilon phase,
and the probe phase. Without loss of generality, let s
be the smaller reiation. In the first phase, tuples in
each of the relations are partitioned into "buckets" by
applying a hash function, h : Dn -+ {1,2,...,m), to
the join attribute, where Dn is the domain of L and

sstlN\N.tN.w

-:
. Comhunl€donlt trCo;frunforfoi i f lCm,fcril"i ,I. sottwan ll ti sor66 | | l' sonh. I I

dry*'ffi--{,-imr H-@i
Gateway DB Server 2 DB Server 3

DBMS Server

55

for each I, in r do /+ pa,rtition phase */
i = h(t".A);
Insert t, into bucket 8,,;;

end
for each f" in s do

t = h(t".A);
Insert t, into bucket B",t;

end
for i = 0 to rn do /* probe phase */

Load 8",; and build an in-memory hash index
for B",i based on attribute s.,4;

Perform the join B,,r X B",i by probing, for each

tr € B,i, the hash index to locate those tuples
ts € Bs j such that t".A = t,.A;

end

Figure 4: Basic Hash-Join Algorithm

that of aloc-loc hash-join. The former, however, incurs
additional communication and CPU overhead.

4.2. GatewaE Voriants

There are two variants appiicable in the gateway
approach: the str-str and the str-loc variants. The
former, which has been described above, applies when
both operand relations are remote to the GDBMS server;
the latter applies when only one relation is remote.
Similar to the str-str variant, the str-loc varia.nt may
overiap the transfer of the remote relation with the par-
tition task in a pipeline. The IO cost of a str-loc hash-
join remains the same as that of a loc-loc hash-join.
The str-loc vadant will require additional communica-
tion and CPU costs over the loc-loc variant, but less

than those incurred by the str-str variant (which ac-
cess two remote reiations).

4.3. Middleware Varionts

In the middleware approach, the join site always
hosts one of the operand relations. This means that for
any global query, only one relation needs to be accessed

through the network. However, since a middleware has
no control of and can only interact with the DBMS at
the join site through a high-level SQL interface, the re-
mote relation must be sent to the join site and fully im-
ported into a temporary database table before an SQL
query can be issued to perform the join. We call this
variant a i,rnVloc hash-join. Compared to the other
variants, a imyloc hash-join requires an additional pass

of write and read for the imported relation. Though
the middleware approach is unable to take advantage
of pipelined processing, it may produce a better load
balance since all componenet DBMS servers are poten-
tial join sites for global queries. Table 1 summarizes the

repeat until the end of either reiation is reached
Collect the next set of tuples B" from r, and the next

set of tuples B" from s such that t.,A - tu.,4, for all
t'€randt"€s;

Perform a Ca.rtesian product B" x 8,, add the output
tuples to the result;

end

Figure 5: Basic Merge-Join Algorithm

local queries global queries

FED loc-loc str-str
GAT Ioc-Ioc str-str, str-loc
MID Ioc-Ioc irnp-loc

Table 1: Applicabie Join Algorithm Variants

hash-join variants that are applicable in the three mul-
tidatabase approaches (FED, GAT, and MID stands
for federated, gateway, and middleware approaches, re
spectively). Among them, loc-loc is the most efEcient
one, followed by str-loc, with sfr-sfr and imVloc trul-
ing with a tradeoff between network and disk IO over-
head.

B. Merge-Join Algorithrns

When both relations are physically sorted based on
the join attribute, merge-join could be more efficient
than other join strategies. Figure 5 outlines the basic
merge.join algorithm. The algorithm scans the reia-
tions sequentially, locating and brining into memory
the next $oups of tuples, B" and Br, from both re'
lations that hold the same value on the join attribute.
It then performs a Cartesian product between these
two sets of tuples and add the composite tuples to the
result. Variants of merge-join aigorithm for different
multidatabase approaches can be reasoned in a similar
way to those described in the hash-join strategy and
coincide with Table 1.

IV. SIMULATION MODEL

We have implemented a simulation package in C to
evaluate the global query performarlce of the three mul-
tidatabase architectures based on the distributed join
algorithms described in the previous section. To lay
a foundation for a fair performance comparison, the
simulation model assumes that (1) all server machines
have equivalent processing power (same CPU speed and
IO access time), and (2) all DBMSs are equally "intei-
ligent" in the sense that, for each given query, the/
will select the same join strategy (hash-join vs. merge-
join). Figure 6 shows a closed queuing network simula'
tion model which consists of a number of DBMS server

56

S;wt

DtsHl l | -
Bl€ked QueueI

Figure 6: Simulation \{odei

modules and a network module.

DBMS Server Modules Each DBMS server mod-

ule contains a CPU and a disk device, both associated

with a process queue. Processes are scheduled for CPU
based on round-robin and for the disk device based

on FCFS. To avoid performance degradation caused

by thrashing, the sert'er restricts the number of con-

current processes b1' maintaining a rnulttprogramrning
control queue (M PC queue). A newly arriving process

must enter the It[PC queue before it can be admitted
to compete for the resources.

The execution of a query is simulated in terms of
processes. While a local querl'' spawns only one pro'
cess at a database server, a global join query needs to
spawn processes at more than one database servers. We

model a process as a state transition diagram (STD)
that contains a delailed scheduie of the operations to
be performed. Each state specifies an operation and the
queue (CPU, disk, or blocked queue) at which the op-
eration is to be performed. The time a process spends

in a queue depends on the iength of the queue and the
service time to complete the operation. Typically, a
process would go through a number of CPU and disk
IO cycies before completion. Due to space restriction,
we refer the readers to [3] for more details on the STD
model.

Network Module The communication between the
database servers is based on a message-passing model
vrith two blocking primitives: sendO and receiveO.
Data are divided into and transmitted in pacleets. A
process calling send () will enter a packet into the packet
queue and be temporarily biocked until the packet is de-
livered. Similarly, a call to receiveO will not return
control until a packet is received by the calling process.

The network processor and the packet queue simuiate
the latency caused by the network protocol stack, phys-
ical bandwidth restriction, and packet contention. In
our experiments, we use the same size for packets and
disk blocks. The pipelined processing in variants str-
sfr and str-Ioc is performed at the granularity of data
blocks,

Query Workload A random query generator is

System Parrmeter Value
number of DBMS Eervers

concurrency level
server CPU MIPS

avg. disk access time
network transfer rate

block/packet size

3

1-70
1OO MIPS

10 * 2 msec
10 Mbits/sec

4KBytes

Operation f of instr./data block

read
write

send, receive
data conversion

merge
hash
probe

3500
7000

3500
20000
10000

15000
18000

Query Pa.rameter Vaiue
global/locai query

merge-join/hash-join
relation sizes

result size

20" /EUYa
20%180%

200-250; 100-200 blocks
40-150 blocks

Table 2: Default Parameter Values

used to produce the query stream work-load. The gen-

erator aiiows one to specify the values for such pararns-

ters as relation sizes, join selectivities, and percentages

of local and global queries. Al1 database servers prefer
merge-join (if applicable) to hash-join because the for-
mer is more efficient. When a query is completed, a new
query is generated immediateiy and enters the system.

The number of concurrent queries allowed in the sys-

tem, calied the concurrency leuel (CL), is specified as

a parameter. Since the system is arranged as a closed

queuing network, by varying the concurrency level we

are able to observe the scaiability of the performance
with respect to system loads.

\/. SIMULATION RESULTS

Tabie 2 shows the default values of the parameters

used in the experiments. We used three autonomous

database servers in all experiments. In the case of the

federated approach, a fourth FDBMS server is added.

The CPU costs of the various operations (in terms of
number of instructions executed per data block) are es-

timated based on the implementation of a client-server
heterogeneous DBMS prototype [2]. The default query

stream consists of 80% local queries and 20To global

queries. Similariy, 20% of. all queries are joined on

sorted attribute and use merge-join strategy; the other

80% use hash-join strategy. We beiieve this is the norm

in a multidatabase environment where most queries

are local and most relations are not sorted on join at-

tributes.

:r: 'l
lJ::i:, I

:4r':. r'.K..

:
"-L+ :

itl':.. .

j;a:l;:.
! - ..r:

J:rt:'

{,i:i:it.l
i'f:r - ,

ir...,:
{.;::r:!.

.6,tlt,.t

!\: i,,
i.r-,'':'
;ii.Ar",

,l

I
,il
.l

it

'1
. r.t

i,
t.;i

.li'l1i

:',ll

::il
.,;:.i
itril

ji*l
:41

i:1
i:J

+

57

A. Effect of Query Loads

Figure 7 shows the average throughputs ofthe three
approaches versus the concurrency level (CL). The av-
erage throughput is calculated by dividing the num-
ber of queries completed (including global and local
queries) by the total elapsed time, measured in terms of
number of queries per minute (QPM).For each point of
observation, a sufficient number of queries (200-1000)
were run so that the system reaches a stable state with
a 95% confidence on the average throughput before
finishing. As can been sebn, the throughputs of all
approaches level off when the number of concurrent
queries reach'to 20. GAT and MID yield close perfor-
mance. When the load is mild (10< CL <30), MID out-
performs GAT because of better load balancing. How-
ever, when the load is heavy and the system becomes
critically IO-bound (CL > 40), GAT surpasses MID
because it needs fewer IO operations for global queries
(due to the applicability of pipelined processing). The
FED approach, using an additional DBMS server for
global queries, produces better performance than the
other two in all cases. The improvement, however, is
less than linear with the cost: the throughput per senter
produced by FED (ii#) is less than those produced

by GAT and MID (which are greater tfr* jffi;.
Figure 8 shows the average response time for global

queries. The response time of a query is measured as

the elapsed time between the time the query is sub-
mitted and the time the query is completed. In all
configurations, the response time increases almost lin-
early with the number of concurrent queries. The FED
approach constantly yields the best response time due
to the additional dedicated FDBMS server for global
queries. The MID configuration, thanks to its load bal-
ancing nature, produces shorter response time ihan the
GAT approach (which is more likely to develop a con-
tention at the gateway server) under moderate to heavy
loads(CL>15).

B. Effect of Network Bandwidth

Today's multidatabase systems are not necessarily
confined to a local-area-network. The database servers
could be connected through a wide.area-network such
as the Internet or other types of proprietary networks
that bear a lower effective data transfer rate (typically
in the range of tens to hundreds of kilobits per sec-

ond). On the other hand, emerging network technolo-
gies continue to improve the data transfer rate (e.g.

ATM at 155 Mbps and Fast Ethernet at 100 Mbps).
Figure 9 compare the throughputs (under a workload
of CL : 20) over a wide spectrum of effective network
data transfer rates. The middleware approach outper-
forms the other two when the effective network data

Figure 7:

10 20 30 40 50 60 70
No. ol Concurrent Quedes

Comparison of Average Throughput
350

010203040506070
No. ot Concunont Ou€n€s

Figure 8: Comparison of Global Query Resp. Time

transfer rate is relatively iow ((1 Mbps). This is be.
cause MID requires less data transfer (one relation per
global query) than the other two approaches (two rela-
tions for FED and 1+ # relations for GAT, where N
is the number of database servers). When the effective
network data transfer rate increases, the system bottle-
neck shifts from the network to the IO. Eventually the
system becomes IO-bound and the throughputs level
off. The FED performs the best under such a condi-
tion as it has an additional disk to share the loads of
global queries. The performance gain, again, is less
than linear scale.up to the cost.

C. Effect of Query Mix

Figure 10 shows the average throughput as a func-
tion of the percentage of global queries. The through-
put of GAT declines as the frequency of global queries
increases since it causes the gateway server to become
the bottleneck, and Ieaves other servers under-utilized
(by not having enough local queries to keep them busy).
In the case of MID, the throughput is less sensitive to
the change of global query load. This is largely at-
tributed to MID's load balancing nature in processing
global queries. In contrast, the FED approach is most

=0-g
o
ql:o
F
o
d)(!
o

300
o

F 2so
cfae 2oo

b3 rsoo
E
€ 100

o
50

o

b-_

58

0 20 40 60 80 100
Percsntago ol Global Oueries (%)

Figure 10: Effect of Global/Local Query l\{ix

sensitive to the globai query load. The throughput in-
creases initially as a resuit of better federal server uti-
lization. It reaches a summit at which the resources
of the federal database server is fuliy utilized. The
throughput then starts to drop as a consequence of re-
source contention.

VI. CONCLUSIONS

In this paper we have examined the implications and
compared the performance of three alternatives of dis-
tributed multidatabase systems from the perspective of
global join queries. Our study has shown that, on a fair
comparison ground, the middleware approach, though
lacking its own query evaluation engine, produces com-
parable performance with the gateway approach, some-
times better. The middleware's lack of pipelined pro-
cessing capability (and thus higher disk IO costs) is
compensated by its better balanced servers for global
query workloads and lower network overhead. The fed-
erated approach, at the expense of an additional DBMS
server, is able to enhance the system throughput, but at
a rate less than Iinear with the cost. Among the three,
the middleware is the most cost-effective one if per-

formance is not a dominant concern. In practice, the
middleware approach has another advantage: it may
utilize pre-existing indices in processing global queries,
a technique that is not applicable in the federated ap-
proach and is limited in the gateway approach.

VII. REFERENCES

[1] Proc. of 1st Intl. Workshop on Interoperability in
Muitidatabase Systems. Kyoto, Japan, 1g91.

[2] C.-M. Chen and N. Roussopoulos. The implemen-
tation and performance evaiuation of the ADMS
query optimizer. In Procs. of the lth Intl. Conf.
on Extending Database Technology, lgg4.

13] C.-M. Chen, W. Sun, and N. Rishe. Evaluation of
three multidatabase alternatives. Technical report,
Florida International University, Miami FL, 1gg7.

[4] C.-W. Chung. DATAPLEX: An access to heteroge-
neous distributed databases. Comm. of the ACM,
33(1),1990.

[5] B C Desai and R Pollock. MDAS: heterogeneous
distributed database marlagement system. 1n/or-
mation and Softwore Technology, Igg2.

[6] A. Gupta, editor. Integration of infonnation s1s-
tems: bridging heterogeneous daioboses. IEEE
Press, 1989.

[7] A.R. Hurson, M.W. Bright, and S. Pakzad, edi-
tors. Multidatobase systems : an aduanced solution
for global r,nformation shari,ng. IEEE Press, 19g4.

[8] K. North. Understanding muitidatabase APIs
and ODBC. DBMS and Internet Systems
(www.dbmnna$, 7994.

[9] R. Pledereder et al. DB integrator: Open middle-
ware for data access. Digital Technical Journal,
7(1),1995.

[10] S. Ram. Heterogeneous distributed database sys-
tems. IEEE Cornputer, December 1991.

[11] A. Sheth and J. Larson. Federated Database Sys-
tems for Managing Distributed, Hbterogeneous,
and Autonomous Databases. ACM Computing
Surueys,22(3), 1990.

[12] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts. McGraw-Hill, 1996.

[13] Templeton et al. Mermaid: A front-end to dis-
tributed heterogeneous databases. Proc. IEEE,
1987.

(L

aoEoa
o
tF
ood
o

G

o
co
!
o-F
oo6
o

1 10
Etfective Network Data Transf. Rate (Mbps)

Figure 9: Effect of Network Bandwidth

59

