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Biometric research has experienced significant advances in recent years given the need for more stringent
security requirements. More important is the need to overcome the rigid constraints necessitated by the
practical implementation of sensible but effective security methods such as iris recognition. An inventive
iris acquisition method with less constrained image taking conditions can impose minimal to no con-
straints on the iris verification and identification process as well as on the subject. Consequently, to pro-
vide acceptable measures of accuracy, it is critical for such an iris recognition system to be complemented
by a robust iris segmentation approach to overcome various noise effects introduced through image cap-
ture under different recording environments and scenarios. This research introduces a robust and fast
segmentation approach towards less constrained iris recognition using noisy images contained in the
UBIRIS.v2 database (the second version of the UBIRIS noisy iris database). The proposed algorithm con-
sists of five steps, which include: (1) detecting the approximate localization of the eye area of the noisy
image captured at the visible wavelength using the extracted sclera area, (2) defining the outer iris
boundary which is the boundary between iris and sclera, (3) detecting the upper and lower eyelids, (4)
conducting the verification and correction for outer iris boundary detection and (5) detecting the pupil
area and eyelashes and providing means for verification of the reliability of the segmentation results.
The results demonstrate that the accuracy is estimated as 98% when using 500 randomly selected images
from the UBIRIS.v2 partial database, and estimated at P97% in a ‘‘Noisy Iris Challenge Evaluation
(NICE.I)” in an international competition that involved 97 participants worldwide, ranking this research
group in sixth position. This accuracy is achieved with a processing speed nearing real time.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Iris patterns are unique, and most evidently cannot be changed
incidentally or intentionally, as the iris is a protected organ inside
the human eye [1]. In view of this first affirmation, it is an accepted
fact that among all potential biometric methods that make use of
face, fingerprint and voice, among others, iris recognition remains
the most viable and reliable biometric authentication that is unri-
valed when used for security reasons [2,3]. After J. Daugman pro-
posed the first automatic iris recognition system [4] in 1993, a
variety of commercial systems were developed to deal with eye
images [5], which were taken under rigorous acquisition con-
straints. Under the current technological setups, and in order to
take an adequate iris picture and take into consideration the differ-
ent statistical properties [6], the subject must be still, look directly
at the camera, and in a direction that satisfy strict illumination
controls. This process is obviously time-consuming, and often
inconveniences the subject [7]. With the increasing demands in
ll rights reserved.
public safety and security and with the necessity for critical/classi-
fied information access, secure identification is becoming a requi-
site that seeks high accuracy with a fast and reliable outcome.
Thus, an effective iris recognition method is one that should ini-
tially overcome the rigid constraints imposed during iris image
acquisition [8], and offer near real-time processing [9].

Nonetheless, serious noise effects are inherent in unconstrained
iris recognition systems. Typical sources of noise include motion
blur, defocus, eyelash or eyelid obstructions, specular reflection,
among others. Traditional segmentation methods do not perform
well under such conditions [10]. Thus, a good segmentation ap-
proach which can extract useful iris information from noisy iris
images is a crucial first step. Consequently, the focus of this work
is first placed on the development of a robust segmentation ap-
proach that can overcome such unpredictable noise effects in order
to secure recognition outcomes with high accuracy. This first re-
search step is complemented with efforts to optimize the process-
ing speed, seeking near real-time. The UBIRIS.v2 [11] partial
dataset, which contains 500 static eye images with more realistic
noisy effects, as provided by the University of Beira Interior, was
used to assess the merits of this method. Later, the executable
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program of the proposed method was also submitted for testing
through an international contest ‘‘Noisy Iris Challenge Evaluation
(NICE.I)” [12]. The approach we introduced here ranked us in the
sixth position worldwide, considering that efforts were also de-
voted to making the processing speed of our approach as near
real-time as possible. The next sections define the chronology of
the aforementioned implementation steps.

2. Approximate localization of the eye area

There are five major stages contained in the proposed approach,
as per the flowchart given in Fig. 1.

The images from the UBIRIS.v2 database were taken with the
subject on the move and at different distances (between 3 and
7 m). Thus, the irises of the images may vary significantly in size
and location. For the provided UBIRIS.v2 training dataset, the
amount of pixels across the iris ranged from 75 to 190, and the iris
may appear in any region within the close-up image. Therefore, as
an initial step in the proposed approach, a method is used to
approximately localize the eye part of the image, in order to obtain
a smaller and more refined target area. This method, which is of
considerable benefit in seeking accuracy and fast processing speed
for segmentation purposes, consists of two steps: (1) finding an
approximate eye area based on sclera detection, and (2) determin-
ing an adaptive target to confine the search for the iris.

2.1. Detecting the sclera area

Unlike conventional iris images, which are mostly captured un-
der NIR (near-infrared) wavelengths with rigidly constrained envi-
ronments, all the close-up images from the UBIRIS.v2 training
dataset are full-color images taken under visible wavelength. For
the UBIRIS.v2 dataset, the pupil area may not always appear darker
than other parts, especially for images containing heavily pig-
mented (dark) irises or images with serious noise effects. Thus,
the pupil on the image may no longer be the proper starting point
to find the eye area. But through analyzing the full-color images,
the sclera parts are commonly found to appear less saturated
(white) than other parts of the images. Consequently, the sclera
area is used instead for determining the target eye area.
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Fig. 1. The flowchart of the proposed approach.
The HSI color model decouples the intensity component from
the color-carrying information (hue and saturation), and the satu-
ration value of the HSI model refers to the degree of how much the
white was added to the color [13]. Thus, the saturation value of the
HSI model is more tolerant to noise effects for detecting the sclera
area. Saturation value can be computed from the RGB values as gi-
ven by Eq. (1).

S ¼ 1� 3
ðRþ Gþ BÞ ½minðR;G;BÞ� ð1Þ

For the saturation value of the HSI model, when the pixel is white,
S ¼ 0; when the pixel is pure colored, S ¼ 1. Through our experi-
mental analysis, the saturation values of sclera areas provided a
range from 0 to 0.21. The saturation value, which refers to sclera,
would be calculated as a threshold, and all pixels below the thresh-
old would be considered as pixels belonging to the sclera. That
threshold is obtained by calculating the biggest group derivative
within the range in a histogram of saturation values (between 0
and 0.21) corresponding to the image. With the threshold calcu-
lated from the original color image in Fig. 2(a) and (b) illustrates
an example of extracting the sclera pixels from all other pixels, ex-
cept for inherent noise points.

2.2. Determining a target area for the eye

The purpose of this step is to locate a target area with adaptive
size in order to adjust for the different irises of the dataset. After
the sclera detection step, it can be observed that some small spots
of reflections and bright skin are scattered on the image as part of
the sclera extraction step. Thus, more specific sclera areas need to
be localized first, to overcome/eliminate the noise points. In oppo-
sition to the sclera part, all other spots extracted are generally
smaller or slightly darker. The thresholded image, as in Fig. 3(b),
is converted to a gray scale image, and for every pixel with a gray
level intensity greater than 0, its value will be replaced by the aver-
age intensity value of a 17 * 17 block which is centered on that pix-
el. With this operation, the intensity of isolated and relatively
smaller noise areas would be degraded significantly. For those pix-
els whose gray level intensities are greater than 0, the average
intensity is calculated to be an adaptive threshold. With this
threshold, a binary map which can clearly specify the sclera area
can be generated.

The resulting binary maps, as can be seen, can be classified into
two categories: double sclera, areas as shown in Fig. 3(a), and sin-
gle sclera areas as shown in Fig. 3(c). In binary maps with double
sclera appearing, the iris would certainly be located between them,
and the rectangular area can be determined by the extreme coor-
dinates of upper, lower, left and right locations of the two sclera
areas, with a small offset proportional to the distance between
these extreme points in relation to the image boundaries, in order
to ensure inclusion of all the iris. The target rectangle given in
Fig. 3(b) shows the result of a given image. With a single sclera
Fig. 2. Example of sclera detection in the presence of noise pixels.



Fig. 3. Target selection for eye area based on double and single sclera areas.
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area, as shown in Fig. 3(c), since it is unknown as to which side of
the sclera the iris will be located, the nearest distances between
the sclera area to the left and right boundaries of the image would
be calculated, respectively. The rectangular area would be decided
with respect to those distances. The longer the distance is, the
more the rectangle would be extended towards the boundary in
that direction. As shown in Fig. 3(d), the rectangle was mostly ex-
tended towards the right side, and as a result the iris part is within
the rectangle, which correctly delineates the target area.

3. Iris outer boundary detection with a fast circular Hough
transform

The outer boundary of the iris is defined as the boundary be-
tween iris and sclera. Because the Hough transform is based on a
voting scheme, it is very tolerant to noise. To detect the outer
boundary of noisy iris images from the UBIRIS.v2 database, the cir-
cular Hough transform was applied with some modifications to
achieve higher accuracy and faster speed.

3.1. Detecting the outer boundary

To improve the performance of the circular Hough transform,
some modifications were made towards both reducing the compu-
tational complexity as well as reducing the impact of inherent
noise effects.

To generate the edge map, instead of the traditional four-direc-
tion Sobel edge detection [14], we only conducted the edge detec-
tion horizontally (left to right and right to left), as can be seen in
Fig. 4(c); compared with Fig. 4(b), which was generated using four
directions, the number of edge points was much reduced.

To improve the accuracy and processing speed, after generating
the edge map similar to those in studies reported in [15–17], based
on the information obtained from the previous step, the circular
Hough transform would only be conducted using the edge points
in the target rectangle. Also, some precautions are considered.
First, the upper and lower limits of the radius can be set with re-
spect to the size of rectangle. Thus, the upper limit of the radius
is set as 1/2 of the rectangle’s length, and the lower limit is set
Fig. 4. Example of outer boundary detection us
as 1/4 of the rectangle’s width. Second, neither the center of the
resulting circle center nor its boundary can possibly be located
on the already defined sclera areas.

3.2. A fast circular Hough transform

Although the circular Hough transform is a powerful algorithm,
it also carries with it a heavy computational accumulator, and that
refers to the three step iterations burden. With the circular Hough
transform, each edge point ðx; yÞ in the image space votes for
ða; b; rÞ in the parameter space for each possible circle passing it,
where a, b are the coordinates of the circle center position, and r
being the radius of the circle. Thus, the votes were cast in a
three-directions accumulator for conducting the circular Hough
transform. If O1 is the computational complexity of calculating
votes for a circle with a determined center location and radius,
the computational complexity of the circular Hough transform Oa

would be as given by Eq. (2):

Oa ¼ ðamax � aminÞ � ðbmax � bminÞ � ðrmax � rminÞ � O1 ð2Þ

Here the step-length was applied to reduce the computational bur-
den of the circular Hough transform. Let Ca;Cb;Cr be the step-length
for the parameters a; b; c, respectively, then the computational com-
plexity would be as given by Eq. (3):

Ob ¼ ðamax � aminÞ � ðbmax � bminÞ � ðrmax � rminÞ � O1=ðCa � Cb � CrÞ
ð3Þ

In the implementation of the proposed approach, the step-lengths
are set such that Ca ¼ Cb ¼ Cr .

Because of the three step-lengths, a large number of votes will
not be counted. To overcome this problem, with a determined cir-
cle center and radius, instead of only searching for the edge points
located on the circle, all points located on the circular ring sur-
rounding that circle would be counted. For instance, as shown in
Fig. 5, instead of searching for edge points located on the solid cir-
cle 1, the search will also include all points within the dashed cir-
cles A and B; similarly, all points within dashed circle B and C
would count as votes for the target searching circle given by solid
circle 2.
ing the modified circular Hough transform.
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Fig. 5. Example of searching feature points locating on the circular ring around the
target circle.
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We also accelerate the step of searching for all the edge points
located on the circular rings. We implement the algorithm with dy-
namic programming method [18]. Initially, the distance between
every pixel point on the image and the image center point would
be calculated, all those distances would be stored in the table,
and each distance would refer to a list of relative locations which
have that certain distance from the center location of the image
frame. When searching for the edge points on the circle, the neigh-
boring distances would refer to a set of relative locations in the
look-up table, and all edge points located on the corresponding
locations in the image would be counted. Because the look-up table
was generated just after executing the proposed approach for a sin-
gle image, and since the size of all input images is 400 * 300, there
is no need to calculate distances while performing the Hough
transform for each image, and the computational burden was con-
sequently alleviated significantly.

Finally, to obtain more consistent results, instead of just choos-
ing the peak value of votes in the parameter space, a range of high-
est values (for this research, all the parameters have a value within
5% of the peak value votes) are used instead; by examining their
neighboring parameters which are bypassed because of using
step-length, more precise results can be accomplished.

To demonstrate the performance of the proposed method, the
step-length is set to be between 1 and 5, and the processing time
is examined based on all 500 eye images from the UBIRIS.v2 train-
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Fig. 6. Average processing time for circular Hough transform using 500 images
from the UBIRIS.v2 training database.
ing database. The results are as shown in Fig. 6, where the step-
lengths for C1 through C5 are 1 through 5, respectively.

This modified circular Hough transform decreases the execution
time of the proposed approach significantly. The average process-
ing time using the circular Hough transform which applies a
step-length of 1 is calculated as 6.77 s per image, and the error rate
of such an approach is estimated at 0.0200215 in the E1 measure
provided by the Committee of NICE.I. With the proposed modified
circular Hough transform, the average execution time is decreased
to 0.83 s and the E1 error rate is 0.0200823 now. With the pro-
posed modified Hough transform, the execution time is signifi-
cantly decreased by 8.2 times, while the accuracy is only
degraded by 0.303%, which is considered negligible. Execution time
and E1 error rates for both cases are examined by processing the
provided 500 iris images from the UBIRIS.v2 database using a lap-
top computer with 1.86 GHz CPU (Intel T1350 solo) and 2 GB of
RAM. The executable program we submitted to the NICE.I commit-
tee is the fast version, which used the modified circular Hough
transform with a step-length of 5.
4. Boundary detection of the upper and lower eyelids

In unconstrained iris acquisition scenarios, as the subject is not
required to comply with a demanding level of cooperation, it is ob-
served that considerable eyelid occultations often occur. The linear
Hough can be applied to the edge map of the eye image to detect
the eyelids. However, with this algorithm, the key problem for
dealing with noisy eye images is that the obtained edge maps are
usually non-ideal. As shown in Fig. 7(a), most edge points appear-
ing on the map are undesired, caused by eyelids, reflections inside
the iris, and the texture of the iris patterns. To overcome this prob-
lem, an improved strategy for eyelid detection is proposed. Because
the slopes of the upper and lower eyelids are not steep in most
cases, the proposed approach starts by applying edge detection
in only the vertical direction. The generated edge map will have
an emphasis on the desired eyelids edge points. Fig. 7(a) is one
such example.

The proposed approach has shown good performance for pro-
cessing noisy iris images from the UBIRIS.v2 dataset. Fig. 7 illus-
trates an example for eyelid boundary detection.

To distinguish the points which are edges between iris and eye-
lids, a patch of area is selected to calculate the average gray inten-
sity IA of the iris, as shown in Fig. 8. A square patch just below the
pupil is chosen, since this area is experimentally determined to be
the one most unlikely to be affected by reflections or overlap with
eyelids. Because iris sizes vary significantly within the given UBI-
RIS.v2 dataset, the size of the patch is set to be adaptive in relation
to the size of the iris. For this research we set the length of the
square to be Router=10, with Router being the radius of outer iris
boundary. The upper boundary of the patch is Router=8 below the
pupil’s lower boundary.

With the outer boundary circle obtained as in Fig. 7(d), rays are
traced starting from the center of the circle and toward every point
on the upper or lower arc of the circle (central angle h ¼ 120�). For
each ray, if an edge point was found, M points beyond this point in
the ray’s direction would be verified using the average gray scale IA

to see if it is within a range of IA � 10%; if N of M points can be con-
sidered as points on the iris, the found edge point would be ignored
in order to eliminate potential smaller reflection regions and iris
regions with textural properties, and the search would go on until
reaching the circle boundary. For this implementation, M ¼ Router=6
and N ¼ Router=10. The example shown in Fig. 7(d) shows the veri-
fied edge points for the upper eyelid. After the verified edge map
was generated, the linear Hough transform was then used. Since
most of the undesired edge points were removed before this step,



Fig. 7. Example for detecting upper and lower eyelids within the given the UBIRIS.v2 dataset.

Fig. 8. Example of the square patch used to obtain the average gray intensity.
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the results of the linear Hough transform would be more accurate
and more tolerant to noise.

For some cases, it would be more accurate to describe the eyelid
with multiple lines. In the proposed approach, after the first line
was detected, the edge points on that line were moved and so were
all edge points located within 5 pixels above and below that same
line. The linear Hough transform is then applied again, and if there
are enough votes, another line would be determined, and so on.
Then point removal and Hough transform would be applied again.
This process would continue until the peak value of the linear
Hough transform is below a threshold, which for this research is
set as Router=4. Fig. 7 shows an example of these cases. Fig. 7(b)
shows the detected points which are on the edge of iris and upper
eyelid, Fig. 7(c) shows the remaining points after the first linear
Hough transform for the upper eyelid, Fig. 7(d) shows the final re-
sults of boundary detection for upper and lower eyelids. Two other
results from the UBIRIS.v2 database are shown in Fig. 9 for compar-
ative purposes.

5. Circle correction and non-circular boundary detection

Although the outer iris boundary was assumed to be circular for
most of the conventional iris segmentation methods, it has been
Fig. 9. Results of the detection of the eyelid boundaries.
pointed out that human iris boundaries are usually non-circular
[19] The error caused by defining the boundary as a circle is espe-
cially crucial for less constrained iris recognition, because of ubiq-
uitous off-angle effects during non-cooperative iris acquisition.
Also the circular Hough transform can generate inaccurate results
due to noise. For this reason, a strategy was developed to define the
non-circle boundary and correct the inaccurate result obtained
from the circular Hough transform.

Fig. 10(a) is one example of outer boundary detection error
caused by a non-circular iris boundary. As can be seen, the outer
boundary cannot be correctly detected. The proposed verification
and correction method is based on three steps; the first step is
the circle center verification, the second step is multiple circle
(or arc) searching, the third step is multiple arcs and lines
connection.

There is a need to find the correct center of the iris to verify the
original circle center found from the first Hough circle transform.
Shown in Fig. 10(b) is a square grid with an adaptive size inside
the outer iris boundary. The center of the grid which yields the
lowest average gray intensity would be selected as the correct out-
er iris boundary center. For the purpose of this research, if the
Euclidean difference between the original center and the newly de-
tected one is greater than Router=4, the original outer boundary
would be assumed as inaccurate. Then a target area would be se-
lected for conducting Hough circular transform again. Based on
the experimental study, the desired iris boundary is usually inside
the Hough circle. The reason for this is that the edge points outside
the iris usually vote for larger circles and for an off-angle iris which
is usually smaller than its actual size. Thus, the target area whose
center is at ðxt ; ytÞ as shown in Fig. 11 was expected to be the re-
gion between the real iris center ðxr ; yrÞ and the arc on the opposite
side of the original circle.

In reference to Fig. 11, the center of the target rectangle is
ðxt ; ytÞ, and the original circle center is ðxc; ycÞ, here we have:

yt ¼ yc; and xt ¼ xc � ðxr � xcÞ or xt ¼ 2xc � xr ð4Þ

Another Hough transform will be conducted to the edge points in-
side the target rectangle. Because the goal is to detect a circle which
is usually partially located on the target region, different weights
are set to the votes generated inside and outside of the target region
to get more accurate results. In our experiments, we set the weight
of the vote as 1 for the outside region and as 7 for the inside region.

Since the Hough transform is based on voting, to avoid uncer-
tain results, an adaptive voting count threshold is set such that if
the highest voting count is below this threshold, the circle will
not be generated. This threshold is set as T ¼ M � 35%, where M
is the total count of edge points in the target rectangle. If the peak
value N < M, the circle will not be considered. The black circle
shown earlier in Fig. 10(e) is one outcome example of this step.

The intersection of two circles can be used to describe the non-
circular iris. The upper and lower eyelids lines are also used here to
remove unexpected eyelids and eyelashes. Thus, as can be seen



Fig. 10. Defining the non-circular iris boundary – the intersection of the two circles with the detected eyelids lines is the accrual iris.

Fig. 11. Relations between the real iris center, original circle center and center for
target rectangle.
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from Fig. 10(f), the final result of the detected boundary consists of
multiple arcs and lines, and would be more accurate for describing
non-circular iris boundaries. Other examples provided for compar-
ative purposes are shown in Fig. 12.

Inaccuracies introduced by the circular Hough transform can
thus be resolved with the proposed method. As shown in Fig. 12,
the larger circles shown in (a) and (b) are inaccurate circular
Hough transform results, and the smaller circles in both cases are
the newly detected ones through the proposed method. As can
be seen, the intersections are much more accurate. Fig. 12(c) and
(d) are two other examples with different iris sizes and different
Fig. 12. Result examples of proposed circle verification and corr
eye gazes. The left circle shown in Fig. 12(c) and the right circle
shown in Fig. 12(d) are the original Hough transform results,
which, as can be seen, are slightly off from the expected result.

6. Pupil, eyelash detection and results reliability verification

Because the eye images from the UBIRIS.v2 dataset were cap-
tured under visible wavelength, one of the major differences with
those images taken under NIR wavelength is that the intensity con-
trast of iris and pupil can be very low, especially for heavily pig-
mented (dark) irises, such as in Fig. 13(a). Thus, pupil removal is
left for this step to be performed; with only iris and pupil, the con-
trast enhancement method would yield better performance.

As shown in Fig. 13, image (a) is the outcome from the previous
step (outer iris and upper and lower eyelid boundary delineation).
We used an empirical intensity threshold of 150 to detect the
reflections, and expanded every reflection point by a 3 * 3 mask
to ensure its total removal. Then, histogram equalization was ap-
plied to get the high-contrast image, as shown in image (b). Sobel
edge detection was used to get the edge map (c), and then the cir-
cular Hough transform determined the pupil boundary. Caution is
taken such that the pupil center should be located within the small
white circle shown in Fig. 13(b) with a radius of Router=10, and its
center can be considered as the outer iris center. The radius of
the pupil boundary is set to be from 3Router=20 as a lower limit to
11Router=20 as the upper limit. Fig. 13(d) shows the result for this
illustrative example. To detect the eyelashes, we set an adaptive
empirical threshold to be 0:45 � IA, where IA is the obtained average
iris color as described in Section 4. The eyelash removal would be
ection strategy for delineating non-circular iris boundaries.



Fig. 13. Process for pupil detection and removal.
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performed within the top Router=3 part of iris. After the pupil and
eyelash removal, the result of the segmentation approach would
be generated.

To ensure that the falsely segmented results would not pass to
the next step of iris recognition, a reliability verification procedure
was applied to minimize false positives. For the UBIRIS.v2 dataset,
if the segmented iris is too big ðRouter > 120Þ, too small ðRouter < 20Þ,
too bright ðIA > 90Þ, or if the average intensity of the pupil is
brighter than the average iris intensity, the segmented result
would be rejected.
7. Result and discussion

Some of the good results are shown in Fig. 14. The green and red
parts on the iris area are the non-matched errors as determined by
the NICE.I committee through an unbiased evaluation.

As shown in Fig. 14, almost all the function modules of the pro-
posed approach worked very well. Some errors occurred on the
outer iris boundary, because a single circle is used to define the
boundary, but those errors are relatively small.

Through the same unbiased evaluation, some of the worst re-
sults were caused by sclera detection errors, as shown in
Fig. 15(a). For this image, the sclera area was found to be the bright
part of the upper eyelid; thus, the target rectangle was falsely set
to be out of the iris region. Fig. 15(b) shows that with an incorrect
searching target area, unpredictable results would be obtained
from the circular Hough transform; the black circle on the top-
right of the image is the outcome of iris boundary detection which
was conducted in the non-iris region. In the results given in
Fig. 15(c), the green area refers to false positive errors, and the
red area refers to false negative errors.

As for the example given in Fig. 15(d), because the white wall
behind the subject is detected to be sclera, the target rectangle
Fig. 14. Examples yiel

Fig. 15. Examples yielding fau
was set to be too large for the actual iris region, and the upper limit
radius of the target circle was set to be too large (recall that the
upper limit of the radius is set to be half of the rectangle length
in the proposed approach). As shown in Fig. 15(e), in that search
area, a very large circle can get more votes than the actual bound-
ary circle. Thus, as shown in Fig. 15(f), incorrect results are ob-
tained, with the red (false negative) being small because the
incorrect result region incidentally covers the real iris area.

The UBIRIS.v2 dataset includes rotated iris images, and some of
which with the angles that are more than 30� (relative to the hor-
izontal). Through our experiments on the provided training data-
set, it has been noticed that the rotation effects may impact the
step of locating the target iris area which is introduced in Section
2.2, although those impacts are mostly overcome. There are 17
images with the rotations greater than 30� relative to horizontal,
and only two cases lead to inaccurate iris outer boundary detection
results.

As the target rectangle area is set to be a horizontal rectangle,
for those rotated iris images, the determined target rectangle
may cover a partial iris area instead of the whole iris area. Because
the voting based circular Hough transform would be used to search
for the outer iris boundary, a partial circle within the target area
can still determine the outer boundary. Furthermore, the target
rectangle area is extended with respect to the location and size
of the sclera area; and for most of the rotated iris images, an ade-
quate portion of the iris would still be covered, providing desirable
outer boundary detection results even under these extreme
conditions.

As shown in Fig. 16(b), although the target rectangle does not
cover the whole iris boundary, the rectangle is extended down-
wards to cover more of the boundary edge points. The white circle
drawn in Fig. 16(c) shows the accurate result of outer boundary
detection. An inaccurate outer boundary detection caused by rota-
tion effect is also given in Fig. 16(d)–(f). As can be seen in Fig. 16(e),
ding good results.

lty or undesired results.



Fig. 16. Examples of detecting the outer iris boundary of rotated iris images.
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since the detected sclera area is located just below the middle of
the image, the target is slightly_extended upwards. The target rect-
angle covers relatively a small portion of the iris area; with other
noise effects on the edge map such as eyelashes and eyelids. The
inaccurate outer boundary detection resulted as reflected by the
white circle drawn in Fig. 16(f), due to inaccurate positioning of
the rectangle.

In retrospect, through the unbiased evaluation from NICE.I com-
mittee, the results of the proposed approach yielded error mea-
sures of E1 = 0.029 and E2 = 0.163 (where False Positive
rate = 0.018 and False Negative rate = 0.307). E1 and E2 are defined
in detail in the NICE.I Evaluation webpage (http://nice1.di.ubi.pt/
evaluation.htm). The results obtained with the proposed approach
ranked us sixth of all 97 participants worldwide.

Just as important, the processing speed of our approach is fast.
For the 500 images from provided UBIRIS.v2 training dataset, the
average processing time for each iris image is 0.83 s per image.
The result is gotten from a laptop computer with 1.86 GHz CPU (In-
tel T1350 solo) and 2 GB of RAM. The proposed approach was
implemented using C++ programming language.

8. Conclusion

This study proposed a new and robust approach for iris segmen-
tation on less constrained iris acquisition scenarios. It produced
high performance in eye images from the UBIRIS.v2 database,
which contains very realistic noise effects. The accuracy of the pro-
posed approach was evaluated as part of the NICE.I contest, rank-
ing the method with the sixth lowest error rate among 97
participants worldwide. This accuracy is augmented in merit by
the fact that the processing speed of the proposed approach is near
real-time, requiring only 0.83 s to perform all the required steps for
a final iris segmentation.

The proposed approach relies on an effective search for the
sclera area of the image. A threshold of saturation value (the HSI
model) was obtained by calculating the biggest group derivative
of the histogram of the original color image. Then, to remove the
remaining undesired reflections or bright skin, the value of every
non-black pixel was replaced by the average intensity value of a
17 * 17 block around it. A binary map was thus generated to indi-
cate the sclera area. This process allowed for a narrower target area
with respect to the size and the location on the image of the sclera
in order to accelerate the circle search process for the outer iris
boundary detection.

The outer boundary of the iris was detected using a modified
fast Hough circular transform. The modifications considered were
specifically established to alleviate the computational burden of
the original Hough transform while still seeking a highly accurate
segmentation outcome. In this approach, the same step-length is
used for the three step iterations of the Hough circular transform,
yielding a significantly faster processing speed. The use of this
step-length is complemented with an optimization method de-
signed to yield more accurate results.
The third step focused on detecting the upper and lower eyelids.
To overcome various noise effects, a new approach was devised to
identify the edge points located on the boundary between eyelid
and iris. The identification is based on verifying whether each edge
point actually belong to the eyelid and not to the iris region. A lin-
ear Hough transform is used recursively to extract the edges of
eyelids.

A new method for verification and correction for the outer
iris boundary was also proposed. The new strategy consisted
of (1) verifying and correcting the center position of the outer
iris boundary, (2) localizing the target region, (3) performing
Hough circular transform with different weights in and out of
the target region and (4) verifying the reliability of the results
in terms of the number of edge points which actually belong
to the boundary of the iris. As a result, multiple arcs and lines
were used to delineate a non-circular iris boundary, and cor-
rect the initial inaccurate results of the circular Hough
transform.

For the final step, in order to generate a more accurate pupil
boundary in the edge map, histogram equalization was used to en-
hance the contrast between the iris and pupil. Consequently, the
extracted pupil area is removed from further consideration, allow-
ing for an iris recognition process to focus solely on the delineated
iris area.
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