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Abstract—This research introduces a noise-resistant and 

computational efficient segmentation approach towards less 

constrained iris recognition. The UBIRIS.v2 database which 

contains close-up eye images taken under visible light is used to 

test the proposed algorithm. The proposed segmentation 

approach is based on a modified and fast Hough transform 

augmented with a newly developed strategy to define iris 

boundaries with multi-arcs and multi-lines. This optimized iris 

segmentation approach achieves excellent results in both 

accuracy (2% error) and execution speed (≤0.5s / image) using a 

2.4GHz Intel® Q6600 processor with 2GB of RAM. This 2% 

error is an Exclusive-OR function in term of disagreeing pixels 

between the correct iris considered by the NICE.I committee and 

the segmented results from the proposed approach. The 

segmentation performance was independently evaluated in the 

“Noisy Iris Challenge Evaluation”, involving 97 participants 

worldwide, and ranking this research group in the top 6. 

I. INTRODUCTION 

IOMETRIC research has experienced significant 

advances in recent years with the need for more stringent 

security requirements. After the first iris recognition system 

was proposed by J. Daugman in 1993, [1, 2] various 

commercial systems have since been developed to deal with 

eye images [3-6], which were mostly taken under rigorous 

acquisition scenarios. Under the current technological setups, 

to take an adequate iris picture, the subject must be still, look 

directly at the camera, and in a direction that satisfies very 

strict illumination conditions. This process is too constrained, 

time-consuming, and is often an inconvenience for the 

subject.[7,8] Thus, an effective iris recognition method is one 

that should initially overcome the rigid constraints imposed 

during iris image acquisition, and offer both acceptable 

accuracy and fast processing speed.[9-11]   

Unconstrained iris recognition with less rigid image taking 

conditions can impose minimal to no constraints on the iris 

identification and verification process.  To provide acceptable 

accuracy measures, it is critical for such iris recognition 

system to be complemented by a noise tolerant iris 

segmentation approach that to overcomes various noises 

introduced through image capture under different recording 

environments and scenarios. [12- 15] Consequently, the focus 

of this work is on the development of a robust segmentation 

approach that can overcome such unpredictable noise effects 

in order to secure recognition outcomes with high accuracy. 

The proposed algorithm consists of five steps, which 

 
 

include: (1) detecting the approximate localization of the eye 

area of the noisy image captured at the visible wavelength, (2) 

defining the outer iris boundary which is the boundary 

between iris and sclera, (3) detecting the upper and lower 

eyelids, (4) conducting the outer iris boundary correction with 

multi-circle and multi-line, (5) detecting the pupil area and 

eyelashes.  

The very challenging UBIRIS.v2 dataset, [16] which 

contains 500 eye images with realistic noisy effects, as 

provided by the University of Beira Interior, was used in this 

research. Two example images from the UBIRIS.v2 are 

shown in Figure 1(a) and (b), and are compared with example 

images from traditional dataset such as CASIA (version 3) 

[17] as illustrated in Figure 1(c) and (d). Note that the 

UBIRIS.v2 dataset images introduce more realistic 

conditions, such as specular reflections, off-angle situation 

and wearing of glasses as in these cases. 

 

  
(a)                                       (b) 

        
(c)                                        (d) 

Fig. 1.  Comparison of iris images from the UBIRIS.v2 and CASIA (version 

3), (a), (b) two example images from the UBIRIS.v2, (c), (d) two example 

images from CASIA (version 3). 

Three original contributions are made in this research endeavor: 

(1) a new iris segmentation approach which achieves excellent 

results in both accuracy and execution speed, (2) a newly developed 

strategy to define iris boundaries with multi-arcs and multi-lines, (3) 

a fast circular Hough transform is proposed to reduce the 

computation speed, which makes it more than 20 times faster. Such a 

modification is complemented with an optimization method 

designed to yield more accurate results. 
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II. APPROXIMATE LOCALIZATION OF THE EYE AREA 

Irises from the UBIRIS.v2 database are extremely 

challenging to process, since they vary significantly in size 

and location because the images were taken with the subjects 

on the move and located at different distances (between 3 and 

7 meters). The amount of pixels across the iris ranges from 75 

to 190, and the iris may appear in any part of the close-up 

image. Therefore, as an initial step of the proposed approach, 

a method is used to approximately localize the eye part of the 

image in order to obtain a smaller and more refined target 

area. This method, which is of considerable benefit in seeking 

accuracy and fast processing speed for segmentation 

purposes, consists of two steps: (1) finding an approximate 

eye area based on sclera detection, and (2) determining an 

adaptive target region to confine the search for the iris. 

A.  Detecting the sclera area 

Since the iris may appear in any part of the close-up image, 

most existing iris segmentation approaches start from pupil 

detection because the pupil area is the darkest part; those 

images considered are captured under NIR (near-infrared) 

wavelength with rigidly constrained environments. However, 

all the close-up images are full-color images taken under 

visible wavelengths. Under this condition, the pupil area may 

not always appear darker than other parts, especially for 

images containing heavily pigmented (dark) irises, or images 

affected by noise. Thus, pupil detection is no longer the 

appropriate first step when localizing the eye area. Through 

analyzing the full-color images, the sclera part is found to be 

less saturated (white) than other parts of the images. 

Consequently, the proposed approach starts from the sclera 

detection to determine the target eye area. 

As the non-constrained iris images are taken without rigid 

illumination control, their processing requires overcoming 

intricate lighting conditions such as uneven lighting, 

reflections, and shadows. In this study, the hue, saturation and 

intensity, the HSI color model, is used to detect the sclera 

instead of the RGB model. The saturation value of the HSI 

model refers to the degree of white which is added to the 

color. Furthermore, the HSI model decouples the intensity 

component from the color-carrying information (hue and 

saturation values). [18]  

Through our experimental analysis, the saturation values of 

sclera areas range from 0 to 0.21(0 to 54, with a normalized 

range from 0 to 255). The saturation value, which refers to 

sclera, would be calculated as a threshold, and all pixels below 

the threshold would be considered as pixels belonging to the 

sclera. An adaptive threshold is thus obtained by calculating 

the biggest group derivative within the range in a histogram of 

saturation values (between 0 and 54) corresponding to the 

image.  The process for obtaining the saturation threshold 

value consists of making use of equations (1-4) as follows:  
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Here, jS is the amount of pixels which have the saturation 

value j , on the saturation histogram of the eye image. jD is 

the group derivative for every M neighboring saturation 

values of  the saturation histogram (here, M=14). The value 

2=ε is chosen empirically as means to seek relevant first 

derivatives on the basis of the smoothed saturation histogram 

by using equation (1)). The saturation value threshold j of 

jT  is obtained by searching for the maximum smoothed 

group derivative value jH ,  

Two eye images with different luminous intensities are 

illustrated in Figure 2.   Figure 2(e) and Figure 2(f) display 

two results of extracting the sclera pixels from all other pixels, 

with the inherent noise points which would be resolved in the 

subsequent processing step.  

 

  
(a)                                                (b) 

  
(c)                                                   (d) 

       
(e)                                                       (f) 

Fig. 2.  Sclera detection under different lighting conditions, (a) eye image 

with high luminous intensity, (b) eye image with low luminous intensity, (c), 

(d) saturation histograms for the corresponding eye images, (e), (f) sclera 

detection results. 

B. Determining a target area for the eye 

Since the sizes of irises vary significantly, the purpose of 

this step is to locate a target area with an adaptive size in order 

to adjust for the different irises. After the sclera detection step, 

it can be observed that some small spots of reflections and 

bright skin are scattered on the image as part of the sclera 

extraction result. Thus, more specific sclera areas need to be 



 

 

 

 

localized first to overcome/eliminate the noise points. In 

opposition to the sclera part, all other spots are generally 

smaller or slightly darker. The sclera detection images as in 

Figure 2(e) and Figure 2(f) are converted to grayscale images, 

and for every pixel with gray level intensity greater than 0, its 

value will be replaced by the average intensity value of a 17 by 

17 block which is centered on that pixel. With this operation, 

the intensities of isolated and relatively smaller noise areas 

would be degraded significantly. For those pixels whose gray 

level intensities are greater than 0, the average intensity is 

calculated to be an adaptive threshold. With this threshold, a 

binary map, which can clearly specify the sclera area, can be 

generated.  

 

  
(a) Binary map of sclera                   (b) Target area delineation 

  
(c) Binary maps of sclera                 (d) Target area delineation 

Fig. 3.  Target selection for the eye area based on double and single sclera 

areas. 

The resulting binary maps can be classified into two 

categories: single sclera area as shown in Figure 3(a), which 

corresponds to Figure 2(a), and double sclera areas as shown 

in Figure 3(c), which corresponds to input image Figure 2(b).  

With a single sclera area as shown in Figure 3(a), it is 

unknown which side of sclera the iris will be located in. The 

nearest distances between the sclera area to the left and right 

boundaries of the image would be calculated, respectively. 

The rectangular area would be decided with respect to those 

distances. The longer the distance, the more the rectangle 

would be extended towards the boundary in that direction. As 

shown in Figure 3(b), the resulting rectangle (shown in black) 

was mostly extended towards the left side, and as a result the 

iris part is within the rectangle, which correctly delineates the 

target area.  

With double sclera appearing, the iris would certainly be 

located between them. The rectangular area can be determined 

by the extreme coordinates of upper, lower, left and right 

locations of the two sclera areas. In order to ensure inclusion 

of the entire iris, the rectangle would be enlarged with an 

offset proportional to the distance between extreme points in 

relation to the image boundaries. As shown in Figure 3(d), the 

target rectangle (shown in white) covers most of the iris. 

III. DETECTING IRIS OUTER BOUNDARY WITH A FAST 

CIRCULAR HOUGH TRANSFORM 

The outer boundary of the iris is defined as the boundary 

between iris and sclera. Hough transform is tolerant of gaps in 

edge descriptions and is relatively unaffected by image noise. 

A. Detecting the outer boundary 

To generate the edge map, instead of the traditional 

four-direction Sobel edge detection, we only conduct the edge 

detection horizontally (left to right and right to left).[19, 20] 

The number of edge points in figure 4 (b), which was 

generated using 4 directions edge detection, was much 

reduced from that of figure 4 (c).  

 

  
(a) Input image                               (b) Edge map in 4 directions        

  
(c) Edge map in 2 directions         (d) Boundary detection result 

Fig. 4.  Example of outer boundary detection using the modified circular 

Hough transform. 

Based on the information obtained from the previous step, 

to improve the accuracy and processing speed, after 

generating the edge map, the circular Hough transform would 

only be conducted using the edge points in the target 

rectangle. Also, some precautions are considered. First, the 

upper and lower limits of the radius can be set with respect to 

the size of rectangle. Thus, the upper limit of the radius is set 

as 2/1 of the rectangle’s length, and the lower limit is set as 

4/1 of the rectangle’s width. Second, neither the center of the 

resulting circle nor its boundary can possibly be located on the 

already defined sclera areas.  

B. A fast circular Hough transform 

Although the circular Hough transform is a powerful 

algorithm, it also carries with it a heavy computational 

accumulator which refers to the three step iterations burden. 

With the circular Hough transform, each edge point ),( yx in 

the image space votes for each possible circle represented as 

),,( rba  in the parameter space,  And  a, b are the coordinates 

of the circle center position, and r being the radius of the 

circle. Thus, the votes were cast in a three directions 

accumulator for conducting the transform. [21] If 1Q  is the 

computational complexity of calculating votes for a circle 



 

 

 

 

with  a determined center location and radius, the 

computational complexity of the circular Hough transform 

aQ  would be as given by equation (5): 

1minmaxminmaxminmax *)(*)(*)( QrrbbaaQa −−−=   (1)            

Here the step-length was applied to reduce the 

computational burden of the circular Hough transform. 

If ,aC bC , and rC are the step-length for parameters a, b, and 

c respectively, then the computational complexity would be as 

given by equation (6):  

)**/(*)(*)(*)( 1minmaxminmaxminmax rbab CCCQrrbbaaQ −−−= (2) 

Because of the three step-lengths, a large number of votes 

will not be counted. To overcome this problem, with a 

determined circle center and radius, instead of only searching 

for the edge points located on the circle, all points located on 

the circular ring surrounding that circle would be counted. For 

instance, as shown in Figure 5, instead of searching for edge 

points located on the solid circle 1, the search will also include 

all points within the dashed circles A and B; similarly, all 

points within dashed circle B and C would count as votes for 

the target searching circle given by solid circle 2.  

 
 
Fig. 5.  Example of searching feature points located on the circular ring 

around the target circle. 

To accelerate the step of searching for all the edge points 

located on the circular rings, we implement the algorithm with 

the dynamic programming method. Initially, the distance 

between every pixel point on the image and the image center 

point would be calculated; all those distances would be stored 

as a look-up table, and each distance would refer to a list of 

relative locations which have that certain distance from the 

center location of the image. Thus, when searching for the 

edge points on the circle, the neighboring distances would 

refer to a set of relative locations in the look-up table, and all 

edge points located on the corresponding locations in the 

image would be counted.  Because the look-up table was 

generated just after executing the proposed approach for a 

single image, and since the size of all input images is 400 by 

300, there is no need to calculate distances while performing 

the Hough transform for each image. The computational 

burden was consequently alleviated significantly. 

The step-length is set to be between 1 and 5. The 

processing time is examined by processing the 500 iris images 

from the UBIRIS.v2 database using a computer station with 

2.4GHz CPU (Intel® Q6600) and with 2GB of RAM. The 

results are as shown in Figure 6, where the step-length for C1 

through C5 are 1 though 5, respectively. In this study, a 

step-length of 5 is used to optimize the processing time of the 

Hough circular transform, while preserving the accuracy of 

the results. This makes it more than 23.2 times faster than the 

approach using a step-length of 1.  
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Fig. 6.  Average processing time for circular Hough transform. 

Without using the optimized step-length method, the 

average processing time per image is 2.09 secs for circular 

Hough transform and 2.68 for the proposed approach, and the 

segmentation error rate of such an approach is determined to 

be 0.0200215. 

The segmentation error rate is obtained using an 

Exclusive-OR function in terms of disagreeing pixels between 

the correct iris considered by the NICE.I committee and the 

results generated by the proposed approach (executable).  

For each input iris image
i

I , 
i

O is the output segmented 

binary iris image generated by the participant, 
i

C is the 

classified (standard) binary iris image provided by NICE.I 

Committee. The error rate as used in this study was computed 

using the following equation: 
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The proposed method decreases the execution time of the 

proposed approach significantly and does not bring notable 

increase in the segmentation error of the proposed approach. 

With the proposed modified circular Hough transform, the 

average execution time for the proposed approach is 

decreased to 0.39 sec and the error rate is 0.0200823. 

Compared with not using the optimized step-length method, 

the execution time for the proposed approach is significantly 

decreased by 6.9 times, and the accuracy is only degraded by 

0.303%, which is considered negligible.  
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C. Detecting the boundary of the eyelids 

For unconstrained iris recognition, because the subject is 

not required to comply with a demanding level of cooperation, 

it is observed that eyelid occultation often occurs. Thus, the 

third step focused on detecting the upper and lower eyelids. A 

Hough line transform is used recursively to extract edges of 

eyelids. Illustrative results are shown in Figure 7. 

        

  
Fig. 7.  Results of eyelid boundary detection using two subjects. 

IV. CIRCLE CORRECTION AND NON-CIRCULAR BOUNDARY 

DETECTION 

Although the outer iris boundary was assumed to be 

circular for most of the conventional iris segmentation 

methods, it has been pointed out that human iris boundaries 

are usually non-circular. The errors caused by defining the 

boundary as circles are especially crucial for less constrained 

iris recognition, because a considerable portion of iris images 

with off-angle effects will usually be generated under the 

non-cooperative iris acquisition scenarios. Two examples of 

off-angle iris images are given in Figure 8. The white circles 

shown in two images of Figure 8 indicate the results of circular 

Hough transform for outer iris boundary detection. As can be 

seen, traditional circular iris outer boundary detection would 

be inadequate to process the iris images with non-circular 

boundary effects. Also the circular Hough transform can 

generate inaccurate results due to noise. Thus, a strategy was 

developed to define the non-circle boundary and correct the 

inaccurate result obtained from the circular Hough transform. 

 

  
Fig. 8.  Examples of non-circular iris boundaries and error results of original 

outer iris boundary detection, shown as the white circles. 

     Figure 9(a) is one example of outer boundary detection 

error caused by a non-circular iris boundary. As can be seen, 

the outer boundary cannot be correctly detected. The 

proposed verification and correction method is based on two 

steps; the first is the circle center verification, the second is 

multiple circle (or arc) searching, and multiple arcs and lines 

connection.  

There is a need to find the correct center of the iris to verify 

the original circle center found from the first circle Hough 

transform. Shown in Figure 9(b) is a square grid with an 

adaptive sized inside the outer iris boundary. 

        
(a) Results of first Hough transform (b) Grid region overlay    

      
(c) Original and detected center    (d)Selected target region 

      
(e) Result (black circle) of target area (f) Final result 

Fig. 9.  Defining the noncircular iris boundary 

     The center of the grid which yields the lowest average gray 

intensity would be selected as the correct outer iris boundary 

center. If the difference between the original center and the 

newly detected one is greater than 4/outerR , the original outer 

boundary would be assumed to be inaccurate. Then a target 

area would be selected for conducting Hough circular 

transform again. Empirically, the desired iris boundary is 

usually inside the Hough circle. This is because the edge 

points outside the iris usually vote for a larger circle and for an 

off-angle iris which is smaller than its actual size. Thus, the 

target area whose center is at ),( tt yx as shown in Figure 10 

was expected to be the region between the real iris 

center ),( rr yx and the arc on the opposite side of the original 

circle.    In reference to Figure 10, the center of the target 

rectangle is ),( tt yx , and the original circle center is ),( cc yx , 

where:  

ct yy =  and )( crct xxxx −−=   or   rct xxx −= 2    (5) 

 
Fig. 10.  Relations between the real iris center, original circle center and 

center for target rectangle. 

     Another Hough transform will be conducted to the edge 

points inside the target rectangle. The black circle shown 



 

 

 

 

earlier in Figure 9(e) is one outcome example of this step.  

     The intersection of two circles could be used to describe 

the noncircular iris. The upper and lower eyelid lines would 

also be used to remove unexpected eyelids and eyelashes. 

Figure 9 (f) illustrates the final result of the detected boundary 

consisting of multiple arcs and lines, and would be much more 

accurate for describing non-circular iris boundaries. Other 

examples are shown in Figure 11. 

 

     
(a) Circle correction: case 1                (b) Delineating iris boundary case 1 

     
(c) Delineating boundary case 2   (d) Delineating boundary case 3 

Fig. 11.  Results of circle verification and correction strategy for delineating 

non-circular iris boundaries. 

Inaccuracies introduced by the circular Hough transform 

are resolved with the proposed method. As shown in Figure 11, 

the larger circle in (a) is an inaccurate circular Hough 

transform result, and the smaller circle is the newly detected 

version through the proposed method. Figure 11(b)-(d) are 

examples with off-angle iris images with different iris sizes 

and different eye gazes. The left circles shown in Figure 11 

(b)-(c) and the right circle shown in Figure 11(d) are the 

original Hough transform results, which are considerably off 

from the expected results. But as can be seen, the intersections 

are much more accurate. 

V. PUPIL AND EYELASH DETECTION 

Because the eye images from the UBIRIS.v2 dataset were 

captured under visible wavelengths, one of the major 

differences with those images taken under NIR illumination is 

that the intensity contrast of iris and pupil can be very low, 

especially for heavily pigmented (dark) irises, such as in 

Figure 12(a). Thus, pupil removal is left to be performed 

during this step; with only iris and pupil appearing, the 

contrast enhancement method would yield better 

performance. 

As shown in Figure 12, image (a) is the outcome from the 

previous step (outer iris and upper and lower eyelid boundary 

delineation). We used an empirical intensity threshold of 150 

to detect the reflections, and a 3 by 3 mask is used to detect 

and remove all the pixels within the iris and pupil boundaries 

that exceed this set threshold. Then, histogram equalization 

was applied to get the high-contrast image, as shown in image 

(b). Sobel edge detection was used to get the edge map (c), 

and then the circular Hough transform determined the pupil 

boundary. Caution is taken such that the pupil center should be 

located within the small white circle shown in Figure 12(b) 

with a radius of 10/outerR , and its center can be considered as 

the outer iris center. The radius of the pupil boundary is set to 

be from 20/3 outerR  as a lower limit, to 20/11 outerR as the 

upper limit. Those predefined parameters are based on the 

experimental analysis on the target database. Figure 12(d) 

shows the result for this example.  

 

   
(a) Iris image with pupil     (b) Contrast enhancement 

  
(c) Result of edge detection     (d) Pupil removal result 

Fig. 12.  Process for pupil detection and removal. 

To detect the eyelashes, we set an adaptive empirical 

threshold to be AI∗45.0 , where AI  is the obtained average 

gray intensity of the iris. The eyelash removal would be 

performed within the top 3/outerR part of the iris. After the 

pupil and eyelash removal, the result of the segmentation 

approach would be generated.  

VI. RESULT AND EVALUATION 

The error rate is estimated at 2.0% using 500 images from 

the UBIRIS.v2 database, and was estimated at 2.9% by 

NICE.I committee with a much larger portion of the database 

UBIRIS.v2. The result ranked us in the top 6 among 97 

participants/teams worldwide (from 34 countries). [22]  

Through evaluation, the worst results were caused by 

sclera detection errors, as shown in Figure 13(a). For this 

image, the sclera area was found to be the bright part of the 

upper eyelid, with the target rectangle falsely set to be out of 

iris region. Figure 13(b) shows that, with an incorrect 

searching target area, unpredictable results would be obtained 

from the circular Hough transform. The black circle on the 

top-right of the image is the outcome of iris boundary 

detection conducted in the non-iris region.  

As for the example in Figure 13(c), because the white wall 

behind the subject is wrongly detected to be sclera, the target 

rectangle is set to be too large for the actual iris region to be 

detected. Therefore, the upper limit radius of the target circle 

was set to be too large as well. (recall that the upper limit of 

the radius is set to be half of the rectangle length in the 

proposed approach). As shown in Figure 13(d), a very large 



 

 

 

 

circle can get more votes than the actual boundary circle, 

resulting in incorrect segmentation.  

 

  
(a) Eye area selection (b) iris boundary detection   

  
(c) Eye area selection (d) iris boundary detection 

Fig. 13.  Examples yielding faulty or undesired results. 

VII. CONCLUSION 

This study proposed a noise-resistant and fast approach for 

iris segmentation based non-constrained iris recognition. It 

produces high performance in the eye images from the 

UBIRIS.v2 database which contains very realistic noise 

effects. This accuracy is augmented in merit because the 

processing speed of the proposed approach is near-real-time, 

requiring only 0.39sec per image to perform all the required 

steps for final iris segmentation. The proposed approach relies 

on an effective search for the sclera area of the image. A 

threshold of saturation value, the HSI color model, is obtained 

by calculating the biggest group derivative of the original 

color image histogram. A binary map was then generated to 

indicate the sclera area. The proposed method determines a 

more refined target area in order to accelerate the circle 

searching for the outer iris boundary. The outer boundary of 

the iris was detected using a fast and accurate modified 

circular Hough transform. The linear Hough transform is then 

used recursively to extract edges of eyelids.  

A new method of verification and correction for the outer 

iris boundary was also proposed. This method is based on the 

iris center correction, and a regional circular Hough transform. 

Multiple arcs and lines can thus be used to describe an iris 

boundary, and the non-circular iris boundary would be 

described correctly. The pupil and eyelashes are detected in 

the final step using the Sobel edge operator on the 

histogram-equalized iris image. 
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