
Information Sciences 167 (2004) 41–61

www.elsevier.com/locate/ins
A web-based spatial data access system
using semantic R-trees

Shu-Ching Chen a,*, Xinran Wang b,1, Naphtali Rishe a,
Mark Allen Weiss a

a School of Computer Science, Florida International University, Miami, FL 33199, USA
b Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

Received 27 September 2002; received in revised form 8 May 2003; accepted 4 July 2003
Abstract

With the increasing use of geographical data in real-world applications, Geographic

Information Systems (GISs) have recently emerged as a fruitful area for research. In

order to provide information to a multitude of users, the World Wide Web (WWW)

techniques have been integrated into GISs. A high-performance web-based GIS, called

TerraFly, has been developed in order to provide web-based GIS accesses to the general

public. The design of TerraFly considers two major aspects: (1) the system architecture

including client, database server, proxy server and information server; and (2) the se-

mantic R-tree data structure and semantic queries. The system architecture utilizes the

existing resources to achieve maximum performance by using the ‘‘Internally Distrib-

uted Multithreading (IDMT)’’ technique. The spatial access method, semantic R-trees,
is used to search for an object, based on both spatial and semantic information. System

performance results are presented and analyzed. Reducing network traffic to achieve

faster response to users is also discussed.
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1. Introduction

Recently, the use of Geographic Information System (GIS) with spatial data

has become more and more popular. There exist a number of GIS applications
such as ArcInfo [23], Imagine [19], and ENVI [21] to manipulate and view

different spatial data. All applications make use of the geographical data and

the multimedia tools for animation, simulation, and visualization purposes.

GIS applications have been used in a wide-range of domains such as archi-

tecture, telecommunication, urban planning, and entertainment industries.

With the exponential growth of the World Wide Web (WWW), more do-

mains are open to the GIS applications. The Internet can spread information

to a multitude of users, making GIS available to a wider range of public users.
The corresponding change of domain users from GIS experts to general-public

users requires the consideration of some new features and design issues for

GIS. For instance, we have to refine the system architecture for Internet usage,

taking into account factors such as differing platforms across the Internet,

network speed, and so on. A major consideration is to make a GIS accessible

to the general public users who have little knowledge of the spatial data, and to

allow them to interact with the system to manipulate and retrieve information

they need. In order to address these issues, we have developed a user-friendly
web-based multimedia system called TerraFly [9]. The TerraFly system lets the

remote users on various platforms interact with the system, exploit spatial data

of their interest, and issue queries to retrieve information they need without the

need for extensive training with the system, thus avoiding a painful experience.

Numerous GIS applications, both academic and commercial, have been

developed [17–22,24,25]. The existing research is extensive and advanced, and

focuses on the following areas:

(1) database systems to efficiently store and retrieve heterogeneous spatial

data;

(2) spatial data analysis capabilities;

(3) spatial data indexing methods.

Even though there have been great achievements over the past decades on

these areas, a web-based GIS application still suffers from the following

drawbacks:

(1) Inability of databases to efficiently handle large and different spatial data

sets.

(2) Tendency for complicated WWW technologies and distributed computing

to add complexity to the system.

(3) Significant degradation of system performance for many GIS applications

that are misconfigured.
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The dramatically increased availability and usage of the spatial data require

the use of advanced methodologies and technologies. In this paper, the

methodologies and techniques used to improve performance for a web-based

GIS application are discussed. Overall performance of a web-based GIS de-
pends on the design of the system architecture. For a distributed GIS system, a

desired design is to best utilize the existing resources to obtain maximum

performance. To achieve this goal, a model called Internally Distributed Mul-

tithreading Model (IDMT) has been designed for the TerraFly system. In this

model, the distribution of threads is based on the different functionality each

thread may have, enabling the system to better utilize the server CPU and other

resources.

In addition, it is necessary to have a good spatial data structure that allows
efficient accesses of the spatial data in a GIS system. The R-trees or its variants
are a widely-used data structure in GIS systems [1–5,13–15]. The R-tree is based
on a heuristic optimization to minimize the area of each enclosing rectangle in

the inner nodes, and is one of the most efficient methods that support range

queries. However, in a GIS system, the users will be more interested in issuing

semantic queries such as ‘‘Find the nearest airport.’’ The current spatial data

structures such as an R-tree cannot efficiently support this type of semantic

query. To provide this functionality, in this paper, a data structure called the
Semantic R-tree that is extended from the R-tree is proposed for the TerraFly

system. Our experimental results show that the proposed Semantic R-tree can

provide significant savings in response time and outperform the well-known R-
trees in answering semantic queries that the users often request.

This paper is organized as follows. In Section 2, our proposed system ar-

chitecture for the TerraFly system is presented. The information server system

structure is discussed in Section 3, and the server computation algorithm is

given in Section 4. Performance analysis is presented in Section 5. Section 6
concludes the paper.
2. System architecture

The TerraFly system design is based on a three-tier client/server architecture

as shown in Fig. 1. The second tier handles all application logic: namely, it

retrieves data requested by the clients and answers queries for the clients. Java

1.1 is used in developing the client side to generate byte codes running across

different platforms. Each client is a data-less graphical user interface (GUI).

The database server stores and retrieves multidimensional spatial data such as

image data as well as alphanumeric data. Together, the client/server architec-
ture forms a complete computing system with a distinct division of responsi-

bility.
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The Java clients use a connection wrapper to synchronize data transmission.

The clients send requests to either a web server or an information server, and

receive data (image data and textual data) from different servers. When the web

server receives a request from a client, the proxy server will parse the request,

retrieve the image and textual data related to the fly-over request from the

database server, and send the data back to the client. The information server
will search the semantic R-tree spatial data structure to retrieve information

related to range queries and nearest neighbor queries [14] from the database

server, and send the answers to the client.

2.1. Java client

The client is written using Java 1.1 to achieve platform independence. A

snapshot of the client GUI is shown in Fig. 2. Along the top center, there is a
choice box to select the desired image format source. For example, selecting

Landsat will make the client show the Landsat images. Next to this data source

selection are three drop down choice boxes for selecting which bands of

Landsat to use to create a color composite image. Depending on the user’s

selection, different bands will be retrieved from the server. A user can also click

on the ‘‘Feature Highlight’’ button to select features to highlight. The main

features of the client include:

4(1) Capability to fly over different data sets such as the Landsat TM data and

Digital Orthophoto Quad (DOQ) at different directions by positioning the

mouse within the image. The Landsat data, currently stored in the data-

base, covers an area of 57 miles · 50 miles and corresponds to the Florida

State map region. This data has a resolution of 30 m.

4(2) Capability to fly over the Digital Orthophoto Quad (DOQ) merely by po-

sitioning the mouse within the image. The aerial photography data cur-



Fig. 2. A TerraFly client.
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rently stored in the database has a resolution of 1 m and covers an area of

1400 square miles.

4(3) Customized three-band (sensor) combination: the users can select some

predefined and useful three-sensor combinations to view false color im-
ages from a drop down menu. Each time a new combination is selected,

a different set of images/bands is retrieved from the database and the se-

lected false color image is computed and displayed within the window.

4(4) Advanced three-band color composite: this application allows a scientific

user to enter any three-band combinations (RGB) that the user is inter-

ested in studying or analyzing. After the combination is entered and the

query button is pressed, the data is retrieved from the database, and the

image is computed and displayed. For the Landsat, the users are allowed
to select from a list of seven possible sensors. However, for aerial photog-

raphy data, there are only three possible sensors.

4(5) A Help menu with instructions on how to use the system.

4(6) Capability to display the latitude and longitude of the center point of an

image.

4(7) RGB intensity control: this option allows the users to increase or reduce

the intensity of any of the bands that represent the colors (red, green, or

blue).
4(8) Capability to issue semantic range queries and nearest neighbor queries.

4(9) Capability to obtain feature extraction of an image.

(10) Capability to display online information (latitude, longitude, regions, etc.)

of the images that users are viewing.
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2.2. Database server

The database server contains a multimedia spatial database system built by

HPDRC (High-Performance Database Research Center) [12] using the Se-
mantic Object-Oriented Database Management System (Sem-ODB) [10,11]

based on the Semantic Binary Object-Oriented Model [8]. In the Semantic

Binary Object-Oriented Model, information is represented by logical associa-

tions (relations) between pairs of objects and by the classification of objects

into categories. Unlike the traditional database systems that store only al-

phanumeric data, the Sem-ODB has not only alphanumeric data but also the

data that cover multidimensional spaces such as image data (maps). Currently,

the database contains semantic/textual, spatial/remote sensed (Landsat) and
digital data including Digital Orthophoto Quad (DOQ) Arial photograph data.

The Sem-ODB provides an efficient data storage and manipulation method-

ology. The database engine by itself is implemented in approximately 75,000

lines of code.

2.3. Proxy server

A proxy server is used to relay data requested by the clients to the database

server, and to transmit the data retrieved by Sem-ODB back to the clients. This

proxy needs to use two different protocols, one to interface with the clients, and

another to interface with the Sem-ODB server. We use Common Gateway

Interface (CGI) as the first protocol and Sem-ODB’s APIs as the second

protocol. Upon receiving a request from a client, the proxy server must decode

the request and retrieve data from the database server. The proxy process

accomplishes this by using the Sem-ODB APIs. What the proxy server needs to
do is to find the location of the database server [16]. After the database con-

nection is established, all queries can be performed using the APIs provided by

the Sem-ODB.

2.4. Information server

The TerraFly system as a whole provides an integrated view of the spatial
and associated data along with the capability to display and manipulate spatial

images. Also, being a GIS system, it provides the capabilities to issue range

queries and nearest neighbor queries to satisfy particular interests of the sci-

entists and public users. Range queries are used to find spatial objects in a

specific area around a location specified by the user. A sample query is ‘‘Find

all rental car companies around Miami International Airport within six miles.’’

Nearest neighbor queries are used to find the nearest spatial object to the object

that the user specifies, for instance, ‘‘Find the car rental company nearest to
Miami International Airport.’’ The information server is designed for an-



S.-C. Chen et al. / Information Sciences 167 (2004) 41–61 47
swering these two types of queries and it is a multithreaded application. It

receives requests from the clients through a Unix socket. The configuration of

the information server based on the IDMT model is shown in Fig. 4, which is

discussed in detail in Section 3.
3. Information server structure

The server is designed in a multithreaded environment (using POSIX

threads [6]). The basic concepts and the research of multithreaded program-

ming have existed for several decades, but the emergence of this concept in

industry as an accepted standardized programming technique is relatively re-

cent. The greatest push is from the emergence of shared memory symmetric
multiprocessors (SMP) [6]. Multithreading provides exactly the right pro-

gramming paradigm to obtain greater performance by making maximal use of

these machines. Using threads has several significant advances over using

processes. Each process must maintain a complete process structure, including

a full virtual memory space and kernel state. It takes time and memory to

create a new process and maintain it. A kernel call is needed to create a process

and system’s context switching mechanism may be involved. Interprocess

communication and synchronization of shared data may involve kernel calls.
Alternatively, creating threads is much easier compared to creating a process.

A thread can be created without replicating an entire process. The threads,

their stacks, the code they run, the global data they share and the thread

structures are in the user space, rather than in the kernel. Thread synchroni-

zation does not involve system calls trapped into the kernel.

In the TerraFly Information Server, we use POSIX threads to enhance

performance. The server is based on the IDMT model that will be described

next.

3.1. Internally distributed multithreading model

In a general model, the server is the main application logic for the whole

GIS system, and this server is further divided into three sub-logic components:
(1) communication module, (2) computation module, and (3) data structure (as

shown in Fig. 3). The communication module is used to communicate with the

clients and to perform certain first phrase computations when it receives re-

quests from the clients. Major computation work is processed in the compu-

tation module that searches the data structure to find the results and to retrieve

the information that the clients need.

In this general model, when a client sends a request to the server, the main

thread will generate a thread to handle this request. That is, this worker thread
takes over the communication channel, receives the request query, performs
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the computation (searches the data structure), and then transmits the results

back to the clients. It is evident that the use of threads improves the overall

performance, but the overhead of using threads is still quite high.

In order to improve system performance, an IDMT model is proposed. Fig.
4 shows the proposed server structure. The backbone of this structure is a

thread pool [7] containing a number of threads that do computation in the
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Fig. 4. The internally distributed multithreading (IDMT) model design.
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back end. We call these working threads the back-end threads that are dedi-

cated to communicate with the clients. The experimental results will show that

this structure not only achieves better performance than the general model, but

also has a better scalability property.

3.2. Analysis of internally distributed multithreading

As mentioned earlier, the front-end communication threads are dedicated to

communicating with the clients and performing first-phrase computations,

such as converting the data types and getting query results. All requests from

the client-side are sent to the front-end threads at the server. When these

threads receive the requests, they analyze the requests based on the agreed-to
protocols between the server and the client, and post the analyzed requests to

the job queue, where the back-end threads take over the job.

Normally, there are two types of requests from a client: a single request and

several continuous requests. For a single request, a client sends the request and

gets the results from the server. On the other hand, for the continuous requests,

a client continuously sends the requests (for instance, a video stream) to the

server. Sometimes, the clients send a large number of requests in a short period

of time. In the general model, one thread dedicated for each client is needed to
handle the communication and computation. If there are many requests from

one client, the thread dedicated to the client will have a heavy load, and thus

performance degenerates. However, in the proposed IDMT model, the server is

capable of dealing with these kinds of requests efficiently. When a server gets

the requests, the front-end threads distribute these jobs to the back-end threads

that do the computation concurrently. This distribution improves the server in

the following aspects:

(1) Throughput: If a client sends multiple requests, the response time in the

IDMT model is much less because the server distributes the requests to

the back-end threads that run concurrently to solve the requests from

the same client. The best case is that these threads compute almost simul-

taneously to get the results. Heavy load is distributed to several threads,

making the system more robust and achieving a better response time.

(2) Internal load balancing: The back-end threads in the server thread pool per-

form the major computations. When the server detects a heavy load, such
as too many requests from the clients, it determines that there are not en-

ough back-end threads to handle the situation. The server can then gener-

ate some extra back-end threads on demand to relieve the heavy load. This

dynamic thread generation can balance the server performance with a min-

imal cost of resources needed.

(3) Scalability: When we separate a big process into several upgradeable

components, we actually gain a benefit from scalability. Each component
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is independent from the other components and has its own functionality. If

one component is upgraded, there is little impact on the other components.

In our design, the communication module is separated from other modules.

If another communication method is used, there is no effect on the server
computation at all. The computation module consists of a number of

back-end threads, which can actually be distributed to different powerful

workstations. Thus, updating will have the minimal impact on the whole

system.
4. Semantic R-trees for semantic queries

R-trees are an extension of B-trees for multidimensional objects. The details

of the R-tree are discussed in [3]. An object in an R-tree is represented by its

minimum bounding rectangle (MBR). The nodes are allowed to overlap and

thus an R-tree can guarantee at least 50% space utilization and remain bal-

anced. For completeness and clarity, the R-tree data structure is briefly de-

scribed here.
Let M be the maximum number of entries of one node and m ¼ dM=2e be a

parameter specifying the minimum number of entries in a node. An R-tree
structure specifies the following properties:

(1) All leaf nodes appear at the same level.

(2) Each entry in a leaf node is a 2-tuple of the form (MBR, oid) such that

MBR spatially contains the object pointed to by oid.

(3) Each entry in a non-leaf node is a 2-tuple of the form (MBR, ptr) such that
MBR spatially contains the MBR in the child node pointed to by ptr.

(4) Parameters m and M indicate that each node in the tree contains between m
and M entries, with the exception of the root, which has at least two entries

unless it is a leaf node.

There are various R-tree variants, such as Rþ-trees [15], R�-trees [1], packed

R-trees [4,13]. Rþ-trees avoid overlapping at the expense of space, which in-

directly increases the height of the tree. The Rþ-tree is motivated by a desire to
avoid overlapping among the bounding rectangles. Each object is associated

with all the bounding rectangles that it intersects. All bounding rectangles in

the tree are non-overlapping. The result is that there may be several paths

starting at the root to the same object. Rþ-trees exhibit good searching per-

formance, especially for point queries, at the expense of some extra space. An

R�-tree incorporates a combined optimization of area, margin and overlap of

each enclosing rectangle in the directory. An R�-tree also uses a different split

algorithm. All entries are first sorted by the lower values, and then sorted by
the upper values of their rectangles. After finding a good split, the R�-tree
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forces re-insertions to reorganize the tree structure. Beckmann et al. [1] found

that this approach improves performance up to 20–50%. The Packed R-tree
was proposed to achieve better space usage, where the R-tree is built bottom-

up from a sorted collection of rectangles. In [4], the authors proposed the
Hilbert value, and the rectangles are sorted by the Hilbert curve to achieve

better ordering of the rectangles and eventually better packing. The perfor-

mance of the Packed R-tree is up to 36% better than the best known R-tree
variant.

An R-tree is based on heuristic optimization to minimize the area of each

enclosing rectangle in the inner nodes. Most of the research on the R-tree fo-

cuses on minimizing overlapping MBR, and optimizing storage utilization.

However, for a GIS system, improvements to the R-tree are needed to allow the
R-tree to efficiently answer all kinds of nearest neighbor queries and range

queries, of the types that are typical on a GIS system. In the next section, we

show how to improve the R-tree (or other spatial data structure) for a GIS

system, especially a GIS with static data.
4.1. Semantic query

Semantic queries are the queries to find the specified objects according to
their relations to the base object. An example semantic query is ‘‘Find the

rental car company nearest to Miami International Airport (MIA).’’ In this

query, the base object is ‘‘MIA,’’ the specified object (i.e., the semantic object)

is ‘‘the rental car company’’ and the relationship is ‘‘nearest to.’’ On the other

hand, the query such as ‘‘Find an object nearest to MIA,’’ where no attribute is

specified for this object, belongs to a general query. A semantic object is de-

fined as an object with some information that a user asks for. In the above

example, a user wants to find a rental car company. This ‘‘rental car company’’
is one type of semantic information a user may specify. If a spatial data

structure can support this type of information, query performance would be

enhanced greatly.

The difference between the semantic queries and the general queries is subtle

but significant. A general query formula is shown as follows.
Q ¼ GK
i¼1ðOiRiOBiÞ ð1Þ
where

• G is a set operator that is either Union (
S
) or Intersect (

T
);

• K is the number of union and/or intersect operations;

• Oi is a set of objects to be found;

• OBi is a base object; and
• Ri is a relation.
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For each GIS system, there are a number of semantic subsets. Let Sj be one
semantic subset in a GIS semantic set S ðSj � SÞ and H be the number of se-

mantic subsets in S, where S ¼ [H
j¼1ðSjÞ. A semantic object is Os ¼ OðsÞ, where

s is the specified information ðs 2 SjÞ. A semantic query is of the following
form:
Qs ¼ Gk
i¼1ðOiðsÞRiOBiÞ ð2Þ
A user provides a semantic query Qs to request the information that he/she

wants. For each semantic subset Sj, there are a limited (fixed) number of ele-

ments. For example, in a map GIS system, S ¼ fS1; S2; S3g, where

• S1 ¼ fDade county;Broward County;Orange county; . . .g by county;

• S2 ¼ friver; bridge; route; . . .g by type; and

• S3 ¼ fschool; building; shopping center; . . .g by category.

The semantic subset information can be used to construct a spatial data

structure to answer the semantic queries more efficiently. For example, if a user

specifies that he wants to find a rental car company nearest to him, the server

will search the data structure not only by the spatial specifications, but also by
this semantic information to find a car rental company. In order to optimize (at

least partially) a data structure based on the semantic subsets, these subsets

need to be identified first. Actually, this is not a problem at all in reality.

Finding the semantic subsets is a practical issue, which can be accomplished by

searching the data sets to identify different properties and to categorize these

properties into different subsets. Some unnecessary subsets can be further

pruned according to the features of each GIS system so that only a few subsets

need to be taken into consideration.

4.2. Semantic R-trees

To better answer the semantic queries, a spatial data structure with built-in

semantic information, called a Semantic R-tree is proposed. Without such

built-in semantic information, a spatial data structure has difficulty answering
a query such as ‘‘Find all schools within 20 miles of Florida International

University’’ efficiently. Searching the proposed semantic R-tree will find all the

objects having the specified relation (i.e., ‘‘within 20 miles’’ in this example)

with the base object (i.e., ‘‘Florida International University’’), and then further

processing is required to get the desired objects (i.e., the ‘‘schools’’) for the

query. With the built-in semantic information, some sub-trees containing un-

related information can be pruned, which makes semantic searching quite ef-

ficient.
In our design, the ‘‘category’’ semantic subset is used to build a semantic R-

tree and the algorithm used is based on the R-tree’s packing technique. For
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each node, its semantic information is categorized. Then, in each category, the

MBRs are sorted on the x or y coordinates of one of the corners of the rect-

angles. Sorting the MBRs is similar to the method proposed by Roussopoulos

and Leifker [13]. In each category, the sorted list of rectangles is scanned and
assigned to one R-tree leaf node until this leaf node is full or there is no data left

for this category. The algorithm is shown in Table 1. Let M be the maximum

number of entries of one node.

Because the semantic information is packed into an R-tree, there might be

some underflow nodes (less than M=2 children). However, since only a fixed

number of elements exist in one semantic subset and usually this number is

small, there might be only a few underflow nodes. For instance, there are 37

elements in the ‘‘category’’ semantic subset including ‘‘park’’, ‘‘church’’,
‘‘river’’, and so on. At the leaf node level, each category probably will have one

underflow node. If (fanout) M is 40 and there are 500 parks, then totally there

are 13 leaf nodes, 12 of which are full. The last one (i.e., the 13th leaf node) has

20 pointers to the park objects. Since each category has at most one underflow

node, and the number of categories is only a small number, the underflow

should not be a problem in a semantic R-tree. Also, a semantic R-tree is packed
in the first place, so it can have a better space utilization than a non-packed R-
tree. Therefore, better performance for the semantic query can be achieved. As
for a general query, since a semantic R-tree is not generated by fully optimizing
Table 1

Pseudo-code of the Semantic-packing algorithm

Semantic-packing algorithm

Step 1: Select one semantic subset that is best for one GIS system.

Step 2: Categorize the data according to the selected semantic subset.

Step 3: For each category {

l ¼ 0;

Step 4: Sort the data in this category based on the x or y coordinate.

Step 5: /* create the child node at level l (leaf nodes are at level 0) */

While (there are data in the sorted list) {

If (the remaining P data in the same category ¼ ¼ 1) Stop;

Generate a new R-tree node.

If (P >¼ M)

Assign the next M data into this node.

Else

Assign the next P data into this node.

}

Step 6: /* create the parent node at level (lþ 1) */

While (there are nodes at level l)
Sort the nodes at level l based on their generation times.

l ¼ lþ 1;

Go to Step 5.

}
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the spatial factors, there may be some degree of degeneration of the perfor-

mance when answering a general query. However, this is not always the case,

depending on the features of the static data. Suppose a map GIS has several

regions with the same semantic data (e.g., ‘‘car dealers’’ in Fig. 5). Then, a
semantic R-tree will have a tree structure that is more condensed than an R-
tree. In this case, a semantic R-tree performs better than an R-tree even in

answering general queries.

We state two observations. Experimental results that justify these observa-

tions are discussed in Section 5.

• Observation 1: Even if a semantic R-tree is partially optimized by semantic

information, there are still many instances where a semantic R-tree outper-
forms an R-tree in answering a general query. If in some cases, the perfor-

mance of a semantic R-tree degenerates in answering a general query, the

degeneration is minimal.

• Observation 2: A semantic R-tree data structure has better performance in

answering semantic queries.
4.3. Semantic range query and nearest neighbor query examples

As mentioned in Section 2.1, the TerraFly Java client supports semantic

range queries and nearest neighbor queries. A user can click on the ‘‘Range

Query’’ button to issue a range query based on his/her interest. For example, in

Fig. 6, the user wants to find all ‘‘parks’’ around the location specified as a
(longitude, latitude) pair ()79.558, 25,8802) within a 15 mile range. In this

example, the user is searching the category ‘‘park’’ around the specified loca-

tion. The default category, ‘‘ALL,’’ finds everything around the user’s location.

After the user clicks the ‘‘Search’’ button, the information server gets the cli-

ent’s request and searches the R-tree. The server will find the result(s) and

transmit information back to this client. After the client obtains the informa-



Fig. 6. Range query searching and its results listed in Results List Box.
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tion from the information server, it displays the result(s) in the ‘‘Result’’ list

box. If one result is double-clicked (e.g., ‘‘Black Point Park’’), this particular
region will be moved and displayed at the center of the display window in

TerraFly.

The operation of nearest neighbor searching is similar to the range query

searching. That is, the user can click ‘‘NN search’’ to find a nearest neighbor as

shown in Fig. 7.
5. Performance analysis

5.1. Experimental results for internally distributed multithreading model

A number of experiments were performed to demonstrate the effectiveness

of the IDMT model. The procedure used was that the client sends a number of
continuous requests to the server, and the response time of the server was

measured. To test the relative performance of the IDMT, a server with the

IDMT model and a server with the original thread pool model [7] were com-

pared. A thread pool model is a very common and very important design

technique to improve the performance. In a thread pool model, the main

thread (boss) creates a fixed number of worker threads when the system boots

up. The number is specified by the designer in order to achieve the best overall

performance. All worker threads survive for the duration of the program as the
boss does. When the main program receives a new request, it places the request



Fig. 7. Nearest neighbor searching.
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in a queue. Workers remove the requests from this queue and process them.

When a worker completes a request, it returns and gets another request from

the queue. If this queue is empty (no jobs for this program), all workers wait
for the new coming requests. The results are shown in Figs. 8 and 9.

In Fig. 8, the X -axis is the number of continuous requests sent and the Y -
axis is the relative response time: the response time of the server with the

original thread pool model divided by the response time of the server with the

IDMT model, where the critical value is 1.0. If the test value (the ratio) is

greater than 1.0, it means that the server with the original thread pool model

uses more time to find the results than does the server with the IDMT model.

On the other hand, if the value is less than 1.0, it means that the server with the
original thread pool model outperforms the server with the IDMT model. In

the experiment, a range of requests (from 1000 to 30,000) were sent by a single

client to the server. From Fig. 8, it is clear that the response time of the server
Response Time Ratio
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Fig. 8. Response time ratio of the server with the original thread pool model and the server with

the IDMT model, in the case of that one client sends continuous requests.
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Fig. 9. Relative response time in the case of multiple clients.
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with the original thread pool model is much over 140% of the response time of

the server with the IDMT model, which means that the response time of the

server with the IDMT model achieves at least 40% better performance than

that of the server with the original thread pool model.

In Fig. 9, the X -axis is the number of multiple clients and the Y -axis is the
ratio of the response time of the server with the IDMT model divided by the
response time of the server with the original thread pool model handling

multiple clients. Similarly, if the ratio is less than 1.0, then the server with the

IDMT model spends less time answering the requests from multiple clients,

which indicates better performance. In this experiment, to avoid the scenarios

that the server finishes the request from one client very soon, each client sent a

huge job to the server. The server processed all requests from all clients to-

gether when they sent their requests. In Fig. 9, the result is very similar to the

result shown in Fig. 8. The response time of the server with the IDMT model is
nearly 57% of that of the server with the original thread pool model. That is,

the performance of the server with the IDMT model is more than 40% better

than that of the server with the original thread pool model.
5.2. Experimental results for semantic R-trees

The semantic R-tree was implemented and several experiments were con-

ducted to demonstrate the capability and usefulness of the proposed semantic

approach when it is applied to the GIS semantic queries. The tested data
represented a Florida map, consisting of 32,108 segments. The page size for

data was chosen to be 1024 bytes. Also, the real data from the GNIS (Geo-

graphic Names Information System) [26] was used in this study. This data has

been compiled by the United States Geological Survey in conjunction with the

US Board on Geographic Names (BGN) and contains information about

nearly 2 million physical and cultural geographic features in the United States,

its territories as well as Antarctica. GNIS data primarily consists of names and

types of places along with associated coordinate point information. Each
feature described in the database is identified by its federally recognized name,
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and a feature’s location is referenced by the state, county and geographic co-

ordinates.

We compared a semantic R-tree with an R-tree that used the quadratic split

algorithm. The quadratic split algorithm was chosen because there is no es-
sential performance gain resulting from the linear split algorithm [3]. The

performance metric used is the response times of the general queries and se-

mantic queries. In the general queries, the degree of degeneration, if any, of a

semantic R-tree compared to an R-tree can be obtained. For the semantic

queries, experiments were conducted to show how semantic queries are an-

swered using the semantic R-tree.
The sample range sizes of the rectangles were large size (200 miles) and small

size (20 miles) in the GNIS file. The sample areas chosen were northwest (NW)
region, northeast (NE) region, southwest (SW) region, southeast (SE) region,

and center (CEN) region in the data set. The number of nodes tested ranged

from 5000 to 30,000.

Figs. 10 and 11 show the experimental results of the general queries. The X -

axis is the number of nodes. The Y -axis represents the relative response time,

which is the ratio between (response time using an R-tree) and (response time

using a semantic R-tree). If the result value is greater than 1.0, it means that the

semantic R-tree outperforms the original R-tree, and vice versa, if the value is
less than 1.0, it means that the original R-tree outperforms the semantic R-tree.
For the queries with a large rectangle size, the semantic R-tree outperforms an

R-tree for some of the queries. When an R-tree outperforms a semantic R-tree,
most of results show that the relative response time is very close to 1.0, which

supports our first observation in Section 4.2 (as shown in Fig. 10). As can be

seen from Fig. 10, the response time ratio is very close to 1.0. In this case, SE

and CEN regions are more category-dense relative to the large range size, so

the result is very close to 1.0 and even is much better than the results from an R-
Fig. 10. Range query results with large size range.



Fig. 11. Range query results with small size range.
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tree. Similar experimental results are obtained for small rectangle size (as
shown in Fig. 11).

The experimental results for semantic queries are shown in Fig. 12, where

the X -axis is the number of nodes and the Y -axis represents the ratio between

(response time using an R-tree) and (response time using a semantic R-tree). If
the test value is greater than 1.0, then it means that the semantic R-tree out-

performs the original R-tree, and vice versa. The results support observation 2

in Section 4.2, too. The semantic R-tree performs much better than the R-tree.
If no objects are found for the queries, the relative response time may be higher
than 1.0.

All these experimental results show that the semantic R-tree is a very effi-

cient spatial data structure for answering semantic queries. As expected, the
Fig. 12. Results of finding all objects with category ‘‘Bank’’.
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performance gain of the semantic R-tree over an R-tree in answering semantic

queries is considerably high. Since the semantic R-tree is a variant of the R-
trees, both precision and recall values are very close to those of the R-trees. In
many GIS applications, the support for semantic queries is more desirable
since this kind of query typically corresponds to information that users request.

Hence, a semantic R-tree is more suitable in such cases.
6. Conclusion

In this paper, a GIS system called TerraFly is studied. The TerraFly system

is a multimedia application that allows the users to view images, manipulate

the retrieved data, and issue range queries and nearest neighbor queries. A

spatial data structure, the Semantic R-tree, is proposed to search for objects
based on both the spatial and semantic information. A technique called

‘‘IDMT Model’’ is proposed to achieve better performance. A semantic object-

oriented database management system is developed to meet the database re-

quirements. Spatial data such as maps can be stored and retrieved from this

database. Several experiments were conducted to compare the Semantic R-tree
with the regular R-tree based on general queries and semantic queries. The

experimental results show that the Semantic R-trees perform better than the R-
trees for semantic queries, and have similar performance for general queries.
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