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been used for the analysis of textures such as [5, 6]. With the
restriction to a set of known textures, retrieval and segmen-
tation problems are essentially reduced to a supervised clas-
sification task, which is amenable for standard techniques
from pattem recognition and statistics. Techniques used for
image segmentation include simple statistical models to ob-
tain estimates of probability density functions [7], and in-
tensity and texture measures [10], etc. Local statistics and
edge information have also been used to segment and dis-
tinguish regions of interest from the background t9l. Seg-
mentation techniques can be grouped under split and merge
methods [8], region growing methods[1], and stochastic
model based methods [2]. The main approach taken in most
of the emerging techniques includes the step to choose a
strategy to estimate the parameters of distributions, which is
invariably to be the maximum likehood (ML) estimation or
maximum a posteriori (MAP) estimation. However, com-
puting the exact MAP estimate of the class label field is
considered a hard problem. Also, no methods in the litera-
ture can compute the MAP estimates of the class parameters
as well as the pixel labels simultaneously.

There exists a tight relationship between similarity-based
texture image retrieval and unsupervised texture segmenta-
tion. Image retrieval often requires to select those images in
a database which are most similar to a given query image,
while the goal of segmentation is to partition a given im-
age into maximally homogeneous regions. Therefore these
tasks are closely related to similarity measures, since ho-
mogeneity can be defined as the average similarity between
pairs of local texture patches within a region. In this paper,

Abstract

In this pape4 a novel unsupervised segmentationframe-
work for texture image queries is presented. The pro-
posed framework consists of an unsupervised segmentation
method for texture images, and a multi-flter query strat-
egy. By applying the unsupervised segmentation method on
each texture image, a set of texture feature parameters for
that texture image can be extracted automatically. Based
upon these parameters, an effective multi-flter query strat-
eglt which allows the users to issue texture-based image
queries is developed. The test results ofthe proposedframe-
work on 318 texture images obtained from the MIT Viskx
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database are presented to show its effective-

l.Introduction

Segmentation is an important part of the computer vision
and image analysis, wherein regions of interest are identi-
fied and extracted for future processing. The definition of
suitable similarity and homogeneity measures is a funda-
mental task in many important applications, ranging from
remote sensing to similarity-based retrieval in large image
databases such as the query by image content (QBIC) sys-
tem [41.

Texture segmentation involves the identification of uni-
form textured regions in an image. Many techniques have
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we propose an unsupervised texture segmentation method
which can recognize the variability of content description
depending on the complexity of the image regions and ef-
fectively address it. The proposed method considers the
problem of segmentation as a joint estimation of the par-
tition and class parameters. This class parameterization en-
ables us to compute the optimal parameters using a sim-
ple least squares technique, and the class descriptions are
amenable to direct estimation of their parameters without
resorting to expensive numerical optimization procedures.
By considering both the partition and the class parameters
as random variables and estimating them jointly, their MAP
estimates are computed simultaneously. In our framework,
we first segment each of the texture images into classes
(usually 2 classes), and extract texture features ofeach class
simultaneously by generating the class parameters during
the process of segmentation. Based on the database of tl.re

texture features, a multi-filter query mechanism is devel-
oped to filter out most of the biased texture images that are
far different from the example query texture image at the
very beginning of query, which can greatly reduce the over-
head. The test results are based on the -118 texture images
obtained from the MIT VsTex Texrure darabase [11] and
Brodatz database [12].

The rest of the paper is organized as follows. In Sec-
tion 2, the unsupervised texture segmentation method is pre-
sented, and the feature parameters obtained by segmenta-
tion are described in details. Section 3 explains the query
strategy. Section 4 gives the test results and the discussions.
Conclusions and future work are given in Section 5.

2. Unsupervised Texture Segmentation

In the proposed unsupervised texture segmentation
framework, the partition and the class parameters are treated
as random variables. The method of partitioning a still im-
age starts with a random partition and employs an iterative
algorithm to estimate the partition and the class parameters
jointly [3].

2.1. Segmentation Method

Suppose the image is of size N. x I/" with intensities
givenbyY = {Ail, | < i <,^/., 1 < j < l/"} andrhere
are two classes in the image. Let the partition variable be
c : {ct,c2}, and the classes be parameterizedby 0 :
{0r,02}. Also, suppose all the pixel values Ea7 belonging
to class k (k : 1,2) are put into a vector yp. Each row of
the matrix iD is given by (l , i, , j , i, j) and a,6 is the vecror of
parameters (a1o, ..., a Xs)T .

yij : ano I anri' * anzj + a$i,j)V(i j j) Aei e cn

Yt : 6ar

dn : (o7o;-1oTyu

The best partition is estimated as that which maximizes
the a posteriori probability (MAP) of the partition variable
given the image data Y. Now, the MAP estimates of c :
{q, cz} and 0 : {0 t, 0z} are given by

G,il = Argma4 P(c,TlY)
@,0): o"Ufr P(Y I c,0)p(c,0)

Let J(c,0) be the functional to be minimized. With ap-
propriate assumptions, this joint estimation can be simpli-
fied to the following form:

G,e) : Arg min J(c1,c2,0t,02)
G,a)

J(c1,c2,0t,02) - - lnpl(yii;01)I

- Inp2(yii;02)

The algorithm starts with an arbitrary partition of the
data and computes the corresponding class parameters. Us-
ing these class parameters and the data, a new partition is
estimated. Both the partition and the class parameters are
iteratively refined until there is no further change in them.
After the segmentation, a set of parameters describing both
of tl.re two classes is obtained automatically, and part of the
parameters are selected for future query use.

2,2. Initial Partitions for Segmentation

The proposed segmentation method starts with a ran-
domly generated initial partition. Hence, different initial
partitions yield to different local minima. The smallest lo-
cal minimum among them gives the desired solution though
it may not be the global minimum. In the proposed frame-
work, a number of local minima (e.g., 20) are computed
and the smallest local minimum is used. Since the com-
putational requirement for each local minimum is very lit-
tle, the overall computation needed for the best local mini-
mum is not much. Two methods are used to generate those
twenty initial partition candidates. By the straight-line par-
tition method, the area of the original texture images is par-
titioned by an arbitrarily generated straight-line across the
whole image area. Different areas separated by the straight-
line represent different classes. In many cases, the randomly
generated straighrline partitions are good enough to get the
desired initial partition, but in many other cases it cannot
work well. In order to obtain a good initial partition as
quickly as possible, the predefined template method is also
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used to generate the initial partitions. Eight predefined tem-
plates are selected as candidates in the selection of the de-
sired initial partition.

Another important issue about the initial partition is how
to select the "best" one among those candidates. The crite-
ria for evaluating the candidates involve two aspects. One is
the local minimum, and the other is the standard deviation
of each class within a texture image. Two candidates are

chosen when each of them has either the lowest local min-
imum or the lowest standard deviation. Then, the global
minima of these two candidates are computed and the one
with the lower global minimum is chosen as the final parti-
tion.

3. Query Strategy

After the segmentation on each texture image, a set of
parameters for each image is obtained automatically. Some
of these parameters are selected for query use. Since the
proposed segmentation method uses the functions of the
spatial coordinates of the pixels as the mathematical de-
scription of a class, those parameters related to spatial in-
lormation should be able to represent the spatial distribution
leatures of textures.

r Parameter AK: After the segmentation, eacll pixel
within a texture has its class identification. For exam-
ple, the class identification for each pixel is either 1 or
2 when there are two classes. As mentioned earlier,
each class is parameterized by a vector of parameters
(a*0,...,a1rs)T . In other words, this parameter vector
contains not only the spatial distribution information of
the texture, but also the information of intensity values

within that class. Furthermore, among the four param-

eters in the vector, o,6s is usually far more larger than
the other three. Therefore, given the number of classes

is 2, two AK parumeters (one for each class) are ob-
tained for each texture.

r Parameter CV: It is the covariance matrix of matrix
cuecsJL (n=1 or2). This parameterrepresents the spa-

tial distribution pattern of each class.

cv : (cv _t,cv _2);

CVn : (cuecs-nx cuecs-nr)fNkn;
cuecs:n : (stkr-n, stkc-n)T - tnn-n x ones Nkn

where stkr -n and stkc-n are column vectors with each

row being the i, - coord,i,nate and j - coordinate
of gii € cr, respectively. Here, mnn, is a column
vector with 2 elements representing the means of the
i,roordi,nates and j -coordi,nates of yii € cr, and
ones-Nkn is a unity vector of l/kn elements (i.e., all
ofthem have the value 1).

r Parameter V AR-M EAN: During the process of seg-
mentation, the low-level features such as the variance
and mean value for each class can also be obtained,
which does not cause any excessive computation cost.
Since the texture image is well segmented after the
segmentation phase, using the low-level features of
each class as the query criteria is expected to achieve
good query results.

Figure 1. The multi-filter query architecture.

Since we use Euclidean distance for comparing two fea-
ture vectors, the smaller the dimension of vector is, the bet-
ter the performance is. Notice that for each texture image,
it has only two AK parameters. Though the information in-
cluded in parameter AK may not be enough to achieve good
query results, however, if it is used as the first level filter in
the query strategy, the overall computation cost can be re-
duced significantly. Hence, a multi-filter query mechanism
is developed in the proposed framework. Figure I shows
the architecture of the multi-filter query strategy. As can
be seen from this flgure, the multi-filter query mechanism
includes the AK filteq Covariance filter, and Var-Mean fil-
ter. The idea is to use the spatial distribution information
obtained through segmentation to filter out those "bias" tex-
ture images, and use the classified VAR_MEAN to rank
the retrieved images.

The ranking of the retrieved texture images is rela-
tively simple. The sum of the weighted Euclidean dis-
tances on the V AR-M EAII for each class and the overall
V AR-M EAN between the query image and the retrieved
image is used to determine the ranking. The weights are

derived from the experimental results.

4. Test Results and Discussions

4.1. Image Retrieval Results

In order to test the performance of the proposed frame-
work, -118 natural texture images mostly obtained from the
MIT VsTex Texture database and Brodatz database are
used. For the images from Brodatz, we partition each of the
512 x 5l2images into 6 subimages (with overlap). Each
texture image is of srze 240 rows and 180 columns. In the
proposed framework, the similarity query is used. An exam-
ple of the query looks like "Show me more texture images
which are similar in texture patterns with the query image."

Exrmple Querl
Imagc
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(a) Query results for query image texture30l.

Figure 2. Texture query results after the seg_
mentation. Example query image texture20g
is on the top left. Matches of th; images are
listed from top left to bottom right in ddcreas_
ing order of their similarities.

Figures 2(al)-(b) show the query results for example
query image texture208, which is an image from MIT Ms_
Tex database. Figure 2(a) shows the first four original tex-
ture images being retrieved. The example query image tex_
ture208 is on the top lelt, and tlre matches u." lirt.,l f.orn
top left to bottom right in decreasing order of their similari_
ties. The corresponding ranks of the matches are also given
below the name of cach original texture image as shown
in Figure 2(a). The rank indicares how similar it is to the
example query image. Figure 2(b) shows the segmentation
results of those texture images in Figure 2(a). From the
observations of the segmentation results, we can see that
the texture pattern of image texture2lO is the closest to the
query image texture208. The spatial distributions within
each class are very similar to each other, as well as the
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(b) Segmentation results

Figure 3. Texture query results after the seg-
mentation. Example query image texture3Ol
is on the top left. Matchesof thJ images are
listed from top left to bottom right in dEcreas-
ing order of their similarities.
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Figure 3 shows another query results for example query
image texture30L which cones liom the Brodatz database.

The recall number is 8. It is clear that the top 5 matches in-
clude all the subimages which come from the same original
image as the query image.

By analyzing the query results for the example query im-
age, it is very promising to see that the proposed framework
for texture segmentation and query can reasonably retrieve
those texture images that have the similar texture patterns

with the example query image. Moreover, since the pro-
posed segmentation method is an unsupervised simultane-
ous partition and class parameter estimation algorithm, all
the needed feature parameters can be obtained automati-
cally and indexed offline without any user interactions. In
the experiments, the accuracy of segmentation results lbr
texture images exceeds 85 percent. In addition, the use of
multi-filters (AK, CV andV AR-M EAN) greatly reduces

the number of retrieved images at each step, which is essen-

tial to reduce the computation cost and get quick answers

for the issued queries. For example, when texture208 is
used as the exarr.rple query image, the number of retrieved
images sharply dropped over 70 percent after the AK filter.

5. Conclusion and Future Work

In this paper, an unsupervised segmentation framework
for texture image queries was proposed. By using a novel
and effective segmentation method, a set of feature param-

eters for each class within an image is extracted automati-
cally without any user interl'erence. Based on these f'eature

parameters, the proposed framework supports texture im-
age queries eff'ectively. Moreover, a multi-filter mechanism

is used in the query procedurc to greatly reduce the number
of image candidates and at the same time, reduce the query
processing time. Furthernrore, applying the segmentation
method on partitioning the natural image also gives good

results.

One of the potentials ol' the proposed segmentation

method is that it can also deal with the situation of mul-
tiple classes (more than two). The idea is to consider the

number of classes s as another random variable. Our future
work will focus on generalizing the proposed framework to

handle the cases when the number of classes is more than

two so that it can partition the image more reasonably and

precisely, which is essential to the accuracy of the queries.
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