World Multiconference aon
_bystemics, Lybernetics

v and Informatics
-1 , 4 Y b v

July 23-26, 2000
Orlando, Florida, USA

PROCEEDINGS

~ Belkis Sanch _.
Nader Nada

International
Institute of

Informatics . Awais Rashid

and Systemics Timothy Arndt
' Maria Sanchez

Member of the International
KFederation of Systems Research

IFSR

Co-organized by IEEE Computer Society
(Chapter: Venezuela)

G ey UG

2
<

W

o MR TSI SV D Tl ¥ & 35, TR

A USER-FRIENDLY MULTIMEDIA SYSTEM FOR QUERYING AND
VISUALIZING OF GEOGRAPHIC DATA

Shu-Ching Chen, Naphtali Rishe, Xinran Wang, and Mark Allen Weiss

High-Performance Database Research Center
School of Computer Science
Florida International University, Miami, FL 33199, U.S.A.
{chens, rishen, wang01, weiss}@cs.flu.edu

ABSTRACT

In this paper, we present a user-friendly mul-
timedia system called TerraFly, which is used
for Geographical Information System (GIS) ap-
plications. This system makes a large number
of remotely sensed images available to the gen-
eral public. TerraFly can let the user interact
with the system and explore spatial data of their
choosing without advanced knowledge of these
data. A client/server architecture is used in the
TerraFly system. This system implements a high-
performance semantic multimedia spatial database
for the storage and retrieval of all the data used
by the system and allows users to fly over and
manipulate the retrieved data. The informa-
tion server is responsible for answering range
queries and nearest neighbor queries. This server
is implemented using a multithread environment
with thread pools. The TerraFly client is im-
plemented using Java. It has a communication
interface to synchronize data retrieved by both
the database server and information server. De-
tailed examples are presented to show the ease
of use and the power of the TerraFly systems.

Keywords: TerraFly, GIS, Databases.

1. INTRODUCTION

The availability and usage of remotely sensed
data has increased dramatically in recently vears.
Technological advances in computer science and
remote data sensing make tremendous amounts
of spatial information available [2]. Along with
this increased availability comes the complica-
tion of extraction and storage of such data. There
are a large number of different formats of remote

This research was supported in part by NASA (un-
der grants NAGW-4080, NAG-3095, NAS5-97222, and
NAG5-6830), NSF (CDA-9711582, IRI-9409661, HRD-
9707076, and ANI-9876409), ARO (DAAH04-96-1-0049
and DAAH04-96-1-0278), AFRL (F30602-98-C-0037),
BMDO (F49620-98-1-0130 and DAAH04-0024) Dol (CA-
5280-4-9044), and State of Florida.

Mark Allen Weiss was supported in part by NSF
(EIA-9906600).

689

sensed data such as Landsat, SPOT, AVHRR,
etc. While spatial data has become more readily
available nowadays, the variety of formats lim-
its our ability to use the data. Different formarts
need different manipulation to retrieve and use
such data. Modern GIS software should han-
dle the integration of such data from various
sources. A number of GIS software tools, such
as Arc/Info, Imagine, and ENVTI. are available to
manipulate and view different spatial data. But
these tools all have serious drawbacks: (1) They
may suffer from inefficiency of entry, storage,
and retrieval of spatial data; (2) They need ex-
perts who should have both experience in the use
of GIS software and thorough knowledge of the
spatial data they are dealing with; (3) They need
some special hardware requirements, which ei-
ther are expensive or limit the usage of such soft-
ware — for example, ARC/INFO needs a num-
ber of UNIX-based workstations installed with
complete GIS software; (4) The software applica-
tions are expensive. To address all these issues,
the High Performance Database Research Cen-
ter (HPDRC) [9] has developed a user-friendly
multimedia system called Terrafly. The database
system of Terrafly efficiently stores and retrieves
multi-dimensional spaces such as image data as
well as alphanumeric data. One goal of the Ter-
rafly project is to make the large number of re-
motely sensed Tmages available to the general
public. This means that the Terrafly system
does not constrain which computer systems users
have and, additionally, Terrafly can let the user
interact with the system and explore spatial data
of their interest without advanced knowledge of
these data. So Terrafly is designed based on a
thin-client/fat-server architecture. As long as
the users’ computer systems satisfy some mini-
mal requirements, Terrafly runs very well across
different platforms. A user-friendly GUI is well-
designed so that it does not require users to have
advanced knowledge data, and the servers han-
dle all complexities.

Terrafly is a multi-user real-time spatial data
tool that allows users to view, query, and ana-

lyze remotely sensed images. It uses a variety
of remote sensed data, some of which include
several spectral sensors. Users can fly over the
color composite image of their choice by select-
ing any of these sensor combinations and the sys-
tem also gives the user control over the intensity
of the colors in the imagery. A Geographical
Names Information System (GNIS) is also in-
cluded so that (1) the user can select the name of
locale and be instantly transported to that area
on the remotely sensed image; (2) users can do
range queries to get more information of the area
around the locale they selected; and (3) users can
search the nearest neighbors. In addition, users
can zoom into an area virtually by switching to
a high-resolution data set.

The Terrafly system implements a high per-
formance semantic multimedia spatial database
for the storage and retrieval of all data used by
the system and allows users to fiy over and ma-
nipulate the retrieved data. This database server
is capable of storing a huge amount of binary
data such as images and other multimedia data
distributed over TCP/IP networks. The sys-
tem includes a multithreaded information server
based on a GNIS to provide functionality of range
queries and nearest neighbor queries. To achieve
this functionality, we implemented an R-tree rep-
resenting the spatial data structure and its query
algorithms. The Terrafly client is a data-less thin
client working across the Internet.

In this paper, we discuss Terrafly’s client/server
architecture and its system components. We also
discuss multithreading and a thread pool model
since they are very important features of Ter-
rafly. We briefly describe the R-tree and other
data structures and study a range query algo-
rithm and a nearest neighbor query algorithm
used in Terrafly.

This paper is organized as follows. Section 2
introduces the system architecture and its com-
ponents of the Terrafly multimedia system. In
Section 3 we present the Terrafly information
server and discuss R-tree and query algorithms.
Conclusions are presented in Section 4.

2. SYSTEM ARCHITECTURE AND
COMPONENTS OF TERRAFLY

Terrafly uses client/server computing. The Ter-
rafly client is a Java-based web application, and
it is a data-less graphical user interface (GUI).
The servers provide service: namely, they re-
trieve data requested by the clients and answer
queries for the clients. Together, the client /server

i Web Server | |
|
|| CGlProwy ||

i i

|
|

Chmld__——— . ———
Clhemt12,) Socket . Information
: : | server | !

|

Database Server

L 1 |
It [—— | |
[Client 2A! ‘

A: Connection wrapper

Figure 1: TerraFly system architecture.

architecture forms a complete computing system
with a district division of responsibility. Terrafly
is based on the three-tier client/server model.
This model is more advanced and flexible than
the traditional two-tier model in that (1) the sep-
aration of the application logic from client and
server gives a new level of application logic pro-
cesses. This new level of logic processes becomes
more robust because these processes operate in-
dependently of clients and servers, and (2) this
new application logic process make system in-
tegration and evolution more easier and stable.
The Terrafly system architecture is shown in Fig-
ure 1.

Java clients use a connection wrapper to syn-
chronize data transferring. The clients send re-
quests to either a web server or information server,
and receive data (image data and textual data)
from different servers. When the web server re-
ceives a request from a client, the proxy server
will parse the request, retrieve image and tex-
tual data related to the fly-over request from the
database server, and send the data back to the
client. When the information server receives a
request from a client, it will search the R-tree,
retrieve information related to range queries and
nearest neighbor queries from the database server,
and send the answers to the client.

2.1. Java Client

The Terrafly client is written using Java to achieve
platform independence. A snapshot of the client
is shown is Figure 2. This snapshot represents
a fly-over trace (the white dotted line) from NE
(NorthEast) to SW (SouthWest). The main fea-
tures of the client include:

1. Capability to fly over the Landsat TM data,
Digital Orthophoto Quad (DOQ) at dif-
ferent directions by positioning the mouse

NSTERRAFLY -
% b st f - : &) " 3 b
Oax m “Couwny [Urded Staces -} m e - T ‘_
i Hel
|

ladae - [1107% Unguos (762678 T Doyt [auna

Locason Tspe. i—"‘_—j tooaent [t Cove

Figure 2: The white dotted line represents the
fly over trace from NE to SW.

within the image.

o

. Customized three-band (sensor) combina-
tion: users can select some predefined and
useful three-sensor combinations to view
false color images from a drop down menu.
When users select a new combination, a
different set of images/bands is retrieved
from the database and the selected false
color image is computed and displayed within
a window.

3. Advanced three-band color composite: this
application allows scientific users to enter
any three-band combinations (RGB) that
the user is interested in studying or ana-
lyzing.

4. RGB intensity control: this option allows
the users to increase or reduce the inten-
sity of any of the bands that represent the
colors.

5. Capability to issue range queries and near-
est neighbor queries.

6. Capability to obtain feature extraction of
the image.

. Capability to display online information (lat-
itude, longitude, regions, etc) of the images
that users are viewing.

|

2.2. Database Server and Proxy Server

The Terrafly database system is a multimedia
spatial database system built by our group using
the Semantic Object-Oriented Database Man-
agement System (Sem-ODB) based on Seman-
tic Binary Model [7]. In the Semantic Binary
Model, information is represented by logical as-
soclation (relations) between pairs of objects and
by the classification of objects into categories.
The Semantic Binary Model is a natural and
convenient way of specifying the logical struc-
ture of information and defining the concepts of
an application’s world. Unlike the traditional
database systems which consist only of alphanu-
meric data, the Sem-ODB not only has alphanu-
meric data, but also has data that cover multi-
dimensional spaces such as image data (maps).
Currently, the database contains semantic /textual,
spatial/ remote sensed (Landsat) and digital data
including Digital Orthophoto Quad (DOQ) (Ar-
ial photograph) data. The Sem-ODB provides
very efficient data storage and manipulation.

Terrafly uses a proxy server to relay data re-
quested by clients to the database server, and to
transmit the data retrieved by Sem-ODB back
to clients. This proxy needs to use two differ-
ent protocols, one to interface with clients, and
the other one to interface with Sem-ODB server.
We use Common Gateway Interface (CGI) as
the first protocol and Sem-ODB API as the sec-
ond protocol. CGI is a well-established method
for web-based client applications to communi-
cate with a remote server. The web server can
handle requests from multiple clients simultane-
ously. It can spin off as many CGI processes
as needed, and will perform the mapping of the
communication between the client and its corre-
sponding process. Overall, the use of CGI has
simplified the coding of both the server process
and the client process.

Upon receiving a request from a Terrafly client,
the proxy server must decode the request and re-
trieve approximate data from the database server.
The proxy process accomplishes this by using
Sem-ODB API. As documented in the program-
mer’s reference [10], all that the proxy server
needs to do is to find where the database server
is located. If the database is to be opened lo-
cally (i.e., the proxy process will also act as the
database manager), it only needs to specify the
complete path where the database is located. If
there is a separate database manager, the proxy
server needs to specify the complete IP address
and port number to reach this database man-

ager. After this database connection is estab-

lished, all queries can be performed using APIs
provided by Sem-ODB.

3. TERRAFLY INFORMATION
SERVER

Terrafly provides an integrated view of spatial
and associated data along with both the capa-
bility to display and manipulate spatial images.
Also, being a GIS system, Terrafly provides the
capabilities to issue range queries and nearest
neighbor queries to satisfy particular interests of
scientists and public users. Range queries are
to find spatial objects in a specific area around
a location specified by users. A sample query
is “Find all rental car companies around Miami
International Airport within six miles.” Near-
est neighbor queries are used to find the nearest
spatial object to the object the user specifies;
for instance, “Find a car rental company that is
nearest to Miami International Airport.”

The information server is a multithreaded ap-
plication. It receives requests from clients through
a UNIX socket. The configuration of the infor-
mation server is shown in Figure 1. When the
Terrafly system is booted up initially, the infor-
mation server reads information from a GNIS
database to extract essential information for spa-
tial objects. Based on the information such as
latitude and longitude, an R-tree is created. The
information server answers queries by searching
this R-tree.

3.1. Multithreaded Information Server
Design

The Terrafly Information Server is implemented
in a multithreaded environment (POSIX threads
in Solaris or Linux). Multithreading is a tech-
nique that allows one program to do multiple
tasks concurrently. Although the basic concepts
and research of multithreading programming have
existed for several decades, the emergence of this
concept in industry as an accepted standardized
programming technique started in 1990s. The
greatest push is from the emergence of shared
memory symmetric multiprocessors (SMP). Mul-
tithreading provides exactly the right program-
ming paradigm to obtain vastly greater perfor-
mance by making the maximal use of these new
machines. Nowadays, the ever-increasing clock
speed of the CPUs allows us to obtain better
and better performance from processors. How-
ever, the speeds of bus, memory, and peripheral
devices in computer systems limit the overall
performance, and it is exactly where the SMP

comes into play. That is, the SMP allows us
to increase our overall system performance., A
thread is a stream of control that executes its
instructions independently, and allows a multi-
threaded process to perform numerous tasks con-
currently. Threads are program states that get
scheduled on a CPU, and they share the same
process structure and most of the operating sys-
tem states: the address space, file descriptors,
etc.

The Terrafly information server is a classic
software application suitable to use multithreads
— a server needs to handle numerous overlapping
requests simultaneously. Terrafly clients send
large amount of requests that require the server
to do some I/O, process the results, and return
the answers. Every time, upon receiving a re-
quest, the server uses the shared R-tree, rather
than replicates one as a process will do. Thus,
we have exploited threads to the full extent re-
sulting in improved performance. To further im-
prove performance, we design the information
server based on thread pool model [6]. The main
thread of the server creates a fixed number of
worker threads up front during the time of server
startup, and all these worker threads survive for
the duration of the program. When the main
thread receives a new request, it places it on a
job queue. Worker threads receive requests from
the queue and process them. When a worker
thread completes a request, it removes another
request from the queue.

Compared to the creating of threads on de-
mand (as in a boss/worker model [5]), the thread
pool technique improves performance significantly.
We can reuse the idle threads to handle new re-
quests. Each time the main thread receives a
new request, the server program uses one thread
that is ready waiting to process the work. In
a boss/worker model, the server would create a
new thread to handle a new request. After a
worker finishes the request, the server destroys
the thread. From the client’s point of view, the
request’s processing time (latency) is shorter with-
out the time of creating a thread in the server
side. Figure 3 shows the structure of the threads
pool in Terrafly.

3.2. R-trees

R-trees [4] were proposed as a natural extension
of B-trees with index records in its leaf nodes
containing pointers to data objects. R-trees are
designed to organize a collection of arbitrary spa-
tial objects by representing them as d-dimensional
rectangles. We briefly describe the R-tree data

Requests

| Main Threads|

Job queue

/
/

/
' N
Worker 1| | Worker2|- - - - - - - | Worker N

Figure 3: The structure of the thread pool in the
information server.

structure here for the purpose of completeness.
There are a few important features of R-trees:
(1) like B-trees, they remain balanced, but they
maintain dynamic adjustable index structure that

deals with “dead space” on the pictures, as quadtrees

do; (2) all leaf nodes store full non-atomic spatial
objects and thus we can do a natural and high-
level object-oriented search; (3) often the nodes
corresponds to disk pages and thus the parame-
ters defining the tree are chosen so that a small
number of nodes is visited during a spatial query.
Based on these features, we can see that R-trees
can be used to do a direct spatial search for some
non-atomic spatial objects, can be used to rep-
resent a medium such as quadtrees, and can be
used as a storage structure. Following is the brief
description of the R-tree structure.

Let M be the maximum number of entries of
one node and m < M/2 be a parameter speci-
fying the minimum number of entries in a node.
An R-tree structure specifies the following prop-
erties:

1. All leaf nodes appear at the same level;

2. Each entry in a leaf node is a 2-tuple of
the form (M BR,oid) such that MBR is
the minimum boundary rectangle that spa-
tially contains object pointed by oid;

3. Each entry in a non-leaf node is a 2-tuple
of the form (M BR,ptr) such that M BR
is the minimum boundary rectangle that
spatially contains the M BR in the child
node pointed by ptr.

4. Parameters m and M indicate that each
node in the tree contains between m and
M entries, with the exception of the root,
which has at least two entries unless it is a
leaf node.

H

The drawback of R-trees is that they do not
result in a disjoint decomposition of space, and
an object is only associated with one bound-
ary rectangle. This property makes zero overlap
between two (or more) leaf M BRs' unachiev-
able, unless we know the data points in advance.
The performance of R-tree searching depends
heavily on non-overlap and obviously efficient
R-tree searching demands that overlap be min-
imized. But it is hard to control the overlap
during the dynamic splits of R-trees, and effi-
cient search degrades. Several tree structures
have been developed, such as R+ trees [11], cell
trees (3], and R* trees [1] to achieve non-overlap
at the expense of space. These trees are based
on the decomposition of the rectangles represent-
ing objects into smaller sub-rectangles represent-
ing partitions of sub-objects in order to avoid
overlap among minimal bounding rectangles. If
a given rectangle covering a spatial object at
the leaf level overlap with another rectangle, we
decompose it into several non-overlapping sub-
rectangles, all of which make up the original rect-
angle. All pointers of such sub-rectangles point
to the same spatial object. This splitting mecha-
nism is propagating up to the nonleaf nodes, and
thus, the non-overlap is achieved. These struc-
tures exhibit very good search performance, es-
pecially for point querying, at the expense of ex-
tra space. However, they have drawback that the
decomposition is data-dependent. This means
that it is difficult to perform tasks that require
composition of different data sets.

In the Terrafly system, we use R-trees be-
cause one goal of Terrafly is to deal with a num-
ber of different data sets, and other data struc-
tures are not sufficient to do this job. Further-
more, based on our research work, we found that
when we deal with 2-dimensional spatial point
objects of GN1S, we do not encounter a signif-
icant overlapping problem. The R-tree is well-
suited to our queries and can save large amounts
of space.

3.3. Range Query and Nearest Neighbor
Query in TerraFly

TerraFly provides users with range query and
nearest neighbor query capabilities. A range query
searches spatial objects in a specific covering area
around a specific spatial object that a user has
selected. Given a user-specified point (latitude,
longitude), a distance r, and an R-tree whose
root node is RT, a range query finds all index
records whose rectangles overlap the area S spec-
ified by (latitude, longitude) and r. The range’

query search algorithm descends the tree from
the root in a manner similar to B-tree. How-
ever, if zero-overlap is not attainable, then more
than one subtree under a node may need to be
searched, and it is not possible to guarantee good
worst-case performance. Carefully designed R-
tree insertion and update algorithms will well
maintain the tree so as to minimize the search-
ing of irrelevant regions of indexed space, and
examine only data near the range query area [4].

Nearest neighbor queries are to find the K
nearest neighbor (K-NN) objects to a given point
in a space. Such queries are substantially differ-
ent from the search algorithm of a range query.
In Terrafly, we use an efficient algorithm based
on the branch-and-bound algorithm for process-
ing exact K-NN queries for the R-trees [8].

—

4. CONCLUSION

In this paper, a GIS system called Terrafly is
introduced. The Terrafly system is a multime-
dia application that allows users to view image,
manipulate the retrieved data, and issue range
queries and nearest neighbor queries. An R-
tree data structure is implemented to handle the
queries. The Terrafly information server uses
multithreading to achieve better performance. A
semantic object-oriented database management
system is developed to meet the database re-
quirements. Spatial data such as the maps can
be stored to and retrieved from this database.
Unlike existing GIS applications that only pro-
vide limited functions and require advanced knowl-
edge of spatial data, the Terrafly multimedia sys-
tem allows any user who has basic knowledge of
computers to interact with the system and ex-
plore spatial data of his/her interest.

5. REFERENCES

(1] N.Beckmann. H. Kriegel, R. Schneider, and
B. Seeger, “The R*-tree: An Efficient and
Robust Access Method for Points and Rect-
angles,” Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 322-331, 1990.

(2] Yue-Hong Chou, Ezploring Spatial Analysis
in Geographic Information Systems, ON-
WORD press, 1997.

[3] O. Gunther, Efficient Structures For Ge-
ometric Data Management, Lecture Notes
in Computer Science 337, Springer-Verlag,
Berlin, 1988.

694

[4] A. Guttman, “R-tree:

[10]

[11]

A Dynamic Ip.
dex Structure for Spatial Search,” in Pryq.
ACM SIGMOD, pp. 47-57, June 1984.

Bil Lewis, Daniel J. Berg, Multithreadeq
Programming With Pthreads, Sun Microsys-
tems Press, 1998.

Bradford Nichols, Dick Buttlar, Jacque-
line Proulx Farrell, Pthreads Programming,
O’Reilly & Associates. Inc. 1996.

Naphtali Rishe, 4 Semantic Approach to
Database Design: the Semantic Modeling
Approach, McGraw-Hill, 1992.

N. Roussopoulos, C. Faloutsos, and T.
Sellis, “Nearest Neighbor Queries,” Proc.
ACM SIGMOD Int. Conf. on Management
of Data, pp. 71-79, 1995.

Naphtali Rishe, Wei Sun, David Bar-
ton, Yi Deng, Cyril Orji, Michael Alex-
opoulos, Leonardo Loureiro, Carlos Or-
donez, Mario Sanchez, Artyom Shaposh-
nikov, “Florida International University
High Performance Database Research Cen-
ter,” SIGMOD Record, 24(1995), 3, pp. 71-
76.

Semantic Object-Oriented Database Man-
agement System: C++ Interface Program-
mer’s Guide, Ciotek Version, High Perfor-
mance Database Research Center, Florida
International University, Miami, FL, 1998.

Timos Sellis, Nick Roussopoulos, and Chris-
tos Faloutsos, “The R+-Tree: A Dy-
namic Index for Multi-Dimentional Ob-
jects,” Proc. 13th Int. Conf. on Very Large
Data Bases, pp. 507-518, 1987.

loa
put
are
cod
has

ope
get
the
rat:
pro
nec
anc
of

clo
an

pre

Wa
coc
coc
has

ten
wic
bas
to
by

tra

T stre

in
wa’

obt

pre
the
anc

